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Nomenclature A 

A material parameter dyne sec_b 
c m  2 

A 1 Rivlin-Ericksen acceleration tensor of first rl 
order /~(/-I) 

A2 Rivlin-Ericksen acceleration tensor of second 2(/'1) 
order 2 

b material parameter, dimensionless V 
C1, C2 the constants defined by eqs. [37] and [38] 

respectively P 
CM moment coefficient, dimensionless co(/'I) 
C M i n e  1 Moment coefficient for ~nelastic fluids, f2 

dimensionless 0 
C~tviscoe~ moment coefficient for viscoelastic fluids 

dimensionless 
D rate of deformation tensor 
/} material time derivative of rate of deforma- 

tion tensor 
function of ~, defined by eq. [15] E t 

f (n) function 
G' function 
H' function 

K material 

M moment 
n material 

of n, defined by eq. [45] 
of «, defined by eq. [16] 
of ~, defined by eq. [18] 

parameter dyne (sec)" 
c m  z 

on a disc, dyne-cm 
parameter, dimensionless 

P material parameter dyne (sec)q 
c m  z 

p isotropic pressure dyne/cm 2 
q material parameter dimensionless 
r radial coordinate, cm 
R radius of the disc, cm 
Reo~, Reynolds number 
T stress tensor 
T,.r, 7oo, T=, T,.o, T,.» To= components of stress tensor 

dyne/cm 2 
v velocity vector 
v~, Vo, v~ components of velocity vector cm/sec 
W vorticity tensor 
Wil, Wi 2 Weissenber 9 numbers defined by eqs. [24] 

and [25] respectively 
z axial coordinate, cm 

Greek symbols 

B ( n )  function of n defined by eq. [40] 
?) shear rate, sec ~ 
8 Kronecker delta in eq. [1] 
6' boundary layer thickness cm, (eq. [14]) 
175 

boundary layer thickness at r = R, cm 
(eq. [28]) 
dimensionless variable z/6, (eq. [14]) 
dimensionless variable r/R, (eq. [14]) 
scalar function, defined by eq. [11] 
scalar function, defined by eq. [13] 
relaxation time of the fluid, sec 

1 
näbla operator ~ + -)- ~-~Ö + @z 

density of the fluid gm/c. c. 
scalar function defined by eq. [12] 
rotational speed of the disc rad/sec 
circumferential coordinate 

Following relationships between Rivlin-Ericksen 
tensors and rate of deformation tensor are used: 

A1 = 2D 

A2 = 2/} + 4D 2 

where 

8D 
D =  ~ + (v. V)D ÷ W . D  - D . W .  

An investigation of the flow behaviour of visco- 
elastic fluids in complex flow situations is of obvious 
pragmatic importance. An improvement in out under- 
standing of the curious and at times, bizarre, flow 
behaviour of such fluids can be brought about only 
by a rational analysis of the equations governing the 
motion of fluids, supported of course, by relevant 
experimental data. The complexity of the governing 
equations of motion increases further due to the 
complicated constitutive relationships which are nec- 
essary to portray the flow behaviour in a realistic 
mannerl One hence prefers to analyse the flow phenom- 
ena in asymptotic limits so that suitable simplifying 
assumptions cou•d be made to make the task at hand 
easier. Constitutive relationships may then be suitably 
chosen so that they are sufficiently good for the antic- 
ipated kinematic conditions. Under laminar flow con- 
ditions viscoelastic flow phenomena in the asymptotic 
limits of low Reynolds number (creeping flow) and 
large Reynolds number (boundary layer flow) have 
attracted a good dem of attention but the existing 
literature on these subjects appears to be far from 
conclusive. In this paper we have tried to look at the 
problem of viseoelastic rotational boundary layer flow. 
The possibility of obtaining true similarity solutions 
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is examined first and appropriate equations are derived 
to make the added complications over the most widely 
studied two dimensional viscoelastic boundary layers 
quite clear. Experimental data are then presented which 
support the conclusions drawn on the basis of inspec- 
tional analysis. 

Previous work. 

Apart from the academic challenge that the boundary 
layer flows offer to a rheologist or an engineer, what 
appears to be even more fascinating is the observation 
in the past (1, 2) that no general conclusions about the 
behaviour of viscoelastic fluids in laminar boundary 
layer flows can be drawn. Denn(l) for instance, has 
clearly shown how a given viscoelastic fluid with 
fixed material properties can show surprisingly different 
behaviour in different geometries. He has also shown, 
how, for  a given geometry the changes in the fluid 
property parameters (namely, the power law indices 
for the shear stress and primary normal stress difference 
functions) can bring about a rather surprising increase 
or decrease of the drag coefficient. These observations 
are obviously of great significance, because they lead 
us to the conclusion that by appropriätely modifying 
the fluid properties, we will be in a position to obtain 
certain benefits such as friction reduction even under 
laminar boundary layer flow conditions. This inter- 
esting possibility certainly merits a further investiga- 
tion. 

Laminar boundary layer flow past a flat plate with 
zero angle of incidence has been the most widely studied 
boundary layer flow problem both for Newtonian and 
non-Newtonian fluids. The study of this flow for purely 
viscous non-Newtonian fluids poses no special problems 
and an exact similarity solution and a momentum 
integral solution can be easily obtained (see 3, 4, 5, 6). 
For an elastic fluid, however, no similarity trans- 
formation is available. 

Fredrickson(7) has discussed the conceptual dif- 
ficulties involved in obtaining a similarity trans- 
formation for the boundary layer flow of a viscoelastic 
fluid. A large number of studies in the literature 
(e.g. 1,2,8~9) have concerned themselves with the 
solution of the boundary layer problem past a flat 
plate for a second order fluid. Although this model does 
describe most real fluids in some finite fange and is the 
exact lower asymptotic limit of the simple fluid theory, 
its validity at high enough flow rates to make the 
boundary layer flow approximations meaningful is in 
some doubt. The next widely studied boundary layer 
flows for viscoelastic fluids are stagnation flow (10, 11) 
and wedge flows (1, 9, 12), respectively. Denn (1) has 
obtained the conditions under which a true similarity 
solution can be obtained for both these flows. Once 
again, a large number of publications have dealt with 
the solution for a second order fluid and the conmaents 
in the foregoing apply equally weil here. There does 
appear to exist a controversy over the influence of 
elasticity on the drag coefficient under such conditions, 
but this appears to be only apparent rather than real (13). 

The next class of boundary layer flow of great prag- 
matic importance is the rotational flow. The possibility of 
an exact boundarylayer solution for the case ofa rotating 

disc has attracted the attention of a large number of 
research workers. The flow around a rotating disc for 
Newtonian fluid was first solved by von Karman (14) 
using momentum integral equations. Cochran (15) later 
on improved upon the accuracy of the solution by 
using numerical techniques. Mitschka and Ulbrecht 
(¤6) analysed the flow of a Ostwaald de-Waele power 
law fluid around a rotating disc and obtained suitable 
similarity transformations. They solved the resultant 
set of ordinary differential equations numerically and 
obtained results to give the velocity distribution and 
torque. 

There have been a few efforts to solve the problem 
of boundary layer flow of elastic liquids around a 
rotating disc. 3ain (17), Srivastava (18), Balaram 
et al. (19) and Kato et al. (20) have considered the flow 
for a Reiner-Rivlin fluid and investigated the influence 
of cross viscosity on flow patterns and shear stress at 
the surface of the dise. Rathna (2¤) and Elliott (22) have 
considered the flow for a second order fluid. Subba 
Raju (23) has investigated the flow for a three constant 
Oldroyd model. An analysis by Tomita and Moehimaru 
(24), which has appeared recently, attempts to solve the 
problem with a restricted form of the Denn model, but 
ultimately succeeds in obtaining only a perturbation 
solution of the particular limiting case of a second order 
fluid, with results which are in contradiction with the 
analogous analysis by Elliott. The other theoretical 
investigations, although useful from a qualitative 
viewpoint, have little predictive utility. The Reiner- 

Riv l in  fluid is thermodynamically inconsistent and 
seldom will the rheological data fit the predictions of 
this model. The limitations of the second order fluid 
have been already mentioned and rauch the same 
objections could be laid against Oldroyd three constant 
model. Besides, these investigations do not appear 
to throw any light on the possibility of obtaining true 
similarity solutions when a reasonably reliable con- 
stitutive equation is used. Generally speaking, there 
also appears to be a dearth of experimental data on 
weil defined laminar boundary layer flows of visco- 
elastic fluids. This work is hence intended to contribute 
in this area. 

Theory 

The choice of  the const i tu t ive  equa t ion  used 
to descr ibe  the flow behav iou r  is to be governed  
by its app rop r i a t enes s  for the r ap id  external  
flow which a l amina r  b o u n d a r y  layer  flow 
a r o u n d  a ro ta t ing  disc is. W e  choose  the fol- 
lowing const i tu t ive  equa t ion  

z = --pÔ + Iz(I'I)A1 + co( i l )A z - 2(f ' I )A2,  [1]  

where ~ is the to ta l  stress tensor,  6 is the Kronecker  
delta,  Aa and  A z are Rivlin-Ericksen tensors  of  
the first and  second order.  (See N o m e n c l a t u r e  
for the exact  definit ions.)  The coefficients #, co 
and  2 are  scalar  funct ions of  the second invar ian t  
of  the ra te  of  s train tensor.  This  const i tu t ive  
equa t ion  m a y  be l ooked  u p o n  as an  a p p r o x i m a -  
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tion to a higher order Rivlin-Ericksen expansion 
in which the effect of Rivlin-Ericksen acceleration 
tensors of order greater than two is lumped into 
a set of experimentally determiöable variable 
coefficients. Although the strict validity of this 
procedure may be open to question, in view of 
the fact that the constant material coefficients 
of higher order acceleration tensors in Rivlin- 
Ericksen expansion cannot be measured, this 
procedure does appear to simplify the matter 
considerably. The functional forms of #(II), 
co(II) and 2(/'1) have been discussed by Soylu 
et al. (25) on the basis of viscometric experiments. 
In general terms it is found to be preferable 
to express the functional forms of/1(/-1), co(rI) 
and 2(/~I) as 

tl--1 
#(r I )  = K [½( I I ) ]  2 [2] 

9_~2 
co(/-/)= P[½( I I ) ]  2 [3] 

b - 2  
2(ü) = A[½( I I ) ]  2 [4] 

For n = 1 and A = P  =0,  eq. [1] reduces to 
its Newtonian limit. For n = 1 and q = b = 2, 
eq. [1] reduces to the second order approxima- 
tion. For finite values of n but with A = P = 0, 
we have the purely viscous behaviour portrayed 
by a power-law model. Thus the limiting cases 
of this constitutive equation may be easily 
looked into in our analysis of the disc flow 
problem and a comparison with the analyses 
in the literature becomes fairly straight forward. 

The system of equations of motion can be 
written down in the usual manner for the 
boundary layer flow around the disc as 

av, v 2 tv,. 
-I- V z - -  v, Or r ~z 

~[ ~~ ~~, ~,,-~oo ~~,~~ 
= - W + - - a T - r + - - - 7  - -  +--eZ-z] [5] 

~Vo V, Vo OVo 
vr--~-r + r +v=--~?z 

= p ~ -  W (~2 ~.o) + a~ j [6] 

0v= + ~vz 
vr er vz c~z 

- ~ + 7 W (r r~=) + G (~=) " [7] 

The equation of continuity is 

Ov,. vr ~Vz 
ar + --~ + -g2-z = 0.  [8] 

We have chosen here z = 0 as the plane of 
rotation and r = 0 as the axis of rotation. The 
boundary conditions for the solution of this 
equation are 

z = 0 ,  v , = v = = O  and 

and 

Z --* O0, V r = V 0 = 0 .  

Vo = r~2 [9] 

[lO] 
Substitution of various stress components in 

eqs. [5], [6] and [7], based on the constitutive 
relationship given in eq. [1], in conjunction with 
the definitions of variable coefficients given 
by eqs. [2], [3] and [4] essentially completes 
the statement of the problem. Further simplifi- 
cations will be achieved when we perform the 
usual ordering arguments concerning the 
relative magnitude of terms within the small 
region in which most significant changes in 
velocity are occurring. Following the previous 
workers, in the first instance, these ordering 
arguments are the same as those done for 
Newtonian fluids, which are also applicable for 
purely viscous fluids. The variable material 
coefficients i~([~I),o~(f'I) and 2(II) can then be 
shown to reduce to 

/x(/'I) = L\-~Tr B + \'-~-)--z B j [11] 

(~v, . )  1 a [12] <o¢,t = P i - (  °~°~ 2 2 ~  
L\-äZ) + \ a~ ) _1 

and 
~~r,) : ~1(~~0~ 2 (~" ,V1  °~~ F~~l 

L\-ä-T) + \ ~ )  ] " 
The search for a true similarity solution of 

eqs. [5], [6] and [7] can be done by the use of 
Group Theory methods (26) but we find it 
easier to approach the same problem in an 
alternative way. Eqs. [5], [6] and [7] will be 
inspected after transformation of the dependent 
and the independent variable on the same basis 
as that for the purely viscous case treated by 
Mitschka and Ulbrecht (16). We thus transform 
the equations by using 

Z 
r/R = t l  and -~-= ~, 
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• 1 [143  R s -ù~2-ù t/ , 

6' is proportional to the local boundary layer 
thickness and the expression for 6' can be ob- 
tained by using the balance of forces of inertial 
and viscous nature in the boundary layer. 
Of course, only purely viscous considerations 
are involved while evaluating this and it may not 
be fundamentally correct since the elasticity is 
likely to affect the boundary layer thickness. 
But there is no a p riori way of accounting for 
this and we will hence proceed with the trans- 
formations suggested in eq. [14-]. The velocity 
components are then transformed as 

v,. = rf2F' [15] 

V; = rf2a' [16-] 

and 

where 

- ' I ( - -  

[17] 

3 n - 1 )  l - n  F '«] .  [18] 
7 4  f ' F 1 T n  

The transformed boundary conditions are 
now given by 

=0,  F ' = H ' = 0  and G ' = I  [19] 

--, 00,  F '  = G '  = 0 .  [ 2 0 ]  

The exact algebraical details are rather tedious 
and have been reported in (27). The first two 
components of equation of motion (eqs. [5] 
and [6]) are required for the evaluation of 
velocity distribution. The transformed r com- 
ponent is given by 

F 2 - -  G '2 -[- (H; + I - n ~,"~ 
\ 

+ (Reo~) 1/1+" tl 1 +n d ~  ( F " 2  "~- 

[~i 1 2(b-n-l) d { G,,2)b~-2[ 
(Reow) m+" t l  1+ù d~ (U'2 + 

+ G"2) "21 F"I 

Et  
- 2 F ' F "  + -  

l + n  

~~i2 2(q-n- 1) { Gtt2)q2  2 2 q + l + n F ù 2 G ù 2 )  
+ (Reo~) 1/~+" q 1+ù (F"2 + I + n 

+ ~ ~  (F,,2 + a,,2) 2 (Fù)2 [21] 

and the 0 component is given by 

I ~I 1 2F'G' + [H' + ~F' (ll+n- n) G" = (F "2 + G"2) n21 G" 

+ (Reow)l/l+ù ;1 d~ (F"2 + G"2) 2 - G "  F' + 1 + +F" G"~-]---4~ 

Wil 2~b-ù-1~ d ( ,2 Gù2f -2 
- -  (Reow)a/1+" r/ 1+ù ~ ~ ( F  + 2 

x G"F"~ 1 - n  F' G"~. - H'G" H") + 1-i--~n (2G" + (1 n) + + G"(3F' + - G'F" 

• W i  2 2 ( q - n -  1) f 9~B2 G,,2) 2 q + 1 + n G"F" 
+ (Reo~) 1/1+n q 2+ù 2(F"2 + I + n 

« 1 - n  
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where 

R2 (22-n p 
Reow - K [23] 

A ( RZ--~-3 P-) ~+~' [24] Wi I = --~ 

Wie = --~ 

It is readily seen .that the dimensionless 
numbers Wil and W i  2 appear in the equations. 
These have the same significance as in the 
previous boundary layer analyses performed 
with similar constitutive equations, in that 
they represent the ratio of elastic to viscous 
forces. A further explanation of these numbers 
has been given later. It is important to note that 
we get two such groups, wil  is to be evaluated 
on the basis of the parameters involved in the 
function 2(II), whereas Wiz is to be evaluated 
on the basis of the parameters involved in the 
function o»(II). The boundary layer analysis for 
flat plate mentioned previously does not include 
the terms involving the function o»(rI), since the 
terms containing co(II) identically vanish in such 
two dimensional flows. The limiting form of 
the eqs. [21] and [22] can be readily examined. 
It is clearly seen that when Wil = Wi2 = O, 
we have the purely viscous behaviour portrayed 
by an Ostwaald-de Waele power-law fluid. These 
equations are then identical to those obtained 
by Mitschka and Ulbrecht (17). For K = # and 
n = 1, the equations reduce to those reported 
by Schlichting (28). 

The search for a true similarity solution 
(independent of tl) is now made. The trans- 
formations employed in eqs. [14]-[17] are 
clearly unsatisfactory for providing a true 
similarity solution for all values of material 
parameters. But it is interesting to observe that 
for a special case when b = q = n + 1, we do 
have a true similarity solution. This observation 
is rather akin to the one obtained by Denn (1) 
who observed that only for a two dimensional 
stagnation flow a similarity solution is possible 
when b = n + l .  For n = l  (and b = q = 2 ) ,  it 
corresponds to the second order fluid approxima- 
tion. It does appear that even when n + 1, 
it is possible to satisfy the condition b - - n  + 1 
for a number of dilute polymer solutions, with 
moderate shear thinning and moderate departure 
of normal stress difference functions from ~2 
dependence. The solutions obtained by inte- 

grating the set of ordinary differential eqs. [21] 
and [22] may thus be of some pragmatic 
significance. If b ~= n + 1 and q + n + 1, then it 
is possible to integrate the eqs. [21] and [22] 
as such by direct numerical integration by 
using the techniques developed in recent years 
for integrating nonsimilar boundary layer flow 
eqs. [29]. 

The expression for torque on the disc can be 
obtained by carrying out an inspectional ana- 
lysis. This is obtained by integrating the local 
shear stress z0z on the surface of the disc 

M = -- 2 i "c0z z=0 2rcr2dr" [26] 

The component ~0z with the assumed con- 
stitutive eq. [1] can be obtained in the dimen- 
sionless form as 

~0= = K + G "2) tl I+"G" 

+p~2__~_) (F,+Gù2) 2 q 1+ù 

(1 - n)  + F"G"~-]--4-7- } 

- A (Fù2 + G,,2) z tl l +n 

. f2{G"F"~ll~+nn+H'G " 

+ [2G" + (1 - n)G"~] 

+ G"(3F' + H") - G'F"},  [27] 

where 

=l~1~~2 ~]~ ~2~~ 
Using B.C. [19] we have F'(0) = H'(0) = 0 

and hence z0z at ~ = 0 reduces to 

Z0z[¢=0 = K (F"(0) 2 + G"(0)2)-~-tl 1 +"G"(O) 

+ A (F"(0) 2 

b - 2  2 ( b -  1) 
+ Gù(0)2) 2 .tl l+n f2F"(O). [29] 
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It is thus interesting to see that the dimen- 
sionless groups arising from the coefficient 
co(/'I) (see eq. [12]), do not appear in this 
expression. Carrying out the integration in 
eq. [26], we get 

/RY2\, 1 
M=-4rcR3Kt- -Ä-  ) ~r/2{(F"(0) 2 

n -  1 2n 
+ «'(o):) : ~~+"«'(o) 

B ~ _  ~ / ~  n + l  (Fù(0)2 

b - 2  } 
+ o"(o):) ~ F"(0) @. [30] 

Before expressing the above result in the 
dimensionless form, it is important to examine 
the significance of some of the terms appearing 
in the above expression. It can readily be seen 
that A is the value of 3', the boundary layer 
thickness at the edge of the disc (r = R). Since 
R f2 could be taken as a characteristic velocity, 
Rf2 
- -  serves as a characteristic shear rate on the 

A 
surface of the disc. Further, under simple shear 
flow conditions, we have the shear stress and 
primary normal stress difference functions pre- 
dicted as 

Œ12 = K(~) n [31] 
and 
Ztl -- z22 = A(7) b. [32] 

A variable relaxation time can now be 
defined as (see 30, 31), 

- - - - -  _ A B - -  "Cl1 - -  "C22 __,'b--n-i [33] 
•i29 K y " 

On substitution of our characteristic shear rate 
RO 

= --Ä--, we have the variaNe relaxation time 

definition changed to 

2 = [34] 

This may be taken as the appropriate fluid 
characteristic time. The search for ,a charac- 
teristic process time may be done in a similar way 

turns out to be the characteristic process and 

time for the boundary layer flow around the 
disc. We may thus define the ratio of a charac- 

teristic fluid and process time as the Weissenberg 
number. Thus we have 

~i_- ~ - ( ~ ) ~  ~ ~3,~ 
1 

A = (Reow) ~ + » and also Noting further that -~- 

defining the dimensionless moment coefficient 
M 

CM as 1/2pR502 we get from eq. [30] 

8re [ Wi~ ] [36 ] 
CM = (Re0w) m +ù C1 + C2 (Reow)l/1+" • 

The constants C1 and C2 are functions of the 
indices in the shear stress and normal stress 
difference functions n, b and q and are given 
explicitly by 

1 n - 1  2(2n+1) 
C1 = _ I { [ F - ( 0 ) 2  ._}_ G, t (0 )2 ]  2 /,i l + n  Gù(0)}d/~/ 

0 

= C~ (n, b, q) [37] 

and 
1 b - 2  2(b +n) 

C2 = I {[ F"(0)2 + G"(0)2] 2 ~] 1 +n F"(0) @ 
0 

= C2(n, b, q).  [38] 

The sign and magnitude of C~ and C2 will 
have to be determined either from the theoretical 
considerations (numerical solution of eqs. [21] 
and [22])or  from experimentation (by doing 
torque measurements for elastic liquids and 
correlating the data). It can, however, be deduced 
directly that the constant C1 has to be negative. 
It has been shown by Mitschka and Ulbrecht (16) 
that the moment coefficient for purely viscous 
Ostwald-deWaele power law model is given by 

8rcfl(n) [39] 
CMiùel -- (Reow)l/l+ù 

where 
1--/1 

il(n) = 0.1539 x (6.13) 2°+"). [40] 

Hence eq. [36] may be rewritten as 

87cfl(n) [ C 1 C  2 Wi ] 
CM (Reow) m+"  ~-~-+ = i l(n) (Reow) '/1+" 

o r  a s  

-- C 1  
CMvi . . . .  1 = CMinel [ f l - - - '~  "]- - -  

[41] 

C 2 Wi ] 
B(n) ( R e o ~ / I + "  " 

[42] 
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Inspection of eq. [423 shows clearly that the 
possibility of torque suppression for viscoelastic 
fluids will depend on the change in the magnitude 
of C1 brought about  through elasticity and also 
the change in sign and magnitude of C• brought 
about through elasticity. It is not possible to 
predict on the basis of such inspectional analysis 
alone whether one would have a torque sup- 
pression or a torque increase. It is interesting 
to recall here the observations of Denn (1), who, 
for the case of laminar boundary layer flow 
past a flat plate showed how the fluid property 
parameters b and n influence the drag coefficient 
and how depending upon their magnitudes the 
drag coefficient may in fact reduce or increase 
compared to its value given by purely viscous 
considerations. The possibility of observing 
similar behaviour in the case of the disc cannot 
be outruled. 

E x p e r i m e n t a l  

The experimental procedure consisted of measuring 
the torques experienced by discs of radii 3.75, 5 and 
7.5 cm rotating at different speeds in different fluids. 
The range of speeds covered was from 600 to 1800 
rer/min. 

The experimental technique used for the measure- 
ment of torque was the same as used previously (32). 
The dynamometer essentially measured the twist in 
the torsion bar in conjunction with two photocells and 
an electronic digital counter timer. The details of the 
dynamometer could be found in ref. (24). 

The liquids used were aqueous solutions of Sodium 
Carboxymethyl cellulose (CMC (Edifas "B" ICI)), 
aqueous solutions of Polyacrylamide (PAA) (Separan 
AP30, Dow Chemicals), Kaolin suspension made in 
mixture of Glycerol and Water and also a mixture of 
Polyacrylamide, Glycerol and Water. Glycerol was 
used as a Newtonian fiuid. Table 1 lists the properties 
of the fluids used. The rheological data were obtained 
on a Weissenber 9 Rheogoniometer (model R18). Both 
shear stress shear rate data were obtained and were 

correlated on the basis of the predictions in eqs. [31] 
and [323, respectively. The material parameters K 
and n and A and b have been listed in table 1. It can be 
readily seen that due to the absence of any measurable 
normal stress difference CMC and Kaolin solutions 
served essentially as inelastic liquids; whereas the 
Polyacrylamide solutions were significantly elastic. 

R e s u l t s  a n d  d i s c u s s i o n  

The predictions of eq. [36] were tested by 
plotting the torque R, P.M, data in a suitable 
dimensionless form by using the fluid property 
parameters listed in table 1. The accuracy of the 
data obtained was first tested by plotting the" 
data for Newtonian  Glycerol solutions. The 
data for non-Newton ian  inelastic fluids (A = 0) 
was also plotted to check the theoretical 
relationship given by eq. [39], and fig. 1 shows 
the result. It is clearly seen that the agreement 
between the theory and the experimental data 
is excellent. In order to see if there is any dif- 
ference between the behaviour of inelastic and 
viscoelastic fluids, the data for the latter were 
also plotted on the basis of eq. [-39]. Fig. 2 
shows the results. It is seen that the data for 
viscoelastic polymer solutions are significantly 
lower than those for inelastic polymer solutions 
and suspensions. Since all the influence of the 
shear thinning character has been explicitly 
taken into account by a relationship of the 
type [39] the observed difference taust be 
attributed to the presence of elasticity. 

The validity of the relationship obtained on 
the basis of inspectional analysis (eq. [42]) was 
hence tested. The observed reduction could be 
accounted for by the changes in the constant C1 
(for inelastic fluids C 1 =il(n) and C2 = 0) or 
both by the contribution through changes in Ca 
and a finite value of C»  C1 and C2 will of 

Table 1. Properties of the fluids used 

Fluid 

K n A 
dyne dyne 

s e c  n 
c m  2 c m  2 

b p 

sec b gm/c.c. 

Glycerine 8.427 1.0 - 
Glycerine 1.048 1.0 - 
Kaolin 3.7 0.935 - 
CMC 70 0.4675 - 
0.5% PAA 14 0.4225 26.5 
1.0% PAA 36 0.373 75.0 
1.5% PAA 107 0.331 170.0 
2.0% 250 0.2643 350 
0.53% PAA in 26 0.517 70.7 
45% Glycerine 

- 1 . 2 5  

- 1 . 2 4  

- 1 . 2 0  

- 1 . 0 5  

0.713 1.00 
0.675 1.005 
0.710 1.010 
0.671 1.015 
0.875 1.15 
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Fig. 1. Verification of eq. [39] for 
Newtonian and inelastic non-Newtonian 
fluids 
O R = 3.75 cm Glycero195% 

R = 5.00 cm Glycerol 95% 
• R = 5.00 cm Glycerol 85% 
• R=3 .75cm Kaolin 
x R=5 .00cm Kaolin 
B R = 7.50 cm CMC 

@ 

10 4 En. ( 3 9 )  

I I I I I I P I I I I t ,xr 
10 2 10 3 I0  ~ R E  tO » 

Fig. 2. Torque suppression for viscoelastic 
fluids under rotational laminar boundary 
layer flow conditions 
O R=3 .75cm 0.5%PAA 
x R=5 .00cm 0.5%PAA 
V R=7 .50cm 0.5%PAA 
• R=3 .75cm 1.0%PAA 
• R=5 .00cm 1.0%PAA 
O R=3 .75cm 1.5%PAA 
A R=5 .00cm 1.5%PAA 
• R=3 .75cm 2.00%PAA 

R = 5.00 cm 2.00% PAA 
® R=5.00cm 0.53%PAA 

in 54% Glycerol 

course be functions of n, b and q. To examme 
whether the entire torque suppression could 
be correlated through C1 alone or whether the 
presence and contribution of C2 had to be 
taken into account as well, we plotted the data 
for a given fluid hut with different disc dirnen- 
sions. There was a systematic shift in the data 
with the disc dimensions. Since only the term 

C2 Wi 
was capable of correlating such 

il(n) (Reow) 1/1 +ù 
a shift, the presence of this term was found 
necessary. It was further found that the observed 
extent of torque suppression reduced with 
higher Reynolds number. This implies that C2 
is negative. The exact functional relationship 
of C1 (n, b, q) and C2 (n, b, q), however could 
not be deduced, because the variation in n and b 
was only between 0.26 to 0.51 and 0.67 to 0.87; 
respectively. Further q was not measured. Hence 
the välues of Ca and C2 were taken to be ap- 
proximately constant in this work and are 
reported in table 2. The goodness of prediction 
of eq. [42] with these values of C1 and C2 is 
shown in fig. 3, where the experimental data are 

compared with the predictions. The agreement 
appears to be reasonably sound. 

Table 2. Values of constants Ca and C 2 

Fluid n b C 1 C 2 

0.5% PAA 0.4225 0 .713  0.2165 0.0814 
1.0% PAA 0.3730 0 .675  0 .2222 0.0830 
1.5% PAA 0.3312 0 .710  0 .2362 0.0895 
2.0% PAA 0.2643 0 . 6 7 0  0 .2640 0.0982 
0.53% PAA in 0.5/70 0 .875  0 .2100 0.0746 
54% Glycerine 

Appropriate comments need to be made 
about  the region preceding the laminar boundary 
layer regime (creeping flow) and the region after 
the laminar boundary layer flow (transition to 
turbulent regime). 

Kelkar et al. (31) have clearly shown that in 
the creeping flow regime, the modifications in 
the torque are not detectable and the data could 
be correlated satisfactorily for inelastie and 
viscoelastic fluids through the considerations 
of shear thinning viscosity alone. Inspectional 
analysis similar to the one performed here was 
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Fig. 3. Comparison of the experimental and predicted 
values of the moment coefficients for viscoelastic 
liquids" 
Notation same as in fig. 2 

done in the creeping flow regime (which is 
confirmed from the analysis of Wichterle and 
Ulbrecht (33) as well) and the following rela- 
tionship between CM and Re0~ was predicted. 

CM= f (n) [44] 
Reow 

In the absence of any theoretical investigation 
of flow of power law fluids around a rotating 
disc in the creeping flow regime, we obtained 
this relationship by performing an analysis of 
the experimental data. The following relationship 
was found to fit the data 

--~- ( 7n + il-- ) [45] f (n) = 3 n  + " 

Fig. 4 shows that data for both inelastic and 
viscoelastic solutions are equally well fitted 
through this equation. This shows that the 
influence of elasticity on the modification of 
torqne is negligible at very low Reynolds number. 
It is only at fairly large Reynolds numbers that 
one has an appreciable influence of elasticity. 

The resulting torque suppression does not, 
however, appear to persist for large Reynolds 
number and fig. 2 clearly shows that the visco- 
elastic polymer solution data once again tends 
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e Glycero! R= 5.00 CM "xpx o 

~7 - R--3.75 CM ~ ~ 

• CMC2% R=2.50CM 
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• R=3.75 CM "~ 
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Fig. 4. Moment coefficients of inelastic and viscoelastic 
fluids under creeping flow conditions 
V R = 3.75 cm Glycerine 95% 
@ R = 5.00 cm Glycerine 95% 
• R = 2.50cm CMC2% 
• R=3.75cm CMC2% 
A R =  5.00 cm CMC2% 
x R=3.75cm PAAr% 
O R=5.00cm PAA1% 
V R=5.00cm PAA2% 

to join the inelastic line given by eq. [39]. Kale 
et al. (34) have shown that as one goes further 
in the turbulent regime, there is a significant 
torque suppression. Thus the rotational visco- 
elastic flows appear to offer a very interesting 
fange of phenomena depending upon the range 
of Reyno[ds number. It is interesting to compare 
here another interesting flow situation, which is 
well understood and studied in the literature. 
It has been thus shown that for low Reynolds 
number flow (creeping flow) of a viscoelastic 
Buid past a sphere or a cylinder there is some 
reduction in the drag coefficient. On the other 
hand in stagnation flows there is an enhancement 
in drag coefficient for viscoelastic polymer 
solutions. We thus come to a very interesting 
and important conclusion that the existence and 
extent of drag reduction under laminar flow 
conditions may depend upon the particular 
geometry used the range of Reynolds number as 
well as the values of the material parameters. 

O u r  study has clearly shown the range o f  
conditions under which torque suppression 
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under laminar flow conditions can be obtained 
for a rotat ing disc, but  this s tudy cannot  be 
claimed to be complete in a sense that  very 
little variat ion in material  parameters  was used. 
However,  it is hoped,  that  the explora tory  
theoretical and experimental analysis of this 
work  may  lead to a bettet  unders tanding of  the 
behaviour  of  viscoelastic fluids in rotat ional  
laminar bounda ry  layer flows. The a t tempted 
analysis of the governing equations and the 
evidence presented for the existence of  a true 
similarity solution should help considerably in 
this respect. 

Summary 

The equations of motion for the laminar boundary 
layer flow over a rotating disc have been derived for a 
fluid which obeys a Rivlin-Ericksen type of constitutive 
equation and whose material parameters are assumed 
to be arbitrary functions of the second invariant of the 
rate of deformation tensor. The analysis establishes 
the conditions under which a true similarity solution 
is possible. An inspectional analysis yields a relationship 
between the moment coefficient, a generälized Reynolds 
number and a modified Weissenberg number which 
incorporates a variable relaxation time with a process 
time characteristic of the boundary layer flow on the 
disc. Experimental data obtained are analysed in terms 
of the derived relationship and the agreement between 
the two, after the determination of the unknown 
constants, is found to be quite sound. A brief discussion 
follows which emphasizes the role of geometry, regime 
of flow and viscoelastic material parameters in giving 
a wide variety of flow phenomena. 

Zusammenfassung 

Die Bewegungsgleichungen für die laminare Grenz- 
schichtströmung um eine rotierende Scheibe wurden 
für eine Rivlin-Ericksen-Flüssigkeit abgeleitet. Die 
Materialparameter in dieser Zustandsgleichung wurden 
als beliebige Funktionen der zweiten Invarianten des 
Deformationsgeschwindigkeitstensors gesehen. Die Be- 
dingungen wurden gegeben, unter denen eine echte 
Ähnlichkeits-Lösung existiert. Die Inspektionsanalyse 
wurde dann benutzt, eine Gleichung zwischen dem 
Widerstandskoeffizienten und der Reynolds-Zahl ab- 
zuleiten, die auch eine Weissenberg-Zahl mit einer 
variablen Relaxationszeit und einer charakteristischen 
aus der Grenzschichtströmung abgeleiteten Prozeßzeit 
enthält. Die Versuchsdaten wurden mit Hilfe der 
Theorie analysiert, und eine gute Übereinstimmung 
wurde gefunden. Die Arbeit wird mit einer kurzen 
Diskussion beendet; in der Rolle der Geometrie des 
laminaren bzw. turbulenten Strömungsbereiches und 
der viskoelastischen Stoffparameter herausgestellt wird. 
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