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Abstract: Ti(III)-mediated radical cyclization of  β-aminoacrylate containing 2,3-epoxy 
alcohol moieties led to the formation of  highly substituted piperidine and pyrrolidine 
rings. The pyrrolidine ring system was then transformed into an indolizidine framework 
present in many natural products. 
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Piperidine, pyrrolidine and indolizidine/quinolizidine are important structural scaffolds of several 
natural products.1 In the literature, radical cyclization of β-alkoxyacrylates and β-aminoacrylates have been 
extensively used as versatile tools for the construction of oxacyclic2,3 and azacyclic4 rings with the latter 
having applications in the synthesis of many alkaloids. Recently, we have reported that radicals formed 
during the opening of 2,3-epoxy alcohols 1 and 3 with Cp2Ti(III)Cl5 could be trapped intramolecularly by a 
suitably positioned α,β-unsaturated ester moiety in the same molecule giving rise to a cyclohexane ring 
system 2,6 tetrahydrofurans and tetrahydropyrans 4.7 

 
Scheme 1 

 
Focusing on our work on the synthesis of carbocycles, oxacycles and azacycles via Ti(III)-

mediated radical cyclization reactions, we wish to report here the cyclization reaction of  β-aminoacrylates 
through epoxide opening followed by 5-exo and 6-exo cyclizations. The details of the process are outlined 
in Schemes 2, 3 and 4. Scheme 2 describes the synthesis of a highly substituted piperidine moiety. The 
synthesis started from the commercially available compound 5. Tosylation of 5 with tosyl chloride 
followed by treatment with methyl propiolate in the presence of N-methylmorpholine (NMM)  gave the ‘β-
aminoacrylate’ intermediate 6.8 Cleavage of the acetal 6 with formic acid  followed by Wittig olefination 
with stabilized ylide Ph3P=CHCOCH3 led to an α,β-unsaturated keto compound 7. 
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Scheme 2. Reagents and conditions. (i) TsCl, Et3N, DMAP (cat.), CH2Cl2, 0 °C to rt, 2 h; (ii) methyl 
propiolate, NMM, CH2Cl2, rt, 1 h, 76% over two steps; (iii) 20% HCO2H, pentane, 0 °C, 0.5 h; (iv) 
Ph3P=CHCOCH3, CH2Cl2, rt, 8 h, 85% over two steps; (v) NaBH4, CeCl3, MeOH, 0 °C, 15 min.; (vi) L-
(+)-DIPT, Ti(OiPr)4, TBHP,  MS (4Å), CH2Cl2, -20 °C, 0.5 h, 45% over two steps; (vii) Cp2TiCl2, ZnCl2, 
Zn, THF, -20 °C to rt, 8 h; (viii) 2,2-dimethoxypropane, CSA (cat.), CH2Cl2, 2 h, 40% in two steps. 
 

A Luche reduction9 of 7 followed by a Sharpless kinetic resolution10 of the resultant racemic 
allylic alcohol afforded chiral epoxy alcohol 8 >92% ee as determined using the Mosher ester method11 in 
45% yield.  With this epoxide in our hand, we turned our attention to carrying out the crucial epoxide ring 
opening reaction followed by cyclization. Accordingly, when epoxy alcohol 8 was treated with 
Cp2Ti(III)Cl, generated in situ from Cp2TiCl2 and Zn dust and freshly fused ZnCl2, it underwent epoxide 
opening at the C-2 position from the hydroxy side12 and gave a radical intermediate that underwent facile 
intramolecular trapping by the acrylate moiety leading to the formation of the six membered piperidine as 
the only isolable product along with some unidentified complex mixture of compounds. Next, the resulting 
diol was protected as an acetonide to furnish the bicyclic compound 9 as a white crystalline solid.13 

The absolute stereochemistry of 9 was established unequivocally from its single crystal X-ray 
analysis14 which confirmed the assigned structure (Figure 1).  

 
Figure 1. X-ray crystal structure of 9. Perspective view of the two independent molecules showing the 
atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms are 
shown as small spheres of arbitrary radii. 

 
Next, we wanted to test this reaction in a substrate containing primary epoxy alcohol. For that, we 

started from compound 6 as shown in Scheme 3. Cleavage of the acetal protection with formic acid 
followed by the Wittig reaction of the resulting aldehyde with Ph3P=CHCHO in refluxing benzene 
furnished the α,β-unsaturated aldehyde 10 in 60% yield over two steps. 
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Scheme 3. Reagents and conditions. (i) 20% HCO2H, pentane, 0 °C, 0.5 h; (ii) Ph3P=CHCHO, C6H6, 
reflux, 6 h, 60% in two steps; (iii) NaBH4, CeCl3, MeOH, rt, 24 h, 55%; (iv) L-(+)-DIPT, Ti(OiPr)4, TBHP,  
MS (4Å), CH2Cl2, -20 °C, 2 h, 85%; (v) TBDPSCl, Et3N, CH2Cl2, DMAP (cat.), 0 °C to rt, 4 h,  95%; (vi) 
Cp2TiCl2, ZnCl2, Zn, THF, -20 °C to rt, 6 h; (vii) 15, K2CO3, MeOH, 0 °C, 2 h, 69% (combined yield) over 
two steps; (viii) TBAF, THF, 0 °C to rt, 2 h, 85%; (ix) Ac2O, Et3N, DMAP, CH2Cl2, 0 °C to rt, 0.5 h, 90%. 
 

The Luche reduction9 of 10 provided the allylic alcohol 11 which was subjected to Sharpless 
asymmetric epoxidation10 using L-(+)-DIPT to furnish chiral epoxy alcohol 12. However, treatment of the 
primary epoxy alcohol with Cp2Ti(III)Cl  gave only an allylic alcohol15 and no cyclization product was 
obtained. The primary hydroxyl group was then protected as a silyl ether and when this epoxide 13 was 
treated with Ti(III) reagent, it opened the epoxy ring at the C-3 position and the radical at C-3 was trapped 
intramolecularly by the acrylate moiety furnishing a mixture of the desired cyclized pyrrolidine 1416 (minor 
product, 20%) and a ring opened acyclic product 15 (major one, 70%) which was probably formed by in 
situ opening of the pyrrolidine 14. Both 14 and 15 were found to have isomeric products at C3-H in a 4:1 
ratio. Compound 15 could, however, be transformed back into the same pyrrolidine 14 in 70% yield on 
treatment with K2CO3 in methanol taking its overall yield to 69%. In this process, we also obtained another 
highly substituted tetrahydrofuran 16 (~ 4:1 diastereomeric mixture) in 20% yield from 15. To know the 
absolute stereochemistry of 14 (major isomer), we first assigned the stereochemistry of 17, which was 
obtained from 16 in two steps. During the course of radical mediated epoxide opening and subsequent base 
catalyzed cyclization, the absolute stereochemistry at C-4 of 14 was retained as R as it was in the chiral 
epoxide 12. The C-5 protons decoupled 1H NMR spectrum of 17 showed a doublet (J = 1.62 Hz) at 5.03 
ppm for C4-H signal indicating that the C3-H and C4-H had a trans relationship and that the absolute 
stereochemistry of C-3 in 17, and hence in 14, was S. The absolute stereochemistry of C-2 in 14 was 
established at a later stage.  
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Scheme 4. Reagents and conditions. (i) TBAF, THF,  0 °C, 1 h; (ii) NaIO4, THF:H2O (1:1) 0 °C, 15 min; 
(iii) NaBH4, MeOH, rt, 10 min; (iv) TBDPSCl, Et3N, CH2Cl2, DMAP (cat.), 0 °C to rt, 4 h, 70% over four 
steps; (v) DIBAL-H, CH2Cl2, -78 °C, 15 min; (vi) Ph3P=CHCO2Et, CH2Cl2, rt, 8 h, 80% in two steps; (vii) 
LiBH4, THF:H2O (20:1), 0 °C to rt, 24 h, quantitative; (viii) Na+ C10H8

– DME, -60 °C, 10 min, 85%; (ix) 
Ph3P, CBr4, Et3N, CH2Cl2, 24 h, 60%. 
 

Next, we wanted to transform the pyrrolidine moiety to an indolizidine frame work which is a very 
important building block for many natural products.1e-k For the synthesis of the indolizidine frame work, 
shown in Scheme 4, we started from 14 which was treated with TBAF to provide diol 18. Further oxidative 
cleavage of the resulting diol with NaIO4 gave an aldehyde which was treated with NaBH4 to form primary 
alcohol 19. The protection of the primary alcohol of 19 as a TBDPS ether gave 20 as a single isomer after 
removing the minor isomer via silica gel column chromatography. The treatment of 20 with one equivalent 
of DIBAL-H followed by Wittig olefination with stabilized ylide Ph3P=CHCO2Et gave α,β-unsaturated 
ester compound 2117 as a white crystalline compound. The stereochemistry of 21 was determined by the 3J 
values of the C2-H proton. It appeared as a ddd at 3.62 ppm with coupling constants of 7.8, 3.7 and 3.5 Hz. 
One of the CH2-CH=CH-CO2Et protons appeared as a ddd at 2.67 ppm with coupling constants 14.5, 7.4 
and 3.7 Hz. The other one appeared as a td at 2.58 ppm with coupling constants 14.5 and 7.8 Hz. So the 
coupling constant between C2-H and C3-H is 3.5 Hz which indicates that the relationship between C2-H 
and C3-H was trans. The absolute stereochemistry of 21 was, finally, unequivocally established from the 
single crystal X-ray analysis18 which clearly showed the assigned structure (Figure 2). Consequently, it also 
proved that the absolute stereochemistry at C-2 in 14 was R.   
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Figure 2. X-ray crystal structure of 21. Displacement ellipsoids are drawn at 30% probability level and H 
atoms are shown as small spheres of arbitrary radii. 
 

Next, the reduction of 21 with LiBH4 gave saturated primary alcohol 22, which on treatment with 
sodium naphthalenide19 provided the detosylated product 23. The transformation of primary alcohol to the 
corresponding alkyl bromide followed by cyclization20 gave the desired indolizidine framework 24. The 
spectral and analytical data of 2421 were in good agreement with those reported in the literature. 

In conclusion, we have demonstrated the Ti(III)-mediated radical cyclization of ‘β-aminoacrylate’ 
containing 2,3-epoxy alcohols and this method can be extended to the synthesis of many natural products 
containing piperidine, pyrrolidine and indolizidine/quinolizidine moieties. 
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