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Abstract

Direct numerical solutions of the incompressible Navier–Stokes equations, under the Boussinesq approximation, for the
temporal evolution of a jet-like 
ow have been analyzed to educe coherent structures. The eduction procedure involved
both conventional image processing and the application of the wavelet transform — here used as a spatially delimited
�lter to smooth out �ne scale discontinuities and reveal the underlying order. Attention has been focussed on the vorticity
and its components (azimuthal, radial and streamwise). It is found that the nature of the coherent motion is most strongly
evident in the azimuthal component of the vorticity, and is revealed to consist of a toroidal base supporting a thin
conical sheath; the interior of the structure is nearly devoid of azimuthal vorticity. There is some evidence of a secondary
structure in the radial and streamwise components of the vorticity, which show strips of opposite sign close to each other,
suggesting vortex pairs, possibly helically organized. With addition of volumetric heat after the (unheated) jet has achieved
self-similarity, the structures tend to telescope into each other because of the acceleration produced by the heating, and the
coherence present in the unheated jet is severely disrupted. c© 2000 The Japan Society of Fluid Mechanics and Elsevier
Science B.V. All rights reserved.
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1. Introduction

While the presence of large-scale organization in the turbulent mixing layer and in some other

ows has been well documented, the occurrence and nature of coherent structures in the fully
developed jet continues to be a matter of debate. In general, it is accepted that the nature of any
coherent structure that may be present in jets is much less clear than in mixing layers. This is
because while the energy in the coherent motion in mixing layers is as much as 20%, it is estimated
that in the far jet it is only 10% (Fiedler, 1987).
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There have been several proposals on coherent structures in jet 
ows. It has been established
beyond doubt that the near-�eld of a round jet is an axisymmetric mixing layer, dominated by vor-
tex rings generated by the Kevin–Helmholtz instability. The far-�eld of the jet is, however, less
clear. Dimotakis et al. (1983), using the laser-induced 
uorescence technique for 
ow visualiza-
tion, inferred the presence of large-scale vortical structures in the jet far-�eld; both axisymmetric
and spiral (antisymmetric) con�gurations were observed. They proposed that the far-�eld of the jet
would be in the form of an expanding spiral. Using the same technique of 
ow visualization, Dahm
and Dimotakis (1990) reported that the instantaneous concentration �eld consisted of an ordered se-
quence of arrowhead-shaped structures, with dimensions of the order of the local width of the 
ow
in both directions. Within each of these structures, the concentration of the mixed 
uid showed only
marginal variations. Dahm and Dimotakis suggested that the topological and dynamical complex-
ity of the jet might be a consequence of simultaneous instability in both axisymmetric and helical
modes, causing the 
ow to keep switching between the two modes. Fig. 1(a) shows the proposed
instantaneous dilution pattern of Dahm and Dimotakis for the far-�eld of a turbulent jet; it implies
that the jet 
uid concentration decays in a stepwise fashion over regions of roughly uniform con-
centration. Direct visual observations of a high Reynolds number jet by Mungal and Hollingsworth
(1989) con�rmed the presence of arrowhead-shaped structures, but suggested a rather di�erent in-
ternal structure, of the kind shown in Fig. 1(b). In this picture, upstream structures are thought to
telescope into their downstream counterparts. Yoda et al. (1994), based on three-dimensional con-
centration measurements, proposed that the helical mode, when present, was in the form of a pair
of counter-rotating spirals present simultaneously in the 
ow: the observed indication of a spiral
in two-dimensional axial slices of the 
ow are to be interpreted, according to them, as slices of a
simple sinusoid in three dimensions. They suggested that the two instantaneous concentration �elds
proposed for the axisymmetric and helical modes (Figs. 1(a) and (b), respectively), were simply
slices of the same structure at di�erent orientations. These conclusions were derived from data sets
that were deliberately biased to select only those which clearly showed antisymmetric shapes with
respect to the jet axis. The assumption underlying this procedure was that the helical mode, being
the most unstable, shapes the concentration �eld in the self-similar region of the jet. A plausi-
ble argument proposed by them for the simultaneous presence of a counter-rotating pair of helices
is that they could be caused by vortex reconstruction interactions between tilted near-�eld vortex
rings.
From correlation measurements, Tso and Hussain (1989) inferred the dominant structure to be a

single helix, but a double helix and a ring-like structure were also found.
The e�ects of o�-source volumetric heating on jet 
ow have been studied experimentally by

Elavarasan et al. (1995) and Bhat and Narasimha (1996), by use of ohmic heating in a jet of
electrically conducting 
uid. The results showed that heating accelerates the 
ow and inhibits growth.
Turbulent velocities increase, but not as rapidly as mean velocities, resulting in a drop in normalized
intensities. There were also indications of disruption of the structures in the 
ow.
In the present study, we explore the eduction of coherent structures from the direct numerical sim-

ulation (Basu and Narasimha, 1999) of a turbulent “jet-like” 
ow and study the e�ects of o�-source
heating on the organization of the 
ow. The simulation carried out was essentially a temporal ana-
logue of the laboratory experiments of Elavarasan et al. (1995) and Bhat and Narasimha (1996),
in the sense that while in the experiments heat was injected at all times in a limited streamwise
region along the jet, in the simulation, heat injection occurred over a limited time in the entire
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Fig. 1. Schematic of instantaneous concentration �elds in a round turbulent jet, as proposed by (a) Dahm and Dimotakis,
axisymmetric mode, (b) Mungal and O’Neil, helical mode. (Reproduced from Mungal and Hollingsworth, 1989).


ow (Fig. 2). The simulation thus produces a 
ow that, while not identical with the spatially de-
veloping jet, closely resembles it, i.e. although three-dimensional structures of the kind known to
occur in a laboratory jet are captured, such events as ring-formation and pairing now occur over
the temporal evolution of the 
ow, and not in a particular region in space. The main advantage
of the numerical simulation is that the vorticity, which is the primary 
ow variable that de�nes
a coherent structure, can be easily derived from numerical solutions, while it is hard to measure
experimentally. We use both conventional image processing and the continuous two-dimensional
wavelet transform to pick out and enhance the structure against the non-coherent background.
Wavelet transforms can provide useful assistance in detecting structures in turbulent 
ows; this
has been demonstrated on round turbulent jets by Kailas et al. (1992), and on the mixing layer by
Kailas and Narasimha (1999). For our present analysis, we use wavelets for the limited purpose
of smoothing out the �ne-scale discontinuities in the 
ow and revealing the underlying large-scale
organization.
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Fig. 2. Schematic of the 
ow: (a) Experimental jet, (b) Numerical simulation. (Reproduced from Basu and Narasimha,
1999).

2. Numerical method

Processed data was obtained from the direct numerical simulation reported by Basu and Narasimha
(1999) for a cylindrical mixing layer. These simulations solve the Navier–Stokes equations with
buoyancy, using the Boussinesq approximation. The Boussinesq approximation neglects the e�ect of
density changes in the inertial terms, but includes the buoyancy force in the momentum equation.
The heat injection appears as a source term in the energy equation. The equations are

∇ · u = 0; (2.1)

@u
@t
+ (u · ∇)u =−1

�
∇p+ �∇2u − �Tg ; (2.2)

@T
@t
+ (u · ∇)T = k∇2T +

J
Cp

; (2.3)

where u is the velocity vector, � the density of the 
uid, p the pressure, � the kinematic viscosity of
the 
uid, � the coe�cient of thermal expansion, T the change in temperature above the ambient, g
the acceleration due to gravity, k the thermal di�usivity, J the rate of head addition per unit volume,
and Cp the speci�c heat at constant pressure.
To non-dimensionalize equations (2.1)–(2.3), the initial diameter d0 and the initial center-line

velocity U0 of the cylindrical mixing layer, and a characteristic temperature di�erence T0, were used
as scales. The scale T0 was de�ned as the net temperature change that would result if the total heat
Jth, where th is the duration of heat injection, is injected uniformly over unit volume: T0 = Jth=Cp.
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We then get (in addition to Eq. (2.1), whose form does not change)

@T
@t
+ (u · ∇)T = 1

RePr
∇2T +

d0
U0th

g(r); (2.4)

@u
@t
+ (u · ∇)u =−∇p+ 1

Re
∇2u + GChT; (2.5)

where all variables are now non-dimensional, Re = U0d0=� is the Reynolds number, Pr = �=k is the
Prandtl number, g(r) is a prescribed radial distribution function, and

G =
g�d2h
�cp

J
U 3
h

; (2.6)

dh, Uh being, respectively, relevant length and velocity scales in the heating region. The heat-
ing parameter G is analogous to the non-dimensional heat release number introduced in Bhat and
Narasimha (1996), except that Eq. (2.6) incorporates a modi�cation to take account of the fact that
in the present simulation the heat release occurs over a �nite duration th in time, and not over a
�nite region in space as in Bhat and Narasimha (1996). Either version of G is a measure of the ratio
of buoyancy to inertia forces, like the Richardson number. The other non-dimensional parameter in
Eq. (2.5) is

Ch =
Uhth
dh

d0
dh

(
Uh

U0

)2
; (2.7)

whose value will remain constant during the present study. (This corresponds to �xing the spatial
region over which heat is added in a real jet.) Since G and Ch appear only as a product, we use
G∗ = GCh as the relevant non-dimensional parameter governing heat release in the present study.
Eqs. (2.1)–(2.3) were solved in a Cartesian coordinate system using the Fourier–Galerkin (spectral)

technique. To facilitate the use of the spectral scheme, the boundary conditions were taken to be
periodic in each space direction for all the primary variables, namely pressure, temperature and
velocity.
The initial conditions for the velocity components were set up so that there was a tubular shear

layer aligned vertically upwards along the z direction at t=0. Streamwise and azimuthal perturbations
were added to expedite roll-up and the development of the Widnall instability. The initial velocity
�eld was made divergence-free using the Helmholtz decomposition. The size of the computational
domain (a periodic cubical box of dimension L× L× L) was taken to be four times the diameter of
the tabular shear layer at t = 0:
The computations were carried out at a constant Reynolds number Re = 1600 (based on the 
ow

at t = 0), Prandlt Number Pr = 7 and G∗ = 0:04 using both 643 and 1283 grids. The data analyzed
here have all been calculated using the 1283 grid solutions. We have used X; Y and Z to denote
the pixel location along the x-, y- and z-axis of the domain, respectively. The time step used was
t = 0:0025: This time step was halved in the heated case to resolve the �ner scales that were found
to be generated by heat addition. More details are available in Basu and Narasimha (1999).
The vorticity transport equation, obtained by taking the curl of Eq. (2.2), is

@!
@t
+ (u · ∇)!− (! · ∇)u − �∇2!= �g ×∇T; (2.8)
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where the terms on the left are familiar from the classical theory. The term on the right is a source of
vorticity; it arises from the baroclinic torque ∇p×∇� when the pressure gradient ∇p is replaced by
its value in the hydrostatic approximation, and the density gradient ∇� by the temperature gradient,
to which it is proportional in the approximation we are using.

3. Techniques used

The raw data for our analysis was a 1283 grid of processed vorticity data. Sections of this grid were
taken along various planes and analyzed for structures. After many trials, we found the following
eduction scheme very useful.
(a) Thresholding: Since we wish to focus �rst on the large-scale structures associated with com-

paratively large values of vorticity, the smaller vorticities were thresholded out (i.e. set to zero if
below threshold). Various thresholds were tried and the one which visually showed the greatest de-
gree of order was chosen. By and large, this threshold did not exceed 10% of the maximum value of
the vorticity, so that no signi�cant information on the higher vorticities was lost due to thresholding.
(b) Wavelet transform: It was sometimes useful to apply the 2D wavelet transform to the thresh-

olded image. For the present analysis, we have used the 2D Mexican hat wavelet,

 (x) = (2− x2 + y2) exp− (x2 + y2)=2;

where x = (x; y) is a position vector in the plane of the image being analyzed. The zero crossings
of this transform have been shown to be particularly useful in detecting regions of sharp gradient
in an image (Marr and Hildreth 1980) — here, the interface between the coherent structure and
its background. The computation of the wavelet transforms was accomplished using the software
package NALLETS ver. 3.0, developed by SVK at the National Aerospace Laboratories, Bangalore
for analysis of complex turbulence data. The scale of the transform (a′) is given by the ratio of the
wavelet size to the dimension of the image (here taken as 128 on each side). By using NALLETS,
it was possible to vary this scale continuously from a minimum value of 11

128 (determined by the
minimum number of wavelet points required to satisfy the “admissibility” condition on the wavelet,
see e.g. Meyer, 1993) to any arbitrarily larger scale (upto unity). We found the scale 16

128 to be
optimal, i.e. it was the smallest wavelet scale which visually revealed the best coherence in the
structure. After the application of the transform, the image was again thresholded to trim out the
smearing of the edges caused by the convolution of the wavelet over the raw data (mathematical
noise). It was also found that the vorticity �eld could be recognized better if all the wavelet transform
coe�cients (WTC) beyond the selected threshold were considered as belonging to the same class
(by rendering them in a single color irrespective of the sign).

4. The unheated jet

Fig. 3 (reproduced from Basu and Narasimha, 1999) shows contours of the absolute magnitude
of vorticity of the fully developed jet, in the yz-plane, from times t=25 to 35 in steps of two time
units. The contour levels start from 0.5 with increments of 0.5.
At t = 25, the unheated jet is roughly cylindrical in shape. The jet boundaries are sharp, only

weakly convoluted and continuous. Also, vorticity is nearly uniformly distributed throughout the jet.
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Fig. 3. Evolution of absolute magnitude of vorticity in the unheated jet at section X =65 from times t=25 to 35 in steps
of two time units. Contour levels start from 1 with increments of 0.5.

By t = 27, the boundaries begin to break up and “bulges” swell out on either side of the jet axis
(structure A). At t=29, the bulges take the form of an “arrowhead” shaped region, very much like
those observed by Dahm and Dimotakis.
Another nascent arrowhead B is seen developing at the bottom of the domain. The jet boundary is

now highly convoluted. Also, the vorticity distribution is no longer uniform: patches of irrotational

uid appear near the jet axis. By t = 35; structure A has moved downstream from its nearly central
position to the top of the box. Structure B is now at the center of the box. The distinct arrowhead
shape of B is most clearly seen in this frame. A third structure C is seen developing at the bottom,
but this may be seen as a continuation of A, because of the periodic boundary conditions.
For the temporally simulated unheated jet, with periodic boundary conditions, Basu and Narasimha

(1999) have shown that vorticity varies with time as given by the similarity solution

!(t) ∼ t−2=3

t1=3
∼ t−1: (4.1)

Thus, there is a natural decay of vorticity with time. In studying the temporal evolution of the
structures in the 
ow this decay could be misleading if the same absolute values of vorticity are
used in data processing; we have found it much more convenient to analyze a normalized vorticity. If
t0 is some suitably chosen virtual origin and t1 is some �xed time after similarity has been achieved,
the similarity solution (4.1) suggests that we can write

(t − t0)!(t) = (t1 − t0)!(t1):

We �nd t0 = 15:8 from the ! vs. t plot (Fig. 8, Basu and Narasimha, 1999) and choose t1 = 25 as
our reference, as by this time the jet begins to follow the similarity solution. We may thus de�ne
the normalized vorticity as

!∗(t) = !(t)
(t − t0)
(25− t0)

= !(t)
(t − 15:8)
9:2

:

To understand the nature of the coherent structure, we have studied separately the azimuthal, radial
and streamwise components of the vorticity, but �nd the azimuthal component most illuminating.
Fig. 4 shows the axial sections at X =65 of normalized azimuthal vorticity from times t=25 to 35.
The most striking feature is that these plots display more clearly the coherent motions revealed in
the vorticity magnitude plot. Structures A–C are reproduced. Also, the azimuthal vorticity is mostly
positive. Negative vorticity is generally sparse, and is con�ned to the central region within the jet.
The structure is seen to have a thick toroidal base that supports a conical sheath of positive azimuthal
vorticity around the arrowhead shaped region observed by Dahm and Dimotakis.
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Fig. 4. Evolution of normalized azimuthal vorticity in the unheated jet at section X =65 from times t=25 to 35 in steps
of two time units. Solid (dashed line) contours: positive (negative) values.

We now focus our attention on t=35 as at this time structure B, centrally located in the domain,
is visually the most coherent. Fig. 5 shows the plots of the magnitude and the azimuthal, radial and
streamwise components of vorticity at X = 65 and time t = 35. It is important to note that all the
plots have been given the same threshold. It is clear from Fig. 5 that the radial and streamwise
plots do not have the evident coherence of the azimuthal component, and in particular there is no
indication of the toroidal base and the sheath it supports. We thus conclude that the dominant large
structure is coherent chie
y in the azimuthal vorticity.
There is, however, a striking feature in the radial and streamwise vorticity �elds, namely that some

strips of positive and negative vorticity occur in pairs at roughly the same locations in both of them.
These are indicated by numbers 1–5 in the streamwise plot; 1′; 2′ and 5′ are the corresponding pairs
in the radial plot (Fig. 5c and d). In order to see if these could form a pattern, all the paired points
in the streamwise plot may be connected, maintaining the direction of rotation and continuity of the
vortex line. The resulting con�guration is a distorted �gure of eight roughly in the same location as
the arrowhead B, shown as a dotted line in Figs. 5a and b. This suggests that the arrowhead could
consist of a thick toroidal base connected to a helix on top of it, roughly as Bhat and Narasimha
(1996) proposed. But this is hard to establish with greater con�dence from the given data.
Fig. 6 shows the wavelet transform of the azimuthal vorticity section at X = 65 and time t = 35

at the optimal scale (Section 3) of 16=128. As discussed in Section 1, we use the wavelet here �as a
spatially delimited �lter — akin to moving a window over the entire image, the window averaging
over whatever image is seen within it. The transform clearly brings out the continuity in the structure,
which is not so easily perceptible from the raw image. The important features to be noticed here are
the continuity of the outer sheath of the structure and the hollowness of the inside of the structure.
Fig. 7 shows the velocity and the wavelet transform plots at a perpendicular section at Y = 65 at

t = 35. The plot reveals, not surprisingly, that structure B is not perfectly axisymmetric; compared
to the section at X =65, which has an onion-shaped Kremlin-type “dome”, the structure at Y =65 is
stretched streamwise and rounded at the top. Apart from this, the other feature, namely the azimuthal
sheath and the hollow interior, are identical to the X =65 section. The wavelet transform, as in the
previous image, brings out these features of structure B more clearly.

5. Heated jet

Fig. 8 shows time evolution of the magnitude of vorticity in the heated jet, in axial sections at
X = 65. Heating commences at t = 25.
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Fig. 5. Magnitude and components of vorticity in the unheated jet at section X = 65 and time t = 35. (a) Magnitude, (b)
Azimuthal component, (c) Radial component, (d) Streamwise component. Solid (dashed line) contours: positive (negative)
values.

The heated jet closely resembles the unheated case until t = 29. At t = 29, structures A′ and B′

in the heated jet are roughly of the same shape and occupy the same streamwise position as their
unheated counterparts A and B. By t = 31, both A′ and B′ have travelled further downstream than
A and B, undoubtedly because of the higher jet velocities following heating. Also, B′ is stretched
streamwise compared to B. Structure C′ appears at the bottom of the box. At t = 35, A′ can barely
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Fig. 6. Wavelet transform of azimuthal vorticity, in the unheated jet at section X = 65 and t = 35, at wavelet scale 16
128 .

Fig. 7. Section of the unheated jet at Y =65 and time t=35: (a) Azimuthal vorticity, (b) wavelet transform at scale 16
128 .
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Fig. 8. Evolution of absolute magnitude of vorticity in the heated jet at section X = 65 from times t = 25 to 35 in steps
of two time units. Contour levels start from 1 with increments of 4.

Fig. 9. Magnitude and components of vorticity in the heated jet at section X = 65 and time t = 35. (a) Magnitude, (b)
Azimuthal component, (c) Radial component, (d) Streamwise component. Solid (dashed line) contours: positive (negative)
values.

be seen. B′ has accelerated to the top of the domain, but lacks the coherence and continuity of B,
breaking down along the sides. Structure C′ has moved to the center of the box, piercing through
B′ and disrupting it. A large strip of the positive vorticity of C′ is seen near the jet centerline inside
B′. At t=35, the structures are totally disrupted, and can be identi�ed only by the strips of positive
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vorticity along their sides. The trailing edge of B′ is seen at the top of the domain, C′ is centrally
located and a new structure D′ is creeping up from the bottom of the box.
The sections at X =65 and t=35 of the magnitude of vorticity and its components are shown for

the heated jet in Fig. 9. The plots are markedly di�erent from those of the unheated jet at the same
time. The azimuthal plot shows the strips on the sides of B′, C′ and the emerging D′. The pairing of
positive and negative vorticity seen in the streamwise and radial components of the unheated jet is
observed here too, as indicated by areas I through V, all indicating streamwise pairing. But although
present, the pairs in the radial plot do not show the correspondence with the streamwise plot that
was seen in the unheated case, nor is there any de�nite order in arrangement.

6. Conclusions

In the present study, we have focussed our attention exclusively on the vorticity �eld and its
components as it is vorticity that de�nes a coherent structure. In overall shape and size the structures
educed in the unheated jet are like the “arrowheads” of Dahm and Dimotakis; thus, the streamwise
extent of the structure roughly matches its width. The structure is also comparable to that proposed
by Mungal and Hollingsworth — it is roughly axisymmetric with a conical downstream end. But
unlike Mungal and Hollingworth’s picture (Fig. 2(b)), the present structures telescope negligibly into
their downstream counterparts.
Analysis of the components of vorticity reveals large-scale organization mostly in the azimuthal

vorticity. A primary structure comprising a torus with a conical sheath of azimuthal vorticity on top
and little within the structure is educed. The structure is thus dominated by azimuthal vorticity of
the same sign as the initial cylindrical mixing layer.
Apart from this, we also note the presence of a secondary structure, namely the occurence of

pairs of streamwise vortex �laments, roughly connecting up into an inclined vortex loop. This loop
is unlikely to be a part of the counter-rotating spirals mentioned by Yoda et al., as it is present within
the structure and is not of a large-enough scale; the �laments are of a scale about one-tenth the
local jet diameter. However, we are unable to comment further upon this matter as our simulation
provides us with only one instantaneous structure. What we can say with con�dence is that the
streamwise vortices noticed in the present simulations cannot be the result of interactions between
tilted near-�eld vortex rings, since we can distinguish these rings; they are tilted, but there is no
evidence of interconnection, at least till t = 35.
Heating accelerates the 
ow. Also, the baroclinic torque resulting from the heating enhances the

vorticity dramatically. The coherent structures, as a result, get stretched streamwise and run into their
downstream counterparts. After prolonged heating, this leads to a complete breakdown of coherent
motion.
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