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Abstract

Background

Chagas disease results from infection with the diploid protozoan parasite Trypanosoma
cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are

common, but little studied. In this study, we explore T. cruzi infection multiclonality in the

context of age, sex and clinical profile among a cohort of chronic patients, as well as paired

congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep se-

quencing technology.

Methodology/ Principal Findings

A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and

sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In

addition, a second, mitochondrial target—ND5—was sequenced across the same cohort of

cases. Several million reads were generated, and sequencing read depths were normalized

within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27;

Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear

correlation between intra-host sequence diversity and age, sex or symptoms, while principal

coordinate analyses showed no clustering by symptoms between patients. Between con-

genital pairs, we found evidence for the transmission of multiple sequence types from moth-

er to infant, as well as widespread instances of novel genotypes in infants. Finally, non-

synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of
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TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of

strong diversifying selection at this locus.

Conclusions/Significance

Our results shed light on the diversity of parasite DTUs within each patient, as well as the

extent to which parasite strains pass between mother and foetus in congenital cases. Al-

though we were unable to find any evidence that parasite diversity accumulates with age in

our study cohorts, putative diversifying selection within members of the TcGP63I gene fami-

ly suggests a link between genetic diversity within this gene family and survival in the

mammalian host.

Author Summary

Trypanosoma cruzi, the causal agent of Chagas disease in Latin America, infects several
million people in some of the most economically deprived regions of Latin America. T.
cruzi infection is lifelong and has a variable prognosis: some patients never exhibit symp-
toms while others experience debilitating and fatal complications. Available data suggest
that parasite genetic diversity within and among disease foci can be exceedingly high.
However, little is know about the frequency of multiple genotype infections in humans, as
well as their distribution among different age classes and possible impact on disease out-
come. In this study we develop a next generation amplicon deep sequencing approach to
profile parasite diversity within chronic Chagas Disease patients from Bolivia and Brazil.
We were also able to compare parasite genetic diversity present in eleven congenitally in-
fants with parasite genetic diversity present in their mothers. We did not detect any specif-
ic association between the number and diversity of parasite genotypes in each patient with
their age, sex or disease status. We were, however, able to detect the transmission of multi-
ple parasite genotypes between mother and foetus. Furthermore, we also detected powerful
evidence for natural selection at the antigenic locus we targeted, suggesting a possible in-
teraction with the host immune system.

Introduction
Trypanosoma cruzi is a kinetoplastid parasite and the causative agent of Chagas disease (CD)
in Latin America. T. cruzi infects approximately 8 million people throughout its distribution
and causes some 13,000 deaths annually [1]. Chagas disease follows a complex course. Infec-
tion, often acquired in childhood, is generally lifelong but progression from the indetermined
(asymptomatic) to symptomatic stage occurs in only 30% of cases [2]. A broad pathological
spectrum is associated with clinical CD including potentially fatal cardiological and gastroin-
testinal abnormalities [3]. The relative contributions of parasite and host immunity in driving
disease pathology are a matter of continuing debate [4]. Recently, for example, bioluminescent
parasite infections in BALB/c mouse models have suggested that heart disease can progress in
the absence of detectable local parasite load [5].

It is widely recognized that natural parasitic infections are often comprised of several para-
site clones [6]. Malariologists use the term ‘multiplicity of infection’ (MOI) to describe when
multiple Plasmodium sp. genotypes occur within the same host [7,8]. A similar phenomenon
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has been observed in T. cruzi in vectors (e.g. [9]), as well as mammalian reservoir hosts (e.g
[10]) and humans hosts (e.g. [11]) using solid phase plating and cell sorting techniques. The
occurrence of multi-genotype infections has fundamental implications for host immunity [12],
as well as for accurate evaluation of pathogen drug resistance [13], transmission rate, epidemi-
ology and population structure (e.g. [7,11]). The efficiency with which it is possible to sample
pathogen clonal diversity from biological samples has soared in recent years with the advent of
next generation sequencing. Deep sequencing approaches have long been applied to study the
dynamics of HIV anti-viral therapy escape mutations. As a result amplicon sequencing increas-
ingly features in a clinical diagnostic context [14]. Plasmodium falciparumMOI can be resolved
at merozoite surface protein loci at far greater depths than possible by standard PCR ap-
proaches [15]. Furthermore, targeting low copy number antigens in parasite populations via
amplicon sequencing can provide important clues to frequency-dependent selection pressures
within hosts, between hosts and between host populations [16].

T. cruzi can persist for several decades within an individual host. Unsurprisingly perhaps,
therefore, T. cruzi shows significant antigenic complexity. T. cruzi surface proteins are encoded
by several large, repetitive gene families that are distributed throughout the parasite genome
[17]. Among these gene families the mucins, transialidases, ‘dispersed gene families’ (DGFs),
mucin-associated surface proteins (MASPs) and GP63 surface proteases comprise the vast ma-
jority of sequences—10–15% of the total genome size [17,18]. Whilst the role of some of the
proteins encoded by surface gene families in host cell recognition and invasion is relatively well
understood (e.g. the transialidases [19]), the role of others (e.g. the MASPs, DGFs) is not. Fur-
thermore, the role each plays in evading an effective host response remains largely unknown.

The GP63 surface proteases are found in a wide variety of organisms, including parasitic try-
panosomatids [20]. In Leishmania spp. GP63 proteases are the most common component of
the parasite cell surface with crucial roles in pathogenicity, innate immune evasion, interaction
with the host extracellular matrix and ensuring effective phagocytosis by macrophages [21]. In
T. brucei subspp. the role of GP63 proteins is less well defined, although some protein classes
are thought to be involved with variant surface glycoprotein processing between different life
cycle stages [22]. In T. cruzi at least four classes of GP63 gene are recognized [20]. Like many
GP63 proteases in Leishmania spp., surface expressed T. cruzi GP63 (TcGP63) genes are an-
chored to the cell membrane via glycosyl phosphatidylinositol moieties [23,24]. Among these
are the TcGP63 Ia & Ib genes (collectively TcGP63I). TcGP63 Ia & Ib encode 78kDa 543
amino acid proteins, are expressed in all life cycle stages and are implicated in the successful in-
vasion of mammalian cells in vitro [23,24].

In the current study we target TcGP63I genes as markers of antigenic diversity among
three cohorts of Chagas disease patients: two in Cochabamba, Bolivia and one in Goias, Bra-
zil. We also targeted a maxicircle gene for the NADH dehydrogenase subunit 5 to provide
basic T. cruzi genotypic information for each case. Diversity at each of the two T. cruzi loci
within each patient was characterized using a deep amplicon sequencing approach, generat-
ing several million sequence reads. Our results shed light on the diversity of parasite DTUs
within each patient, as well as the extent to which parasite strains pass between mother and
foetus in congenital cases. We were unable to find any evidence that parasite diversity accu-
mulates with age in our study cohorts, or to detect a link between parasite diversity and clini-
cal profile. However, we were able to detect evidence of putative diversifying selection within
members of the TcGP63 gene family, suggesting a link between genetic diversity within this
gene family and survival in the mammalian host.
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Materials and Methods

Ethical statement
Ethical permissions were in place at the two centres where human sample collections were
made, as well as at the London School of Hygiene and Tropical Medicine (LSHTM). Local ethi-
cal approval for the project was given at the Plataforma de Chagas, Facultad de Medicina,
UMSS, Cochabamba, Bolivia by the Comite de Bioetica, Facultad de Medcina, UMSS. Local
ethical permission for the project was given at the Hospital das Clínicas da Universidade Feder-
al de Goias (UFG), Goias, Brazil by the Comite de Etica em Pesquisa Médica Humana e Ani-
mal, protocol number 5659. Ethical approval for sample collection at the LSHTM was given for
the overall study, “Comparative epidemiology of genetic lineages of Trypanosoma cruzi” proto-
col number 5483. Samples were collected with written informed consent from the patient and-
/or their legal guardian.

Biological sample collection
Parasite isolation protocols were different between centres. At the UMSS, 0.5 mL of whole ve-
nous blood was taken from chronic patients and inoculated directly into biphasic blood agar
culture. T. cruzi positive samples were minimally repassaged and cryopreserved at log phase
(precise repassage history unavailable). For infants, 0.5 mL of chord blood was taken at birth
and inoculated into culture. Again, positive samples were cryopreserved at log phase after min-
imal repassage (precise repassage history unavailable). DNA extractions, using a Roche High-
Pure Template Kit, were made directly from the cryopreserved stabilate. At the UFG, 17 mL of
whole blood was collected into EDTA, centrifuged for 10 minutes at 1200g at 4°C and the plas-
ma replaced with 8mL Liver Infusion Tryptone (LIT) medium. After a further 10 minutes at
1200g (4°C), the supernatant was again removed. Two mL of packed red blood cells were sub-
sequently transferred to 3 mL of LIT medium and checked periodically for signs of epimasti-
gote growth by light microscopy. Positive cultures were not repassaged. Instead primary
cultures were stabilized by the addition of guanidine 6 M-EDTA 0.2 M (Sigma-Aldrich, UK).
DNA extractions were made from the full volume using the QIAamp DNA Blood Maxi Kit
(Qiagen, UK) according to the manufacturer’s instructions. Among Bolivian strains, DNA con-
centrations submitted to PCR were standardized after quantitation using a PicoGreen assay. In
view of presence of human genetic material in Goias samples, parasite DNA concentrations
were standardized to within the same order of magnitude via qPCR as previously described
[25]. All samples collected for in this study are listed in Table 1.

Epidemiological and clinical observations
The two areas studied have dissimilar histories in terms of Chagas disease transmission intensi-
ty. Vector-borne T. cruzi transmission in Goias and its surrounding states (where samples were
collected—Table 1) was interrupted approximately 20 years before the sampling detailed in
this study [26,27]. In the sub-Andean semi-arid valleys of Cochabamba and its environs, how-
ever, vector-borne domestic transmission is still a likely source of new infections, albeit at a re-
duced rate since intensive spraying campaigns in the mid 2000s [28]. Clinical data collected in
this study were categorised simply into symptomatic and asymptomatic classes for statistical
tests in view of samples sizes. Sub-categories within symptoms were defined as 1) Cardiopathy
(including any electrocardiographic and/ or echocardiographic abnormalities, X-ray with car-
diac enlargement. Patients with atypical cardiac abnormalities i.e. those not exclusively associ-
ated with Chagas disease, were included in the symptomatic class in the context of this study.)
2) Megaesophagous (including achalasia and barium swallow abnormalities) 3) Megacolon
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Table 1. Samples provenance and symptoms.

TcGp63I Shannon
Index

Code Sex Age Province Country Symptoms ND5 Sequence
Type

97% ST 99% ST

PCC 313 F 33 Pampa San Miguel,
Cochabamba

Bolivia Cardiopathy TcIII-VI 0.863833 2.104583

PCC 221 F 52 Cercado, Cochabamba Bolivia Cardiopathy TcIII-VI 0.911279 2.757206

PCC 310 F 58 Collaj chullpa Bolivia Cardiopathy TcIII-VI 0.80038 2.267772

PCC 302 F 55 Oropeza, Chuquisaca Bolivia Cardiopathy TcIII-VI ND ND

PCC 277 F 50 Pucara Grande,
Cochabamba

Bolivia Cardiopathy TcIII-VI 0.680276 1.896947

PCC 460 M 43 Quillacollo, Cochabamba Bolivia Cardiopathy TcIII-VI 0.64493 1.609727

PCC 240 F 36 Pucara grande, Cochabamba Bolivia Cardiopathy TcI 0.19757 0.970659

PCC 243 F 19 Chilimarca, Cochabamba Bolivia Cardiopathy TcIII-VI 0.863657 2.235602

PCC 262 F 36 Ticti Norte, Cochabamba Bolivia Cardiopathy TcIII-VI 0.602361 2.407113

PCC 096 F 58 Cercado-Cochabamba Bolivia Asymptomatic TcIII-VI ND ND

PCC 295 F 45 Sacaba, Cochabamba Bolivia Asymptomatic TcIII-VI 0.82236 2.641406

PCC 151 F 24 Cerro verde, Cochabamba Bolivia Asymptomatic TcIII-VI 0.809111 2.424673

PCC 253 M 46 Campero, Cochabamba Bolivia Asymptomatic TcIII-VI 0.765955 2.147924

PCC 210 F 40 Cercado, Cochabamba Bolivia Asymptomatic TcIII-VI 0.79258 2.335818

PCC 263 M 50 Calicanto, Santa Cruz Bolivia Asymptomatic TcIII-VI 0.654315 1.948427

PCC 451 F 32 Uspa Uspa, Cochabamba Bolivia Asymptomatic TcIII-VI 0.715735 2.016351

PCC 480 F 46 Cercado, Cochabamba Bolivia Asymptomatic TcIII-VI 0.735419 1.883752

PCC 481 F 26 Huayra kasa Bolivia Asymptomatic TcIII-VI 1.12695 3.229099

PCC 149 F 20 Cercado, Cochabamba Bolivia Asymptomatic TcIII-VI 0.849494 2.875091

PCC 502 F 44 Alto Quer-Queru,
Cochabamba

Bolivia Asymptomatic TcIII-VI 0.813833 2.570795

PCC 456 M 27 Scaba, Cochabamba Bolivia Asymptomatic TcIII-VI 0.529413 1.677289

PCC 489 M 46 Quillacollo, Cochabamba Bolivia Asymptomatic TcIII-VI 0.935067 2.67856

PCC 499 F 41 Sacaba, Cochabamba Bolivia Asymptomatic TcIII-VI 0.878578 2.402874

PCC 289 F 24 Sacaba, Cochabamba Bolivia Asymptomatic TcI 1.0811 ND

PCC 226 F 22 Santivañez, Cochabamba Bolivia Asymptomatic TcIII-VI ND 2.364685

PCC 255 F 49 Quillacollo, Cochabamba Bolivia Asymptomatic TcIII-VI 0.703573 1.966296

PCC 251 F 37 Sacaba, Cochabamba Bolivia Asymptomatic TcIII-VI 0.774534 2.312599

6339 F 58 Sao Luiz MBelos, Goias Brazil Cardiopathy TcII 0.373205 1.409882

6340 F 76 Serra do Salitre, Minas
Gerais

Brazil Megaesophagus TcII 0.19035 1.879923

6345 F 67 Formosa, Goias Brazil Megacolon, Megaesophagus TcII/TcI 0.303881 1.574604

6349 F 37 Wanderlei, Bahia Brazil Megaesophagus TcII/TcIII-VI 0.841102 1.801845

6356 M 65 Itapaci, Goias Brazil Cardiopathy, Megacolon,
Megaesophagus

TcII 1.168083 2.787444

6360 F 40 MaraRosa, Goias Brazil Cardiopathy TcII/TcIII-VI 0.28487 2.332717

6372 M 38 Correntina, Bahia Brazil Megaesophagus TcII 0.198327 1.72982

6373 F 54 Rubiataba, Goias Brazil Megaesophagus TcII 0.457692 1.929769

6378 F 39 Itapaci, Goias Brazil Megacolon, megaesophagus TcII 0.357508 1.259254

6379z M 39 Sao Luiz MBelos, Goias Brazil Asymptomatic TcII/TcIII-VI ND ND

6380 F 59 Brazabrantes, Goias Brazil Asymptomatic TcII 0.742025 1.786299

6382 M 56 Jussara, Goias Brazil Megaesophagus TcII 0.332897 2.104033

6383 M 30 Angical, Bahia Brazil Asymptomatic TcII 0.561749 1.653877

(Continued)
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Table 1. (Continued)

TcGp63I Shannon
Index

Code Sex Age Province Country Symptoms ND5 Sequence
Type

97% ST 99% ST

6385 F 31 SantaMariaVitoria, Bahia Brazil Asymptomatic TcII 0.304854 1.87694

6386 M 33 Correntina, Bahia Brazil Cardiopathy TcII/TcIII-VI 0.222146 1.393783

6387 F 57 Lagolandia, Goias Brazil Cardiopathy (nontypical),
Megaoesophagos

TcII 0.07458 1.601748

6389 F 24 Cocos, Bahia Brazil Asymptomatic ND 0.025177 1.835489

6390 M 32 Cocos, Bahia Brazil Cardiopathy ND 0.037499 1.722559

6400 F 47 Correntina, Bahia Brazil Asymptomatic TcII/TcI 0.625396 1.664578

6401y M 30 SantaMariaVitoria, Bahia Brazil Megaesophagus TcII 0.73448 1.570591

6403 F 47 Correntina, Bahia Brazil Cardiopathy (nontypical)
Megaesophagus

TcII/TcI 0.309724 1.136665

6407 F 52 Jussara, Goias Brazil Cardiopathy (nontypical) TcII 0.164841 1.86004

6416x M 45 Ceres, Goias Brazil Severe cardiopathy TcII/TcI 0.320845 2.110287

6423 M 63 Varzeas, Bahia Brazil Megaesophagus TcII/TcI 0.308932 2.268015

6425 M 71 JoaoPinheiro,Minas Gerais Brazil Cardiopathy, megaesophagus ND 0.623522 1.895166

6445z M 40 Sao Luiz MBelos, Goias Brazil Cardiopathy (nontypical) TcII 0.733916 1.707039

6452x M 46 Ceres, Goias Brazil Severe cardiopathy TcII/TcI 0.225277 1.316351

6453 M 72 JoaoPinheiro,Minas Gerais Brazil Megaesophagus TcII 0.841132 1.880447

6536y M 30 SantaMariaVitoria, Bahia Brazil Megaesophagus TcII/TcI 0.515696 2.510533

6548 F 57 Guiratinga, Mato Grosso Brazil Asymptomatic TcII ND ND

6561 F 46 Correntina, Bahia Brazil Asymptomatic ND 0.868331 1.82152

6563 F 58 Sao Domingos, Goias Brazil Cardiopathy (non-typical) TcII 1.049223 2.262427

6569 M 65 Anapolis, Goias Brazil Megaesophagus TcII/TcIII-VI 0.615555 1.578375

6571 F 69 Uruana, Goias Brazil Cardiopathy, megaesophagus ND 0.366073 2.659534

6574 F 39 SantaMaria da Vitoria, Bahia Brazil Megaesophagus ND 0.846975 1.682228

6577 F 63 Damolandia, Goias Brazil Cardiopathy, Megacolon,
Megaesophagus

ND 0.258461 1.892257

6581 M 55 Rubiataba, Goias Brazil Cardiopathy TcII 0.820042 2.019464

6582 M 45 MorroChapeu, Bahia Brazil Cardiopathy, megacolon,
megaesophagus

TcII/TcIII-VI 1.079722 1.940343

6588 M 51 Luziania, Goias Brazil Cardiopathy TcII 0.197856 0.719487

6590 M 49 Itaberai, Goias Brazil Severe cardiopathy TcII/TcIII-VI 0.32446 2.4802

6597 F 56 Almas, TO Brazil Megaesophagus, megacolon TcII/TcI 0.640673 1.910199

6603 F 36 SantaMariaVitoria, Bahia Brazil Cardiopathy TcII 0.403289 1.987725

6687 F 49 Arapua, Minas Gerais Brazil Cardiopathy, megaesophagus TcII/TcI 0.390482 1.752364

6718a F 28 Sao Luiz MBelos, Goias Brazil Cardiopathy TcII/TcI 0.281918 1.826416

6720a F 1 Sao Luiz MBelos, Goias Brazil Acute phase TcII/TcI 0.224137 1.67497

CIUF 45
(B1)

ND <1 Cochabamba Bolivia Congenital TcIII-VI ND 1.679934

CIUF 63
(M1)

F 18 Cochabamba Bolivia Congenital TcIII-VI ND 1.582106

CIUF 91
(B10)

ND <1 Cochabamba Bolivia Congenital TcIII-VI ND 1.948954

CIUF 84
(M10)

F 35 Cochabamba Bolivia Congenital TcIII-VI ND 2.247228

CIUF24 (B2) ND <1 Alto Cochabamba Bolivia Congenital TcIII-VI ND 1.390874

CIUF31 (M2) F 20 Alto Cochabamba Bolivia Congenital TcIII-VI ND 1.662247

(Continued)
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(constipation associated with dilation as by barium enema) and 4) Normal (no symptoms or
signs on examination and a normal electrocardiogram) (Table 1)

Primer design, PCR conditions, amplicon sequencing and controls
Degenerate primers for a 450bp fragment of the maxi-circle NADH dehydrogenase 5 were
designed as described in Messenger et al. 2012 [29]. Degenerate primer design for the
TcGP63I family surface proteases (including Ia and Ib sublaclasses) [24] was achieved by ref-
erence to sequences retrieved from EuPathDB for Esmeraldo (TcII), CL Brener (TcVI), Silvio
(TcI) and JR (TcI) (http://eupathdb.org/). Primer biding site positions in relation to TcGP63I
putative functional domains are displayed in S1 Fig. Homologs were identified by BLAST
similarity to a complete TcGP63I sequence (bit score (S)� 1000). Alignments of resulting
sequences were made in MUSCLE [30] and primers were designed manually to target a vari-
able region within and between individual strains with a final size of 450bp. ND5b primer
sequences were ND5b_F ARAGTACACAGTTTGGRYTRCAYA; ND5b_R CTTGCYAARA
TACAACCACAA. The final TcGP63 primers were TcGP63_F RGAACCGATGTCATGGGG
CAA and TcGP63_R CCAGYTGGTGTAATRCTGCYGCC. Amplification was undertaken

Table 1. (Continued)

TcGp63I Shannon
Index

Code Sex Age Province Country Symptoms ND5 Sequence
Type

97% ST 99% ST

CIUF40 (B3) ND <1 Sucre Bolivia Congenital TcIII-VI ND 1.621565

CIUF25 (M3) F 19 Sucre Bolivia Congenital TcIII-VI ND 1.231294

CIUF 42
(B4)

ND <1 Cochabamba Bolivia Congenital TcIII-VI ND 1.886761

CIUF26 (M4) F 21 Cochabamba Bolivia Congenital TcIII-VI ND 1.914621

CIUF65 (B5) ND <1 Cochabamba Bolivia Congenital TcIII-VI/TcI ND 1.578691

CIUF75 (M5) F 17 Cochabamba Bolivia Congenital TcIII-VI/TcI ND 1.576942

CIUF 105
(B6)

ND <1 Quillacollo, Cochabamba Bolivia Congenital TcIII-VI ND 2.330751

CIUF 104
(M6)

F 17 Quillacollo, Cochabamba Bolivia Congenital TcIII-VI ND 2.082838

CIUF 53
(B7)

ND <1 Sucre Bolivia Congenital TcIII-VI ND 1.6921

CIUF 76
(M7)

F 27 Sucre Bolivia Congenital TcIII-VI ND 2.683029

CIUF 35
(B8)

ND <1 Chimba, Cochabamba Bolivia Congenital TcIII-VI ND 1.992589

CIUF 93
(M8)

F ND Chimba, Cochabamba Bolivia Congenital TcIII-VI ND 1.653714

CIUF 98
(B9)

ND <1 Vinto, Cochabamba Bolivia Congenital TcIII-VI ND 1.983814

CIUF 109
(M9)

F 18 Vinto, Cochabamba Bolivia Congenital TcIII-VI ND 1.716494

a Samples from Goias congenital case
x Samples from the same patient taken >12 months apart
y Samples from the same patient taken < 6 months apart
z Samples taken from the same patient >12 months apart

doi:10.1371/journal.pntd.0003458.t001
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using the Fluidigm platform and a reduction of the manufacturer’s recommended number of cy-
cles to total of 26 was made in an attempt to minimise PCR amplification bias. Thus, the manu-
facturer’s recommended conditions were adapted to the following protocol: one cycle of 50°C for
2 minutes, 70°C for 20 minutes, and 95°C for 10 minutes; six cycles of 95°C for 15 seconds, 60°C
for 30 seconds, 72°C for 60 seconds; two cycles of 95°C for 15 seconds, 80°C for 30 seconds, 60°C
for 30 seconds and 72°C for 60s; five cycles of 95°C for 15 seconds, 60°C for 30 seconds, 72°C for
60 seconds; two cycles of 95°C for 15 seconds, 80°C for 30 seconds, 60°C for 30 seconds and
72°C for 60 seconds; five cycles of 95°C for 15 seconds, 60°C for 30 seconds, 72°C for 60 seconds,
and finally five cycles of 95°C for 15 seconds, 80°C for 30 seconds, 60°C for 30 seconds and 72°C
for 60 seconds. Amplifications were performed using the FastStart High Fidelity PCR System
(Roche). Three PCR reactions were pooled per sample prior to sequencing in an attempt to fur-
ther reduce amplification biases [31]. Equimolar concentrations of ND5 and TcGP63I amplicons
from 96 DNA samples were multiplexed on Illumina runs using dual index sequence tags (Illu-
mina Inc). Sequencing was undertaken using a MiSeq platform using a 2 x 250 bp (Reagent Kit
version 2) according to the manufacturer’s protocol. In addition to the clinical samples, we in-
cluded a dilution series of control samples. The controls comprised artificially mixes of DTUs
I-VI genomic DNA at equimolar concentrations. At the ND5 locus, comparison between the ex-
pected DTU abundance ratios and diversity of artificial control mixes and that defined via ampli-
con sequencing was made (S2 Fig.).

Amplicon sequence data analysis
De-multiplexed paired-end sequences were submitted to quality control and trimming in Sick-
le [32] and mate pairs trimmed in FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/).
ND5, TcGP63 and contaminating sequences were then sorted against a reference using BOW-
TIE2 [33]. Individual paired reads were found to be overlapping in only a minority of cases.
Thus we chose to proceed with analysis of a sequence fragment with a truncated central section
for both targets. Further sequence manipulations were undertaken using FASTX Toolkit and
custom awk scripts to parse files and concatenate each mate pair into a single sequence for
downstream analysis. MUSCLE [30] was used for alignment of amplicon sequences in each pa-
tient sample. Next, analysis was undertaken in the Mothur software package [34] for the elimi-
nation of putative PCR chimeras and individual sequence clustering. The Shannon index of
diversity was calculated at the intra-patient level based on sequence types (STs) defined at 97%
and 99% identity in Mothur [34]. Comparisons of Shannon diversity were made between pa-
tients in each cohort (Bolivia chronic, Bolivia congenital, Goias chronic) via analyses of covari-
ance and linear regression in the R package (http://CRAN.R-project.org). TcGP63I sequence
datasets for patients from each cohort were then merged and analyses conducted using 97%
and 99% STs defined with UPARSE [35] across patients. Weighted UniFrac distances between
TcGP63I STs among samples were generated and subsequently clustered via a principal coordi-
nates analysis in QIIME [36]. Significance of association between UniFrac clustering, disease
status and age was tested in the vegan package in R [37]. Estimates of diversifying selection
among TcGP63I STs were made in KaKs Calculator [38] using Yang and Neilson’s 2000 ap-
proximate method [39] and tested for significance using a Fisher’s exact test. Prior to selection
calculations, sequences were clustered into 99% identity STs and singletons excluded in an at-
tempt to exclude SNPs introduced as PCR artefacts. To test for diversifying selection across pu-
tative TcGP63I gene families (TcGP63Ia & Ib—97% cut-off as defined by Cuevas and
colleagues [24]), 99% identity STs from each patient cohort were pooled (Table 2). To test for
selection within TcGP63I gene families, STs within each 97% category (corresponding to
TcGP63Ia & b respectively) were examined separately per cohort (Table 2). Amplicon
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sequences analysed in this study are available in the data appendix in supplementary informa-
tion (S1 Appendix).

Results

Sequence yields and discrete typing unit (DTU) designations
After quality filtering, trimming, decontamination and removal of unpaired reads, 6,736,749
reads were assigned to the ND5 mitochondrial marker and 871,855 to TcGP63I marker across
the 92 clinical samples, perhaps reflecting higher copy number in the former than the latter.
After trimming, the overlap between individual mate pairs was marginally too short to be as-
sembled into a single read. Thus paired reads were first aligned against a full-length reference
fragment and the central portion excised to remove any gaps and ensure correct alignment. Se-
quence depth thresholds per sample for inclusion were set for each dataset (Goias—ND5 &
TcGP63–10,000; Cochabamba—ND5: 30,000; TcGP63 10,000; see Fig. 1). Reads from samples
in excess of this threshold were discarded and samples with read counts below this threshold
excluded. Our aim in setting the threshold was: 1) To include as many samples as possible
while maintaining a good depth of coverage; 2) To standardise sampling intensity across indi-
viduals and thus facilitate comparisons between them.

The ND5 mitochondrial target was sequenced to provide DTU I-VI identification of para-
sites circulating within and among patients by comparison to existing data [29]. However, with
reference to the results from the control samples—and due the necessary truncation of the se-
quence fragment—only three groups could be reliably distinguished, corresponding to the
three major T. cruzimaxicircle sequence classes [40]. The three groups corresponded to TcI,
TcII and TcIII-VI respectively. Furthermore, in reference to the control mixes, we found evi-
dence that amplification bias dramatically skewed the recovery of sequence types (STs) towards
the TcIII-VI group. Some skew is expected, as these four DTUs (TcIII-VI) share the same max-
icircle sequence class, and this class is thus more abundant in the control mix. However, TcI
and TcII—which should have in theory been present as 16% (1/6) of all sequences in the con-
trols respectively—were in fact present (on average) at only 2.9% and 0.03% among the four
samples where all three STs were recovered (S2 Fig.). Amplicon sequencing from the two most
concentrated controls (57 ng/uL and 125 ng/uL genomic DNA respectively) resulted in poor
sequence yields and a failure to recover all three STs.

Table 2. Yang and Neilson estimates for positive selection within and among abundant 97% STs identified in this study.

Population /
ST

Infecting
strain

Sequences in
clustera

Method Ka Ks Ka/Ks P-Valueb S-Sites N-Sites Substitutions S-Substitutions N-Substitutions

Goias TcII 357227 (271) YN 0.06 0.07 0.8354 0.0000 14910 37539.0 3061 974.0 2087.0

Goias ST1 TcII 236805 (149) YN 7.45 2.82 2.6436 0.0000 6628.46 20575.5 20094 4528.3 15565.7

Goias ST2 TcII 96274 (82) YN 7.04 1.11 6.3415 0.0000 4112.28 12000.7 11713 2328.3 9384.7

Goias ST4 TcII 9981 (19) YN 0.02 0.05 0.4151 0.0000 978.551 2543.5 102 48.4 53.6

Bolivia TcV/TcI 59431 (86) YN 0.06 0.08 0.7515 0.0002 4333.81 10471.2 904 314.8 589.2

Bolivia ST1 TcV 38455 (36) YN 0.02 0.03 0.7876 0.1600 2092.15 5077.9 182 62.0 120.0

Bolivia ST2 TcV 12676 (24) YN 0.03 0.03 0.7868 0.2290 1208.92 3471.1 134 41.0 93.0

Bolivia ST3 TcI 3448 (13) YN 5.57 1.98 2.8059 0.0000 582.981 1679.0 1739 402.5 1336.5

Bolivia ST4 TcI 242 (3) YN 4.48 3.61 1.2422 0.3484 138.391 392.6 410 102.9 307.1

a Numbers in brackets represent the number of 99% STs define within each cluster from which estimates were generated.
b P values are give for Fisher’s exact tests for deviation from the neutral expectation of Ka/Ks = 0.

doi:10.1371/journal.pntd.0003458.t002

Deep Sequencing of the Trypanosoma cruziGP63 Surface Proteases

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003458 April 7, 2015 9 / 23



Unsurprisingly perhaps in the light of the control data, most clinical samples were dominat-
ed by sequences from a single group, with minor contributions from others (Fig. 2). Indeed se-
quences recovered from many strains were monomorphic at the 97% identity level—especially
in Cochabamba. As such, comparisons based on ND5 are necessarily descriptive and meaning-
ful alpha (within sample) and beta (between sample) diversity statistics were not calculated.
Fig. 2 shows the distribution of DTUs among samples as defined by the ND5 locus. Most Co-
chabamba chronic cases samples were assigned to a single sequence within the TcIII-VI group
(likely to be TcV, as we defined with standard genotyping assays [41] with the exception to two
TcI cases—PCC 240 and PCC 289 (Fig. 2, Panel B). Sequence-type diversity in Goias was con-
siderably higher (Fig. 2, Panel A). In this case the TcII group, rather than the TcIII-VI group,
predominated. Unlike in Bolivia, sequences from other groups were present alongside TcII in
multiple patients but at frequencies two orders of magnitude lower. Congenital pairs that origi-
nated from Cochabamba resembled chronic cases from the same region in their DTU composi-
tion (TcIII-VI group predominant, Fig. 2, Panel C). Strikingly, mother/child pair CIUF65 (B5)

Fig 1. Read depths by sample and locus for Goias and Cochabamba chronic patient cohorts after quality filtering.Read depths generated on the
Illumina MiSeq platform were standardized across samples prior to analysis. Inclusion thresholds for TcGP63 (Goias—10,000; Cochabamba—3000; wide
dash line; red bars) and ND5 (Goais—10,000; Cochabamba—30,000; thin dash line; blue bars) are shown for each population.

doi:10.1371/journal.pntd.0003458.g001
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and CIUF75 (M5) share similar mixed infection profiles (TcI/ TcIII-VI) at similar relative
abundances (c.1:1000), consistent with the minor to major genotype abundance ratios observed
in Goias. The same is also true for the Goias congenital pair (Fig. 1) which both showed TcII/
TcI mixes. Finally, sequential isolates taken from the same Goias chronic patient at different
time points suggest that minor abundance genotypes are not always consistently detectable in
the blood (Fig. 2): TcI is absent at first sampling of patient y, but present at the second sam-
pling. For patient z, the TcIII-VI genotype is only present in the first of the two sample points.
For both Cochabamba and Goias, reference to the control data suggests that ‘minor genotypes’
could be substantially more abundant in the patients than the amplicon sequence data suggest.

Fig 2. Bar plot showing sequence type identity and abundance defined at 97% similarity for the ND5 locus across all samples. A—Goias cohort
chronic/intermediate cases; B—Cochabamba chronic/intermediate cases; C—Cochabamba congenital cases. Y axes show log transformed abundance
(read counts). X axes show clustered bars for individual samples. Sequence type identities are given in the legend. Stars denote congenital pair from Goias.
Labels x (6416 / 6452), y (6401 / 6536) and z (6379 / 6445) sample pairs from the same patient at different time points (see Table 1).

doi:10.1371/journal.pntd.0003458.g002
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TcGP63I surface protease alpha diversity among clinical and congenital
cases
Alpha diversity measurements aim to summarise the diversity of species (in this case STs),
within an ecological unit (in this case a host). We summarized the number of STs and their rel-
ative abundance in each of our samples, using the Shannon Index (SI) [42]. Among non-con-
genital cases, our aim was to evaluate possible associations between TcGP63I antigenic
diversity and several epidemiological and clinical parameters—age, sex and disease status. We
used analyses of covariance (ANCOVA) to test for the effect of these parameters on intra-host
antigenic diversity (STs defined both at 97% and 99% for comparison), combining continuous
(age) and categorical (sex, clinical forms) data. In Cochabamba, regardless of the order in
which parameters were included as factors in the model, there was no evidence for a main ef-
fect of age, sex or symptoms on alpha diversity (SI) at either ST divergence level (97% ST Age:
p = 0.734; Sex: p = 0.298; clinical form: p = 0.136. 99% ST—Age: p = 0.854; Sex: p = 0.169; clini-
cal form = 0.0988). Similarly, ANCOVAs were non-significant for an association between the
SI and age, sex or symptoms in Goias (97% ST—Age: p = 0.382; Sex: p = 0.535; clinical form:
p = 0.486. 99% ST—Age: p = 0.319; Sex: p = 0.696; clinical form: p = 0.697). Finally, we under-
took linear regressions of SI with age in each population. As one might expect from previous
ANCOVAs, no significant correlation was detected (Goias R2 = 0.0233, p = 0.340 (97% ST);
R2 = 0.0256, p = 0.3049 (99% ST) Cochabamba R2 = 0.0287, p = 0.429 (97% ST); R2 = 0.0230
p = 0.479(99% ST)).

Congenital comparisons were made pairwise between mother and infant at 99% ST similari-
ty. In addition to the ten matched isolate pairs from Cochabamba, a single pair from Goias was
also included (6718 & 6720) in the comparisons. The results of the alpha diversity comparisons
are shown in Fig. 3, and read depths were balanced between samples. In terms of the absolute
number of STs identified, infants exceeded mothers in most instances (pairs 2, 3, 4, 5, 6, 8 & 9).
In the remaining cases however (4/11), the number of antigenic sequence types was greater in
the mother. Shannon diversity index comparisons between mothers and infants, which also
takes ST abundance into account, suggested that some differences (e.g. pairs 4, 5 &6) might be
marginal (Fig. 3).

TcGP63I ST distributions among clinical and congenital CD patients
Individual sample sequence datasets within each of the different study cohorts (Cochabamba
congenital, Cochabamba non-congenital and Goias) were merged to facilitate analysis of the
distribution of antigen 99% STs among individuals (i.e. beta-diversity comparisons). Pairwise
weighted Unifrac distances were calculated within cohorts of chronic cases from Cochabamba
and Goias to examine whether the sequence diversity of the TcGP63I antigenic repertoire pres-
ent in each patient could be associated with disease outcome. Principal coordinate analyses of
the resulting matrices are displayed in Fig. 4. Among cases from Goias, repertoires varied con-
siderably among cases, with several outliers. However, repertoires from symptomatic and
asymptomatic cases were broadly overlapping in terms of sequence identity, and no clustering
was noted among different symptom classes either (Fig. 4, Plot B). Permutational multivariate
analysis confirmed the absence of a link between ST clustering and symptoms as well as symp-
tom classes (p = 0.77 & 0.74 respectively). However, ST clustering and age were weakly associ-
ated (p = 0.049), consistent perhaps with exposure of individuals among different age groups to
different circulating parasite genotypes at their time of infection. TcGP63I read yields permit-
ted comparisons for only two pairs of sequential isolates from the sample patients—x and y
(see Table 1)—both of which showed closely clustering, although non-identical, profiles.
TcGP63I diversity between Cochabamba chronic cases was arguably lower, with the exception
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of two outliers unambiguously identified as TcI with reference to the ND5 locus (all others
were classified as TcIII-VI—likely TcV). Again, however, symptomatic and asymptomatic
cases were broadly overlapping.

Sequence type profile comparisons among Cochabamba congenital cases were made for
99% STs and are displayed in heatmap format in Fig. 5. There are two key features of interest.
The first is that profiles in mother an infant can match very closely (e.g. pairs 2&6). The second
is that novel STs were present in the infant sample with respect to the mother in half of the
cases. Indeed, in pair 9, the infant profile was radically different to that of the mother.

Population-level Ka/Ks ratios within and between TcGP63I gene family
members
Trimmed TcGP63 reads, pre-filtered for quality and PCR errors, were pooled within each
study site (Bolivia, Goias). To further reduce minority SNPs and PCR errors, STs were defined
at 99% with each site in UPARSE [35]. Ka/Ks ratio estimates within each study area indicated a
significant excess of synonymous mutations among STs (Goias = 0.8354, Bolivia = 0.7515)

Fig 3. Alpha diversity indices for TcGP63I amplicon diversity derived from pairs of congenital Chagas disease cases.Diversity indices were derived
from STs defined at 99% sequence similarity. Bar plot and associated x-axis on the right hand side shows the Shannon diversity index calculated in Mothur
[34], with error bars defining upper and lower 95% confidence intervals.

doi:10.1371/journal.pntd.0003458.g003
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averaged across sites (Table 2). However, when calculations were based on diversity present
among well represented STs of each gene family member (TcGP63Ia and TcGP63Ib, 97% cut-
off [24]) a powerful and significant excess of non-synonymous substitutions was noted within
each study area (Ka/Ks, Goias, ST1 = 2.6436, ST4 = 6.3415; Bolivia ST3 = 2.8059; Table 2).
Again, calculations were based not on individual sequences, but rather 99% STs within prede-
fined 97% clusters. The position of the 97% STs in question is shown in the tree in S3 Fig., with
clear similarity between those clusters under apparent diversifying selection (Goias ST1 & 2,
and Bolivia ST3) with TcGP63Ia and TcGP63Ib references respectively [24].

Fig 4. Principal coordinates analysis of sequence diversity between chronic Chagas Disease patient TcGP63I antigenic repertoires.Genetic
distances are based on a weighted unifrac metric. Plot A shows diversity comparisons among Go-as asymptomatic (asympt) and symptomatic (sympt)
clinical cases, as well as one acute case. Plot B shows Goias cases with symptoms categorised as acute, card (cardiopathy), card + mega (cardiopathy as
well as megacolon and / or megaesophagous), mega (megacolon and / or megaesophagous) or asympt (asymptomatic). Plot C shows comparisons among
Cochabamba clinical cases (not including congenital cases) classified as either asymptomatic (asympt) and symptomatic (sympt). The dashed circle on plot
C indicates samples unambiguously defined as TcI at the ND5 locus. Pairs of sequential isolates from the same patient are labelled x and y respectively.

doi:10.1371/journal.pntd.0003458.g004
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Fig 5. Heatmap comparing the TcGP63I antigenic repertoires of mother and infant congenital pairs. Pairs are indicated down the left hand side of the
image (y axis). The mid-point rooted maximum likelihood tree on the x axis describes relationships among the 99% similarity sequence types (STs) identified
in UPRASE [35] and was generated in Topali under equal-frequency transversion model, allowing gamma distributed weights across sites [68]. Values on
dendrogram notes indicate % bootstrap support. Starred congenital pairs are those where STs are present in the infant but not in the mother.

doi:10.1371/journal.pntd.0003458.g005
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Discussion
In this study our aim was to collect a cohort of T. cruzi samples from clinical CD cases, repre-
sentative of different endemic regions and of different ages and disease presentations, to ex-
plore links between CD epidemiology and multiplicity of infection. To provide a robust,
sensitive and quantifiable means of assessing intra-host parasite diversity we first implemented
standardized parasite isolation (and enrichment) strategies within each study cohort. Latterly,
we developed an amplicon sequencing approach to profile parasite diversity within each pa-
tient. Given the relatively short (400–500bp) read lengths generated by next generation se-
quencing platforms (at the time of experimentation), we chose a rapidly evolving maxicircle
gene (ND5) in an attempt to resolve DTU level diversity ([29]). Current multilocus nuclear tar-
gets are generally too long (500bp+) to meet our selection criteria [43]). To explore antigenic
diversity, we chose a putatively low (5–10) copy number gene family member TcGP63I, ex-
pressed on the parasite surface during the amastigote and trypomastigote lifecycle stage and
thus exposed to the human immune system [24]. Given that both ND5 and TcGP63I are pres-
ent as several copies per parasite genome (and potentially show inter-strain copy number varia-
tion e.g. [44]), one cannot presume a 1:1 relationship between ST and parasite individual, even
if we were able to account for the PCR amplification bias we detected. The identification of a
genetically, variable, single copy, surface expressed antigen locus is a major challenge in T.
cruzi—antigen genes are by their nature highly repetitive [17,18]. TcGP63I, with its relatively
low copy number represents the closest currently available fit, and, as we have shown, provides
a useful target for revealing intra-host antigenic diversity. Merozoite surface proteins (MSP) 1
and 2 have traditionally provided useful targets for detecting MOI in P. falciparum (e.g.
[45,46]. Furthermore, amplicon sequencing of the MSP locus has been successfully proven to
reveal as many as six-fold more variants than traditional PCR-based approaches [15].

The substantial historical interest in defining MOI among P. falciparum owes itself to the
strong correlation between MOI and rate of parasite transmission [47]. As such, fluctuations in
transmission intensity can be tracked to evaluate the efficiency of vector eradication cam-
paigns, drug treatments, the introduction of insecticide-treated nets etc—without the need to
directly estimate the entomological inoculation rate. Evaluation of CD transmission intensity
has its own challenges. The presence of infected individuals, triatomine vectors in domestic
buildings, incrimination of vectors via human blood meal identification (e.g. [48]) can all help
to build the overall picture. However, parasite transmission is likely to occur in only a tiny pro-
portion of blood meals [49,50], and vector efficiency is thought to vary considerably between
triatomine species [51]—thus the presence of vectors is no guarantee of transmission. Infection
with T. cruzi is lifelong, thus positive patient serology is not a reliable indicator of active para-
site transmission either. Traditionally, active T. cruzi transmission has been implied from posi-
tive serology among younger age classes. Especially in hyperendemic areas of Bolivia, Paraguay
and Argentina the proportion of seroprevalent individuals increases with age [52,53]. MOI in
T. cruzi patients should follow a similar trend given a stable force of infection. Furthermore
MOI comparisons between disease foci could, controlling for age, facilitate an appreciation of
relative transmission intensities—a useful tool for those who wish to track the efficacy of inter-
ventions. In the current study, however, we were unable to identify a correlation between MOI
and age, even once patient sex and clinical form had been corrected for. Our inability to vali-
date this fundamental prediction has many possible causes. First, patients in each cohort origi-
nate from different communities within each study area (Table 1). Micro-geographic variation
in T. cruzi genetic diversity is commonly observed (e.g. [11,54,55], and the same is likely to be
true for infection intensity. Thus, if patients from different sites share dissimilar histories in the
intensity and diversity of exposure to T. cruzi clones, comparisons between them are difficult
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to make. Secondly, the relationship between MOI and age is not necessarily linear. If a degree
of cross-genotype immunity accumulates with exposure, one might expect a slower increase in
intra-host antigenic diversity in older age groups. However, this was not the case in our dataset
and neither a linear, nor a unimodal relationship could be established.

Amplicon sequencing approaches to the study of transmission patterns in human parasites
have so far been restricted to those species that replicate and reach high parasitemias in periph-
eral blood (i.e. T. brucei [56] and P. falciparum [13,15]). T. cruzi trypomastigote circulating
parasitemias, as measured by qPCR, are thought to vary considerably between acute (400
parasites/ml), newborn (150–12000 parasites/ml) and chronic (3–16 parasites/ml) cases
[25,57]. Nonetheless, they remain several orders of magnitude lower than those that occur dur-
ing T. brucei or P. falciparum infections. Low circulating T. cruzi parasitemia presents major
problems to studies that aim to achieve molecular diagnosis of CD in chronic cases and ours is
no exception. One problem is that much of the parasite diversity present in the host is likely to
be sequestered in the tissues at any give time [58], as our sequential samples from Goias also
suggest. Thus blood stage parasite genetic diversity may be a poor representation of that actual-
ly present in the host. Another confounder is culture bias, by which differential growth of
clones in culture, as well as loss of clonal diversity during repassage can both influence diversity
estimates. Attempts to generate amplicon sequence data directly from clinical blood samples
would likely to be thwarted by low circulating parasitemia [25, 56]. Instead we elected to enrich
for parasite DNA via culture—in Goias without further repassage, but in Bolivia with at least
one repassage before cryopreservation. Low circulating parasitemia in Chagas patients also
means it is possible that amplicon-sequencing strategies might rapidly ‘bottom out,’ if few par-
asites are present within a sample. In our dataset, for example, at the ND5 locus, minority
DTUs at 97% divergence can be present as a proportion of< 1 in 1000 (Fig. 1), with the impli-
cation that several thousand parasites must be present in the sample. In both Goias and Bolivia
matched instances occurred in congenital cases where TcI exists in mother and infant as the
minor DTU at similar relative abundance (i.e. 1 in 1000, Fig. 1). It is highly unlikely that these
data directly reflect chronic CD parasitemia levels. Instead, with reference to the data we ob-
tained from the controls, PCR amplification bias is a more likely source of unrealistic major to
minor genotype ratios. As such, the fourfold over-representation of a ST in the original sample,
for example, can result in 100–1000 fold over-representation after PCR. However, while the rel-
ative abundance of sequence types recovered using the amplicon approach may be an inaccu-
rate reflection of those present for both ND5 and TcGP63, similar profiles between mother and
infant suggests that this bias is likely to be consistent across samples. Thus comparisons be-
tween samples are still valid. Furthermore for ND5 at least it seems that T. cruzi frequently ex-
changes mitochondrial (maxicircle) genomes with little apparent evidence of nuclear exchange
[11,29]. Fusion of maxicircle genomes occurs transiently during T. brucei genetic exchange
events [59], and may also do so in T. cruzi. Even though standard maxicircle genotyping of
progeny only ever reveals a single parent in both species, it is possible that heterologous maxi-
circle sequences may persist at low abundance in parasite clones. Such a phenomenon could
explain the DTU sequence type ratios observed, and this study is the first to sequence a maxi-
circle gene to this depth.

There is general consensus in the literature is that the likelihood of congenital CD transmis-
sion is not strongly influenced by the genotype of the parasite infecting the mother [60–62].
Nonetheless, the majority of cases are reported in the Southern Cone region of South America,
providing a circumstantial link with major human-associated T. cruzi genotypes TcV TcII, and
TcVI. In this study, in the one mixed infection we found, major and minor DTUs (TcVI / TcI)
detected in the mother at the ND5 locus were recovered from the infant in similar proportions.
TcGP63I beta diversity comparisons of STs defined at 99% showed substantial sharing of
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between mother and infant (Fig. 5). However, both beta diversity comparisons (Fig. 5) and
total ST diversity (alpha) comparisons (Fig. 3) at 99% indicate that while maternal diversity
sometimes exceeds that of the infant (explicable perhaps by sequestration in the mother and se-
lective or stochastic trans-placental transfer), the reverse is frequently true. The occurrence of
STs in the infant, not present in the mother, has several possible explanations. The infants sam-
pled in this study were neonates, thus superinfection can be ruled out as a source of further par-
asite clonal diversity. A recent study of infected neonates in Argentina estimated mean infant
parasitemia at 1,789 parasites/ml via qPCR—far in excess of that one might expect in the moth-
er [57]. Thus the parasite sample size discrepancy between mother and infant perhaps explains
the unexpected levels of diversity in the infant. Even though the TcGP63I gene family is appar-
ently under intense diversifying selection, it seems unlikely that point mutation could generate
novel variants over such a short time scale to explain genetic diversity in the infant. Structural
variants and homologous recombination are a potential source of diversity, although most, if
not all of recombinants should have been excluded in the quality filtering stages, and would be
hard to distinguish from PCR chimeras in any case.

Many important T. cruzi surface genes belong to large, recently expanded paralogous multi-
gene families [17]. The abundance of these gene copies highlights their likely adaptive signifi-
cance in terms of infectivity and host immune evasion, especially because trypansomatids exert
so little control of gene expression at the level of transcription [63]. In Leishmania major, for
example, it has been recently shown that gene amplification may rapidly duplicate segments of
the genome in response to environmental stress [64]. As well as expansion, adaptive change is
also likely to occur at the amino acid level among members of paralogous gene families, as has
been suggested for T. brucei [65]. Despite the relatively small size of the TcGP63I gene family,
the amplicon sequencing approach we employed allowed us to explore selection at the level of
the gene within the population, i.e. within and between parasite genomes within and between
hosts at the population level. Highly elevated non-synonymous substitutions suggest intense
diversifying selection within TcGP63Ia and TcGP63Ia STs respectively for those assigned to
TcII or TcI. STs from patients infected with TcIII-TcVI (putative TcV) showed few apparent
substitutions (Table 2), perhaps consistent with the recent origin of this DTU [66]. The se-
quence fragment we studied was outside the zinc binding domain of this metalloprotease, indi-
cating selective forces can act on this protein independent of its core proteolyic function,
perhaps through repeated exposure to host immunity.

It is important not to overlook the potential importance of multiclonal infections for para-
sitic disease, both as markers of population level factors such as parasite transmission, but also
at the host level, including immunity and disease progression. In this study we have developed
an amplicon sequencing approach to probe parasite genetic diversity within and among clinical
CD cases to unprecedented depth. While our approach shows the power of this amplicon-seq
to resolve diversity in clinical and congenital CD cases, it also highlights the potential biases
that might be introduced with the addition of a PCR step. A tool that allows the accurate evalu-
ation MOI would be valuable for tracking transmission rates at restricted disease foci (i.e. vil-
lages, outbreaks) in the context of measuring the success of intervention strategies. A similar
tool could provide a powerful means of longitudinal tracking of T. cruzi infections in terms of
disease progression, treatment failure and immunosuppression. Here we demonstrate that
amplicon sequencing could have a role to play in this context. However, as sequencing costs de-
cline and reference genome assemblies improve, whole genome deep sequencing, perhaps even
of individual parasite cells, becomes and increasingly viable option as it already has for Plasmo-
dium sp. [7,67].
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Supporting Information
S1 Fig. TcGP63Ia and Ib amino acid alignments showing amplicon seq primer binding
sites in relation to putative functional domains. Amino acid sequences are derived for those
define by Cuevas and colleagues [24]. The colour key on the left hand side indicates primer
binding sites and functional domains. The green shaded regions indicate the area covered by
the Illumina paired end reads along each amplicon. The purple shaded central region indicates
the area not covered.
(TIFF)

S2 Fig. Bar plot of amplicon sequence data generated from control DTUmixes. Expected
ratios of ND5 sequence types (far right) are compared to those recovered via amplicon se-
quencing. All three sequence types (I, II, III-VI) were recovered from all but the two most con-
centrated control mixes. However, the relative proportions of each sequence type derived from
amplicon sequence data were radically different to that expected.
(TIFF)

S3 Fig. Maximum likelihood phylogeny of 97% TcGP63I STs derived in this study and
available T. cruzi and T. cruzi marinkellei TcGP63 paralogues.Homologous sequences were
recovered from www.TriTrypDB.org via BLAST. The appropriate substitution model was de-
fined as the transversion model with invariable sites plus gamma in Topali [68]. Abundant ST
labels correspond with those indicated in Table 2. Branches are coloured by source DTU or
red, for sequences generated in this study. Reference sequences TcGP3Ia and TcGP63Ib from
the literature are also shown along side 97% sequence types generated in this study [24].
(TIFF)

S1 Appendix. Quality filtered and assembled amplicon sequence data in FASTA format.
(GZ)
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