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A novel class of nonequilibrium phase transitions at zero temperature is found in chains of nonlinear
oscillators. For two paradigmatic systems, the Hamiltonian XY model and the discrete nonlinear
Schrödinger equation, we find that the application of boundary forces induces two synchronized phases,
separated by a nontrivial interfacial region where the kinetic temperature is finite. Dynamics in such a
supercritical state displays anomalous chaotic properties whereby some observables are nonextensive and
transport is superdiffusive. At finite temperatures, the transition is smoothed, but the temperature profile is
still nonmonotonic.
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The characterization of steady states is a widely inves-
tigated problem within nonequilibrium statistical mechan-
ics [1], since it provides the basis for understanding a large
variety of phenomena, including transport processes, pat-
tern formation, and the dynamics of living systems. In a
nutshell, the simplest setup amounts to determining the
currents that emerge as a result of the application of an
external force, either across the system, as for electric
currents, or at the boundaries, as in heat conduction [2–4].
Anyway, it is quite a nontrivial task to be accomplished,
even when the departure from equilibrium is minimal and
one can rely on the Green-Kubo formalism for establishing
a connection between the microscopic and the hydro-
dynamic descriptions. For instance, this is testified by
the discrepancy that still persists, after many years of
careful studies, between the most advanced theories of heat
conduction and some numerical simulations. The level of
difficulty typically increases when one considers coupled
transport [5–11] (i.e., when two or more currents coexist,
such as heat and electric ones in thermoelectric effects)
or, even worse, far-from equilibrium. This is why most of
the theoretical studies concentrate on stochastic models,
where fluctuations can be easily controlled, although they
lack a truly microscopic justification. This approach
proved, nevertheless, very effective, since it has allowed
the discovering of nonequilibrium transitions, such as those
exhibited by TASEP-like models, that have been used to
describe translation of proteins, or traffic flows [12].
In this Letter we describe a novel class of boundary-

induced transitions for two models that are typically used as
test beds for a wide range of physical phenomena: the so-
called Hamiltonian XY (or rotor) model [13–16] subject to
an applied mechanical torque and the discrete nonlinear
Schrödinger (DNLS) equation [17–19] under a gradient of

the chemical potential. This type of qualitative change of
the dynamics results from the joint effect of thermal and
mechanical forces. It can be interpreted as a desynchroni-
zation phenomenon in a spatially extended dynamical
system, whereby mutual entrainment of oscillators’ phases
is abruptly destroyed. As a result of such unlocking, a
regime characterized by phase coexistence sets in where,
although the chain is attached to two zero-temperature
thermostats, an interfacial region is spontaneously created,
where the oscillators have a finite kinetic temperature.
Such a state can neither be predicted within a linear-
response type of theory, nor traced back to some underlying
equilibrium transition. Even more remarkably, it constitutes
an example of a highly inhomogeneous, unusual chaotic
regime. Indeed, we will show that the dynamical invariants
have nonstandard dependence on the system size, as the
fractal dimension is extensive while the Kolmogorov-Sinai
(KS) entropy is not.
Studies of unlocking transitions have been previously

performed in purely dissipative chains of phase oscillators
[20], where, however, the absence of conservation laws
prevents the onset of hydrodynamic regimes such as those
herein described. The effect of external forces on the
Hamiltonian XY model have been previously addressed
only in Ref. [21] (see also Ref. [22]). Boundary-induced
transitions are also known to exist for other classes of
nonequilibrium models like stochastic lattice gases [23].
In the present case, however, the (zero-temperature)
nonequilibrium transition is of purely dynamical origin.
HamiltonianXYmodel.—Themodel consists of a chainof

N rotors whose phases qn evolve according to the equations

_pn ¼ sinðqnþ1 − qnÞ − sinðqn − qn−1Þ
þ ðδ1;n þ δN;nÞ½γðFn − pnÞ þ

ffiffiffiffiffiffiffiffi

2γT
p

ηn�; (1)
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where pn ¼ _qn, Fn denotes a torque applied to the chain
boundaries, γ is the coupling strength with two external
baths, and ηn is a Gaussian white noise with unit variance.
Even though the two heat baths are assumed to have the
same temperature T, one expects (coupled) momentum and
energy currentswill flow through the lattice. Themomentum
(angular velocity) flux is defined as jpn ¼ hsinðqnþ1 − qnÞi,
while the energy flux is jen ¼ hðpn þ pnþ1Þ sinðqnþ1 − qnÞi
[24] (here and in the following, angular brackets denote a
time average). Further useful observables are the average
angular frequency ωn ¼ hpni of the nth oscillator and the
kinetic temperatureTn ¼ hðpn − ωnÞ2i (notice that a correct
definition requires subtracting the average drift).
We first discuss the T ¼ 0 case. As long as

F≡ ðF1 − FNÞ=2 < Fc ¼ 1=γ, the ground state is a
twisted fully synchronized state, whereby each element
rotates with the same frequency ωn ¼ ðF1 þ FNÞ=2 and
constant phase gradient. Here, Tn ¼ 0 throughout the
whole lattice. For F > Fc the fully synchronized state
turns into a chaotic asynchronous dynamics. All numerical
simulations hereafter reported have been performed with
γ ¼ 1 and with F1 ¼ −FN ¼ F (that amounts to fixed
ωn ¼ 0 below threshold). As shown in Fig. 1(a), the
maximum value T̂ of Tn along the lattice suddenly jumps
to a finite value at F ¼ Fc, indicating the presence of a first-
order nonequilibrium transition. In fact, although the
energy flux je vanishes (both heat baths operate at zero
temperature), the momentum current jp is different from
zero and undergoes a substantial drop above the transition
point [see Fig. 1(b)].
A more detailed characterization of the supercritical

phase is reported in Figs. 2 and 3. The temperature profiles

above threshold (F ¼ 1.05) are shown in Fig. 2(a) for
different values of N, after shifting the origin in the middle
of the chain and rescaling the spatial position by

ffiffiffiffi

N
p

. The
nice overlap has two implications: (i) the maximal temper-
ature T̂ remains finite even in the thermodynamic limit
and can, accordingly, be considered as an appropriate
order parameter for this nonequilibrium transition; (ii) Tn
is significantly different from zero only in a small central
region, whose relative width scales as N−1=2. Since the
temperature is a macroscopic concept, it is legitimate to ask
whether one can truly interpret Tn as a genuine thermo-
dynamic temperature. A preliminary positive answer can be
given by noticing that Tn does not vary significantly over a
diverging number (≈

ffiffiffiffi

N
p

) of sites.
Additional information can be obtained by looking at the

profile of the average angular frequency ωn for F ¼ 1.05.
In Fig. 2(b) one can appreciate that the profile becomes
increasingly kink-shaped, so that, in the thermodynamic
limit, the chain is split into two symmetric regions, each
one characterized by a rotation frequency equal to the value
imposed at the boundary (F1 and FN , respectively). The
two regions are separated by a localized interfacial area,
where Tn is finite and ωn changes from F1 to FN .
The supercritical phase is, however, more complex than

revealed by this average characterization. In Fig. 2(c) we
plot a space-time representation of the “instantaneous”
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FIG. 1 (color online). Phase diagrams of the XY model.
(a) Maximal kinetic temperature T̂ vs F; T ¼ 0: open circles
(N ¼ 200) and diamonds (N ¼ 6400); T ¼ 0.1: squares
(N ¼ 200) and triangles (N ¼ 800); T ¼ 0.5: plusses
(N ¼ 200) and crosses (N ¼ 800). (b) Momentum flux jp vs
F for the same temperatures and symbols of panel (a); the black
dashed line corresponds to jp ¼ F for F < Fc ¼ 1.
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FIG. 2 (color online). Stationary behavior of the rotors chain
for T ¼ 0. Time averaged spatial profiles of temperature (a) and
frequency (b) for F ¼ 1.05 and N ¼ 200, 400, 800, 1600, and
3200 (the averaging time is t ¼ 107). The spatial direction is
rescaled in order to obtain a data collapse in the central region.
(c) Spatiotemporal profile of jΩnj for F ¼ 1.3 and N ¼ 6400 (see
text for details). (d) Local frequency difference ΔΩm. Both axes
are suitably rescaled to obtain a data collapse for different system
sizes: F ¼ 1.05 and N ¼ 400, 800, 1600, and 3200 (black lines);
F ¼ 1.2 and N ¼ 1600, 3200, and 6400 (dotted red lines); same
parameters of panel (c) (dashed blue line). The inset shows the
dependence on N the momentum flux jp for F ¼ 1.05 (black
triangles): the red dashed line has slope −1=5.
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frequency profile Ωn ¼ hpniτ, where the average is per-
formed over a time τ ¼ 104, that is much longer than the
microscopic time scale and significantly shorter than the
slow hydrodynamic scales. This representation reveals
that the transition region is quite thin and fluctuates.
Data have been reported for F ¼ 1.3 and N ¼ 6400 to
show that this behavior is robust also for large values of
the torque and for long chains. A more quantitative
analysis can be performed by studying the shape of the
instantaneous frequency profile. In practice, we study
ΔΩm ¼ hΩmþn̂ðtÞþ1 −Ωmþn̂ðtÞi, where m is the distance
from the instantaneous position n̂ðtÞ of the temperature
peak. The data in Fig. 2(d) correspond to different values of
F and is plotted after rescaling ΔΩm and m by N1=5 and
N−1=5, respectively. The good data collapse of the curves
corresponding to various system sizes reveals the presence
of a second scaling exponent.
The overall scenario can be described in the following

way. On the one hand, the N−1=2 scaling of the average
profiles is related to the decay rate of the strength of the
effective force which pins the interfacial region in the
middle of the chain. On the other hand, the N−1=5 scaling of
the width of the instantaneous active region is related to the
maintenance of the momentum flux, which, in fact, scales
with the same exponent, jp ∼ N−1=5 (see the inset in Fig. 2).
In order to further refine our understanding of the

supercritical regime, we have computed the spectra of
Lyapunov exponents λn (n ¼ 1;…; 2N). As a first check
we have verified that the sum of all λn is equal to the
dissipation −2γ, as it should. The spectra obtained for
different system sizes reveal substantial differences from
the standard (extensive) chaotic regime [25,26]. For
increasing N, most exponents decrease and approach zero,

indicating a weakly chaotic behaviour, consistently with the
zero-temperature imposed at the boundaries. The spectrum
does not, however, uniformly shrink to zero as λ1 and λ2N
remain finite. In the upper inset of Fig. 3, one can see that
the largest exponent λ1ðNÞ approaches a constant Λ ¼
0.262 up to corrections of order N−2=3. The existence of
finite exponents is consistent with the observation of a
finite temperature in the central region of the lattice
where some chaotic dynamics persists in the thermody-
namic limit.
A further inspection of Fig. 3 also reveals that the

Lyapunov spectra cross the zero axis at a finite value
nu=N ≈ 0.6, indicating that the dimension density of the
unstable manifold is finite; i.e., this observable is extensive.
The same is true also for the Kaplan-Yorke (KY) dimen-
sion, that increases with N and possibly converges to 2,
meaning that the nonequilibrium invariant measure extends
along (almost) all directions. Surprisingly, a qualitatively
different behavior is observed for KS entropy-density hKS,
estimated as the area under the positive part of the
Lyapunov spectrum. The results for different system sizes
are reported in the lower inset of Fig. 3. There, we see that
hKS vanishes, revealing a nonextensive nature of the chaotic
dynamics. By extrapolating from the largest simulations,
one can conjecture a decay as N−1=2. A yet more detailed
analysis could be performed by investigating the conver-
gence of the bulk of the Lyapunov spectrum, but this task
would require considering much larger systems and we
leave it to future studies.
The above features are rather unusual with respect to the

usual space-time chaotic system whereby dynamical invar-
iants are extensive with the volume [25,26]. They are
instead partially reminiscent of delayed dynamical systems,
where, for large delays, the KY dimension is extensive (i.e.,
proportional to the delay), while the KS entropy remains
finite [27,28]. Here, however, this is a true instance of
space-time chaos and the nonextensive character of the KS
entropy is not a formal consequence of the interpretation of
the delay as a spatial extension.
Additional studies carried out for larger F values confirm

the general validity of this mixed extensive and nonexten-
sive behavior. One has only to be careful in selecting
sufficiently long chains, so as to avoid the existence of a
pointlike interfacial region: this phenomenon, which is
suggestive of a second transition (see the open circles in
Fig. 1), is instead a finite size effect that disappears for
sufficiently large values of N (see the diamonds in Fig. 1).
Finite temperature.—We now explore the behavior for

nonzero boundary temperatures (i.e., in the presence of an
external source of noise). The results reported in Fig. 1
indicate that for T ¼ 0.5 (crosses and plusses) both T̂ and
the momentum flux depend smoothly on F. Additionally,
the momentum conductivity is normal, i.e., jp ∼ 1=N. For
smaller temperatures, a residue of the transition is still
present as a sudden increase of T̂ at finite F [see Fig. 1(a)
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FIG. 3 (color online). Lyapunov spectra of the rotors chain for
F ¼ 1.05 and increasing sizes N. Upper inset: dependence of the
maximal Lyapunov exponent λ1 on N: the dashed line corre-
sponds to the fit λ1 ¼ Λþ aN−0.66�0.04 with Λ ¼ 0.262. Lower
inset: Kolmogorov-Sinai entropy vs N; the dashed line is the
power-law N−1=2. Total integration time t ¼ 2 × 106, time step
0.01 time units, Gram-Schmidt orthogonalization is applied every
20 time steps.
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for T ¼ 0.1]. This is, nevertheless, a finite-size effect, as
the pseudodiscontinuity disappears upon increasing N
[compare squares and triangles in Fig. 1(a)]. This suggests
that the fluctuations imposed on the boundaries induce
phase slips, which are thereby responsible for the suppres-
sion of the synchronized state in the subcritical region.
It is, however, interesting to notice the persistence of a
bump in the temperature profile, although its width is now
proportional to N.
DNLS model.—The above discussed nonequilibrium

transition is not a peculiarity of the rotor model. Here
below, we show that a similar scenario can be observed for
the DNLS equation, i_zn ¼ −2jznj2zn − znþ1 − zn−1, where
zn ¼ ðpn þ iqnÞ=

ffiffiffi

2
p

is a complex variable. The DNLS
Hamiltonian has two conserved quantities, the mass or
norm a and the energy density h [29,30], so that it is a
natural candidate for describing coupled transport [10,31].
We have numerically studied a DNLS chain interacting

with two Langevin thermostats at T ¼ 0 and different
chemical potentials μ1 and μN imposed at the boundaries
(see Ref. [31] for details). In this case, the control
parameter, i.e., the driving force, is δμ ¼ jμN − μ1j=2
[31]. When δμ is larger than a critical value (e.g., μ1¼2
and μN ¼ 5), a bumpy temperature profile spontaneously
emerges. In Fig. 4 one can see that the width of the peak
scales as N1=2, (as for the XY chain), while the left-right
symmetry is lost and the mass (norm) flux jan ¼
ihðznz�n−1 − z�nzn−1Þi now scales as N−2=5 instead of
N−1=5 as in the XY case (see the inset in Fig. 4).
Discussion and conclusions.—In this Letter we have

shown that in the presence of coupled transport, the
application of deterministic boundary forces may induce
a nonequilibrium transition at zero temperature.

The different scaling behavior observed in two models
(XY and DNLS), suggests the existence of multiple
universality classes. We conjecture that, as in the context
of (anomalous) heat conduction in one-dimensional sys-
tems, the discriminating factor is given by the presence of
symmetries [24,32]. In the XY case, the average value of
the torque is immaterial, since it can be removed by
selecting a suitably rotating frame. This invariance implies
that positive and negative frequency shifts are equivalent
to one another and, as a result, symmetric profiles are
expected and, indeed, observed. This symmetry is, how-
ever, not present in the DNLS dynamics, in spite of the fact
that the DNLS equation can be effectively approximated by
an XY model [31] in the limit of small gradients and large
mass densities.
If finite-temperature heat baths are considered, the first-

order transition is smoothed out and the anomalous super-
conductive behavior is replaced by a normal transport.
A characterization of such a phase remains, however,
nontrivial because of the underlying kink in the frequency
or chemical potential profile, which induces a bump in the
temperature and makes the implementation of a Green-
Kubo formalism rather problematic. It will be instructive to
explore the same problem in higher dimensions: one cannot
exclude that the zero-temperature transition reported herein
survives in the presence of finite fluctuations.
It is finally important to stress the anomalous properties

of the supercritical phase in the context of nonlinear
dynamics and synchronization phenomena. This regime
is indeed characterized by a mixture of extensive (Kaplan-
Yorke dimension) and nonextensive (Kolmogorov-Sinai
entropy) properties, which make it atypical and different
from (i) the standard extensive chaos typically observed
in both dissipative and Hamiltonian models, and (ii) the
localized chaotic states generated when all oscillators are
damped and driven [33,34]. In other words, this regime
provides an example of how complex dynamics can be in
relatively simple models, characterized by nearest neighbor
interactions.
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