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ABSTRACT 
 

Efficient wind energy harvesting becomes more and more important as a consequence of the increasing 
interest in renewable energy in the European Union [1]. This leads to growing sizes of wind turbines 
(WTs), and with it, larger WT blades (WTBs). The structural designs of these WTBs are created to 
optimize the potential energy output, where low mass is a key requirement. However, high flexibilities 
and lower buckling capacities are further results of these developments [2], thus certain damage scenarios 
become significant. Intelligently designed structural health monitoring (SHM) systems can help to reduce 
the associated operations and maintenance costs. Even though, several techniques are already developed 
for structural damage detection (SDD) in WTBs, the majority of these methods is not suitable for in-
service measurements. This paper presents a SDD and structural damage localization (SDL) method 
based on the partial autocorrelation function (PACF) of vibration responses. The approach is applied to a 
numerical model of a large WTB, where the acceleration responses are obtained from transient dynamic 
simulations with a simplified aerodynamic loading approach. The novel damage sensitive feature (DSF) 
is developed as the Mahalanobis distance between a baseline and current vector of PACF coefficients. 
First, numerical modal analysis of the finite element (FE) WTB model is performed in order to estimate 
the effect of a disbonding damage scenario on the vibration characteristics. Second, the behaviour of the 
PACF for time series of the healthy system is discussed. Third, the SDD results on the basis of statistical 
hypothesis testing are assessed for two selected sensor locations and increasing damage extents. Finally, 
the performance of the proposed DSF with respect to SDL is illustrated for multiple locations on the 
WTB’s surface. This study demonstrated the efficiency of a DSF based on the PACF for SDD and SDL, 
which is promising for future developments of vibration-based SHM techniques in WTBs. 

 
 
 
 
 
 
 
 
 
 

NOMENCLATURE 
 
ACF Autocorrelation Function 
AR Autoregressive 
DOF Degree of Freedom 
DSF Damage Sensitive Feature 
FE Finite Element 
NREL National Renewable Energy Laboratory 
PACF Partial Autocorrelation Function 
SDD Structural Damage Detection 
SDL Structural Damage Localization 
SHM Structural Health Monitoring 
SNL Sandia National Laboratory 
WT Wind Turbine 
WTB Wind Turbine Blade 
 

1. INTRODUCTION 
 
The interest of the European Union in renewable 
energy [1] leads to developments of offshore wind 
farms with large-scale WTs. However, the 
growing sizes and remote erections of WTs lead to 
increasing operation and maintenance 
expenditures, which can make up to 20% of the 
total energy production costs [3]. Additionally, 
inspections and unforeseen operational problems 
cause downtimes where no energy can be 
produced. Thus, the expected revenue and 
reliability of offshore wind energy production may 
be reduced. The use of intelligently designed SHM 
systems can help to counteract this. These systems 
can reduce inspection efforts, enable to schedule 
maintenance operations depending on the 
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structural state and can prevent catastrophic 
failures. 
 Although, SDD in WTBs deserves high 
attention due to significant failure rates compared 
to other structural components [4], the majority of 
existing methods are not suitable for in-situ 
investigations, e.g. ultrasonic, thermal imaging 
and X-radioscopy methods. Only acoustic 
emission and strain monitoring methods are 
currently available for on-site SHM systems in 
WTBs [5]. However, these methods require dense 
arrays of sensors, because only local damages can 
be detected. Thus, high instrumentation and data 
analysis costs are consequences. 
 Vibration-based techniques are generally 
less demanding with respect to instrumentation 
efforts because they utilize changes in global 
vibration responses. Methods that use modal 
parameters, such as natural frequencies, modal 
damping ratios and mode shapes, for SDD are 
mature [6]. However, they require the estimation 
of these parameters, and for large structures, this 
can only be done using output-only data. The 
operational modal analysis methods developed for 
that purpose are computationally demanding and 
difficult to automatize [7]. 
 Time series methods, as data-driven 
approaches, are favourable because they enable to 
avoid this estimation step. These methods can be 
divided into two groups. The first group utilizes 
differences between coefficients of estimated 
parametric models of response signals. The 
theoretical relationship between structural stiffness 
and autoregressive (AR) coefficients was 
demonstrated by Nair et al. [8], and multivariate 
AR models were used for condition monitoring of 
a 5 MW offshore WT [9]. 
 However, the use of parametric models 
requires a priori selection, identification and 
validation of such models. This can be avoided by 
non-parametric time series representations, which 
are the second group of time series SDD methods. 
Autocorrelation functions (ACFs) were used for 
SDD in a WTB by Hoell and Omenzetter [10]. 
Even though, damage of moderate size was 
detected, the detectability of early damage was 
noticeably affected when sensor noise was added. 
 The approach proposed in this paper uses 
PACFs obtained from acceleration responses as 
DSFs. The statistical hypothesis testing framework 
by Fassois and Sakellariou [11] is employed for 

making decisions about the current structural state. 
Furthermore, the Mahalanobis distances between 
DSF vectors from the healthy and the damaged 
system are directly used for estimation of the 
approximate damage location. The next section 
describes the proposed method in detail. Then, 
numerical simulations of a large WTB under 
simplified aerodynamic loading with a trailing-
edge disbonding damage scenario are presented. 
The following section shows the results of the 
SDL. Finally, a discussion of the results and 
prospects for future work are given. 
 
2. THEORY 
 
The proposed SDD approach assumes that the 
vibration response signals are stationary. In order 
to account for loading variability, e.g. due to 
varying wind speeds in the present case, a 
normalization of the initial signals can be 
performed. For a time series, this can be done by 
removing the estimated mean and dividing by the 
estimated standard deviation. 

The PACF, [ ]zzα τ , at lag τ describes the 
correlation between the shifted time series z[t] and 
z[t-τ] without the effects of intermediate variables 
z[t-1], z[t-2], …, z[t-τ+1]. For normally distributed 
time series, the PACF can be given by the 
correlation in the bivariate conditional probability 
distribution as [12]: 
 [ ] ( [ ], [ ] | [ 1],..., [ 1])zz Corr z t z t z t z tα τ τ τ= − − − +  (1) 
However, the sample PACF, ˆ [ ]zzα τ , can be 
efficiently obtained by the following recursion 
[12]: 
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where ˆ [ ]zzr τ  is the sample ACF of the time series 
z[t] at lag τ, and ,ˆ j ia  denotes the estimated j-th AR 
coefficient of a AR model of order i. This shows 
the close relationship between the PACF, the ACF 
and AR models. Furthermore, the sample PACF 
can be directly defined in terms of AR coefficients 
as: 
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In the present study, the SDD phase 
employs a statistical hypothesis testing approach. 



The estimated DSF vectors, ν̂ , are generally 
constructed for selected PACF coefficients as 
 [ ]ˆ ˆ ˆ ˆ[2] [3] [ ] T

zz zz zzα α α τ=ν   (4) 
where superscript T denotes transpose. The PACF 
coefficient of lag 1 is omitted because it is always 
equal to one. It is assumed that the single vector 
entries are Gaussian distributed. Thus, the 
difference ˆ∆ν  between the estimated DSF vectors 
of the healthy structure and the current structure, 
ˆ hν  and ˆ cν , follows a multivariate Gaussian 
distribution, ( , )∆ ∆ν νμ Σ : 
 ˆ ˆ ˆ ( , )∆ ∆∆ = − c h ν νν ν ν μ Σ  (5) 
with the true mean, ∆vμ , given as the difference 
between the true DSF vectors of the healthy and 
the current structure as 
 ∆ = −c hνμ ν ν  (6) 
and the true variance-covariance matrix, ∆νΣ , as 
 ∆ = +h cνΣ Σ Σ  (7) 
where hΣ  and cΣ  are the true variance-covariance 
matrices of the healthy and current state, 
respectively. 
 However, if the current state is also healthy 
the difference follows a zero-mean multivariate 
Gaussian distribution with the variance-covariance 
matrix 2∆ = hνΣ Σ . In this case, the squared 
Mahalanobis distance, 2D , defined as 
 2 1 2ˆ ˆT

dD −
∆= ∆ ∆νν Σ ν   (8) 

follows, as a squared sum of independent 
Gaussian variables, a central 2  distribution with 
d degrees-of-freedoms (DOFs), 2

d . The number 
of DOFs is equal to the number of the selected 
PACF coefficients included in the DSF vector. 
The true variance-covariance matrix is generally 
unavailable, thus the estimated version, ˆ

∆νΣ , is 
used instead. 
 The hypothesis testing problem can be 
defined as 

 0

1

: ( )
      

: ( )
∆ = − =
∆ = − ≠

c h

c h

H healthy
H damaged

ν ν ν 0
ν ν ν 0

 (9) 

where the null hypothesis, 0H , describes the 
healthy state and the alternative hypothesis, 1H , 
the damaged state. This enables to define a 
statistical test on the squared Mahalanobis 
distance by means of the cumulative 2  
distribution function, 2

d
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, as 

 2
2

0

0

(1 )  is accepted
  

 is rejectedElse
d

D F H
H

α< − ⇒
⇒

  (10) 

where α  is the selected level of significance. 
 However, SDD is the basic level of 
diagnostics which only enables to detect if damage 
occurred or not. A SHM technique should ideally 
provide additional information in order to 
maximise its benefits with respect to safety and 
economics. The estimation of the damage location 
is the second level of diagnostics. It can be 
hypothesised that the signals from sensors closest 
to the damage are more affected by the damage 
than others and the PACF-based DSF can be used 
for SDL. Statistical hypothesis testing, as 
proposed for SDD, may not be useful because 
signals from sensor further apart will also 
experience noticeable changes due to damage 
especially for more significant alterations. 
Therefore, the direct use of the squared 
Mahalanobis distance, as defined by Eq. 13, is 
proposed for SDL. Comparison of distances 
obtained from different sensor locations enables to 
identify the location of the most significant change, 
and with it, the damage location. 
 
3. SIMULATIONS 
 
The Sandia National Laboratory (SNL), USA 
designed a 61.5 m reference WTB [13] according 
to the specifications of the 5 MW reference WT 
[14] of the National Renewable Energy 
Laboratory (NREL), USA. With the help of the 
SNL software package NuMAD [15], an ANSYS 
Mechanical [16] FE model of this large WTB was 
created for the present study. The FE model with 
1,650 SHELL281 elements was judged as 
adequate with respect to the approximation of 
vibration responses. A parked WT situation is 
assumed for the simulation of the single WTB and 
tower motions are also ignored. 
 Due to the production process of WTBs, 
where upper and lower shells are bonded together, 
disbonding in the trailing-edge bondline is critical. 
This is especially the case for large WTBs [2], 
because they are disposed to trailing-edge 
buckling [17]. Furthermore, failures in trailing-
edge bonding were also investigated by 
inspections of 100 kW and 300 kW WTs in Egypt 
[18], where the maximum chord location was 
found to be damage prone. Therefore, this location 
is chosen as the damage initiation point with 
extension towards the WTB’s tip, as shown in 
Figure 1. A separation of nodes between FEs at 



the selected locations is used to introduce a 
damage scenario into the FE model. The number 
of separated nodes corresponds to the damage 
extent, and with it, to the length of the disbond. 
 The proposed SDD method is based on 
time series analysis, thus transient dynamic 
simulations are performed to generate response 
acceleration time series. The use of realistically 
simulated excitations is paramount for 
investigating the performance and applicability of 
vibration-based SHM techniques. Therefore, a 
three-step simplified aerodynamic loading 
approach was developed. 
 First, full-field wind data are generated 
with the NREL software TurbSim [19] according 
to IEC 61400-1 3rd Ed. [20]. The mean wind speed 
of 10 m/s at the hub height is selected as the 
average wind speed of an IEC Type I WT. For the 
wind category B and the normal turbulence model, 
the resulting turbulence intensity of the inflow 
wind component is 18.34%. 
 The second step is the calculation of 
aerodynamic loads with the NREL software 
packages AeroDyn [21] and FAST [22]. The blade 
element momentum theory is selected for 
modelling the wake effect. Seventeen strip 
elements with constant aerodynamic and structural 
properties are used to approximate the WTB for 
these simulations. The result are time series of lift 
and drag forces, FN and FT, respectively, and 
pitching moments, MP, at the element centres 
(xr,yr,zr) as illustrated in Figure 2. 

The application of these element loads in a 
FE model requires a mapping to nodal forces, fx,i 
and fy,i, of the WTB’s surface nodes, which is done 

in the third step. This mapping is based on Berg et 
al. [23]. A system of linear equations can be 
established for the equilibrium equations of forces 
and moments for each WTB element. Non-zero 
pitching moments in y-direction and linear spatial 
distribution are chosen because the mapping is 
generally not unique. Solving the linear system of 
equations numerically enables to calculate load 
coefficients for the nodal forces for each surface 
node in advance. Then, only simple evaluations 
are required for every load step during the 
transient dynamic simulations, where a constant 
time step of 0.005 s is chosen. 
 
4. RESULTS 
 
Initially, numerical modal analysis of the healthy 
WTB is performed in order to investigate the 
dynamic behaviour of the structure. The high 
flexibility of the WTB is indicated by the low 
natural frequencies as given in Table 1, where the 
mode shapes are also shown. 
 Then, the effect of trailing-edge 
disbonding on modal properties is assessed for the 
damaged WTB FE models with respect to the 
healthy state system. The extent of the disbonding 
is varied in eleven steps with length of approx. 0.4 
m, where the maximum extent becomes 4.5 m or 
7.4% of the length of the WTB. The relative 
difference, ∆ if , between the natural frequencies of 

(a)  

(b)  
Figure 1: Damage and sensor location in WTB: (a) cross 

section, (b) top view 

(a)  

(b)  
Figure 2: Aerodynamic loads on blade cross section: (a) 

element forces, and (b) nodal forces 



the healthy, ,h if , and the damaged model, ,d if , 
gives the effect of damage on the i -th frequency 
as 
 , , ,( ) 100%∆ = − ×i h i d i h if f f f  (11) 
Figure 3a shows these effects for the first ten 
natural frequencies, where contributions of the 
first four frequencies are invisible due to their 
minor changes. Further, it can be seen that the 
cumulative sum of relative frequency differences 
and the disbond length have a monotonic 
nonlinear relationship. For the selected disbonding 
damage scenario, modes with frequencies of the 
healthy system higher than 8 Hz have the highest 
contribution to the cumulative sum of relative 
differences. 

Additionally, the wind speed amplitude 
spectrum of the inflow wind component at the hub 
position is given as reference for the aerodynamic 
excitation in Figure 3b. The realization of the 
inflow wind component is simulated with 
TurbSim for 630 s based on the Kaimal spectrum 
and a mean wind speed of 10 m/s. The Kaimal 
spectrum adopted has a low frequency excitation 
characteristic, which is important with respect to 
the changes in the natural frequencies due to 
damage. It can be noticed that the significant 

changes of the higher modes will have only a 
minor contribution to the damage detectability as 
these modes will be weakly excited and would not 
be clearly identified from output-only data. Only 
modes with frequencies less than 8 Hz can be 
assumed to be sufficiently excited to affect the 
damage detectability. This means for a disbond of 
7.4% of the WTB length the cumulative relative 
frequency difference is less than 2%, which 
illustrates the challenge of vibration-based SDD 
for this structure. 

Table 1: Numerical modal analysis results of 
the healthy WTB for the first three modes 

Mode 
Description 

Natural 
Frequency Mode Shape Views 

1st mode in 
flap-wise 
bending 

0.87 Hz 

Edge-wise 

 
Flap-wise 

 

1st mode in 
edge-wise 
bending 

1.06 Hz 

Edge-wise 

 
Flap-wise 

 

2nd mode in 
flap-wise 
bending 

2.67 Hz 

Edge-wise 

 
Flap-wise 

 

(a)  

(b)  
Figure 3: (a) Cumulative relative differences of natural 

frequencies with increasing trailing-edge disbanding, and (b) 
Wind speed amplitude spectrum for simulated inflow wind 

component 



 For the following discussion of time series 
modelling with PACFs and SDL, transient 
dynamic simulations are performed for the healthy 
and damaged WTB FE models. Flap-wise and 
edge-wise accelerations at selected nodes are 
obtained for a durations of 630 s. Flap-wise 
signals for the two nodes indicated as ‘Sensors’ in 
Figure 1 are primarily used in the following. These 
sensors are located approx. 1.5 m from the 
selected disbonding damage scenario. Each time 
series is divided into 100 segments of 6,000 
samples with a shift of 1,200 samples. The time 
series segments are directly used without 
additional filtering or subsampling. Nevertheless, 
each unprocessed segment is normalised by its 
estimated mean and standard deviation in order to 
account for variations of the aerodynamic 
excitation. 
 The estimates of the PACF for acceleration 
responses from the sensors at the low-pressure and 
high-pressure caps are shown in Figure 4. The 
results are given in terms of the mean and standard 
deviation obtained from the time series segments 

of the healthy system. It can be seen that the 
coefficient mean values decrease with increasing 
number of lags while the standard deviations 
increase. For the following analysis, the DSF 
vector is therefore defined by the PACF 
coefficients from two to 40 in order to limit the 
effect of variations from the single coefficients. 
 This definition of the DSF vector enables 
to perform SDD for the WTB with increasing 
trailing-edge disbonding. The statistical threshold 
is defined by the value of 2

39
(95%)F


. The results 

are given in Table 2 in terms of the relative 
rejection rates of the null hypothesis, where a 
value of 0% indicates that no damage is detected 
from the time series segments. Correspondingly, 
damage is detected in each time series segment if 
the relative rejection rate is 100%. With this 
definition, it can be seen that both sensors enable 
to detect damages as small as 1.4% disbonding of 
the blade length. However, the location at the low-
pressure cap is a bit more sensitive to damage 
because the relative rejection rate for a disbond of 
0.7% blade length is higher than the result 
obtained from the high-pressure cap sensor. 
 The previous results were obtained from 
non-noisy signals. However, real records of 
acceleration signals are normally polluted with 
noise coming from the acceleration sensors and 
the data acquisition electronics. Therefore, a 
further analysis was performed, where noise is 
artificially added to the time series segments. The 
artificial noise is introduced to the simulated 
signals as Gaussian random sequences with a 

(a)  

(b)  
Figure 4: Mean and standard deviation of PACF from flap-
wise acceleration time series segments of the healthy WTB: 

(a) low-pressure cap sensor, and (b) high-pressure cap sensor 

Table 2: Relative rejection rates of H0 without 
noise 

 

Damage extent 
in [%] of blade 

length 

Low-pressure 
cap sensor 

High-pressure 
cap sensor 

0.0 H0 0.0 0.0 
0.7 H1 30.0 2.0 
1.4 H1 100.0 100.0 
2.2 H1 100.0 100.0 
2.9 H1 100.0 100.0 
3.6 H1 100.0 100.0 
4.3 H1 100.0 100.0 
5.0 H1 100.0 100.0 
5.6 H1 100.0 100.0 
6.2 H1 100.0 100.0 
6.8 H1 100.0 100.0 
7.4 H1 100.0 100.0 



standard deviation equal to the standard deviation 
of the initial signal multiplied by a noise-to-signal 
ratio of 2%. Table 3 gives the results for the 

selected sensors. It can be seen that the artificial 
noise adversely affects the detectability of early 
damages, where a disbond with 2.2% blade length 
is reliably detected by both sensors compared to 
1.4% in the unpolluted case. Furthermore, the low-
pressure cap sensor shows again a slightly better 
performance than the high-pressure cap sensor. 
 SDD is only the first level of structural 
health diagnostics and enables to identify the 
presence of damages. However, for practical 
applications, the identification of the damage 
location is paramount. Thus, the performance of 
the proposed DSF is assessed with respect to SDL. 
It is proposed to use directly the Mahalanobis 
distances for SDL. Nevertheless, for comparison 
of results from simulations with different extents 
of disbond, two additional processing steps were 
performed. First, the mean values of the distances 
estimated from time series segments of each 
sensor location for simulations of the same 
damage extent were calculated. 

 

(a) (b)  

(c) (d)  

(e) (f)  

 
Figure 5: Relative Mahalanobis distances for PACF-based DSF of flap-wise acceleration responses: (a, c, e) low-pressure cap 

sensors, and (b, d, f) high-pressure cap sensors 

Table 3: Relative rejection rates of H0 with 2% 
noise 

 

Damage extent 
in [%] of blade 

length 

Low-pressure 
cap sensor 

High-pressure 
cap sensor 

0.0 H0 0.0 0.0 
0.7 H1 0.0 4.0 
1.4 H1 49.0 39.0 
2.2 H1 100.0 96.0 
2.9 H1 100.0 100.0 
3.6 H1 100.0 100.0 
4.3 H1 100.0 100.0 
5.0 H1 100.0 100.0 
5.6 H1 100.0 100.0 
6.2 H1 100.0 100.0 
6.8 H1 100.0 100.0 
7.4 H1 100.0 100.0 



Second, the relative Mahalanobis distances were 
obtained by scaling the estimated mean values to 
the range between 0% and 100%. This was done 
for selected sensors from the high-pressure and 
low-pressure caps separately. The results are given 
in Figure 5, where the positions of the points 
represent the sensor locations, and the colours 
illustrate the relative distances. 
 It can be seen that the highest relative 
distances are present at sensor locations closest to 
the damage, which supports the initial assumption 
that signals from these sensors are more affected 
by damage. This is even for the case for the 
scenario with a disbonding extent of only 0.7% of 
the blade length, where statistical hypothesis 
testing did not enable to detect damage. 
Furthermore, comparing the results for a disbond 
with 1.4% and 7.4% blade length illustrates that 
the proposed method allows tracking the growth of 
the disbond. This behaviour is more significant for 
the high-pressure cap sensors. Nevertheless, the 
results from both caps are comparable. 
 
5. CONCLUSIONS 
 
The present study demonstrated the application of 
a PACF-based DSF and statistical hypothesis 
testing for SDD in a large WTB. Decisions about 
the structural state were obtained via statistical 
hypothesis testing using the Mahalanobis distances 
between vectors of PACF coefficients estimated 
from acceleration response signals. Furthermore, 
Mahalanobis distances for signals from sensors of 
different locations were used for estimation of the 
approximate damage locations. A FE model of 
large WTB was used to perform transient dynamic 
simulations. In order to apply a realistic excitation 
without excessive computational efforts, a 
simplified aerodynamic loading approach was 
utilized. The initial healthy WTB was modified 
with a realistic trailing-edge disbonding damage 
scenario with several extents. 
 The effect of trailing-edge disbonding was 
initially investigated by modal analysis. It was 
shown that the most significant changes are related 
to modes of higher frequencies. These modes are 
less excited by the low frequencies characteristics 
of aerodynamic loading and their natural 
frequencies would not be suitable as DSFs. 

SDD was performed, where a statistical 
model represented by a certain mean vector and 

variance-covariance matrix was estimated from 
the PACF-based DSF vector. Then, statistical 
hypothesis testing using the Mahalanobis distances 
between the healthy and damages features was 
used for making decisions about the current 
structural state. The detectability of damage for 
increasing disbond extent was assessed by relative 
rejection rates of the null hypothesis. The 
proposed DSF enabled to detect disbonds of 
approx. 1.4% and 2.2% for signals with and 
without artificial noise, respectively. 
 A further aspect of the present paper is 
SDL based on the direct use of Mahalanobis 
distances estimated from different sensor locations 
along the WTB. This follows the assumption that 
signals of sensors close to the damage are more 
affected by the damage than others. Due to the 
significant change in that distance for sensor close 
to the damage compared to others, it was shown 
that the approximate damage location could be 
estimated even in the case where no statistical 
evidence of damage was determined. It was also 
found that for increasing disbond lengths more 
sensors were significantly affected giving 
additional information about damage charter. 

This paper illustrated the performance of a 
novel PACF-based DSF with respect to SDD and 
SDL in large WTB. It was demonstrated that this 
DSF in a statistical hypothesis testing framework 
enabled to detect a disbonding damage of small 
size. Furthermore, the performance for SDL was 
shown, where it was possible to estimate the 
approximate damage location. These findings are 
promising for future developments of SDD/SDL 
methods as part of SHM systems in WTBs. 
However, further research is required to increase 
the detectability of early damages and accuracy of 
damage location estimates using additional 
numerical simulations and experimental studies. 
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