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Pattern matching and associative artificial neural

networks for water distribution system time series

data analysis

S. R. Mounce, R. B. Mounce, T. Jackson, J. Austin and J. B. Boxall
ABSTRACT
Water distribution systems, and other infrastructures, are increasingly being pervaded by sensing

technologies, collecting a growing volume of data aimed at supporting operational and investment

decisions. These sensors monitor system characteristics, i.e. flows, pressures and water quality,

such as in pipes. This paper presents the application of pattern matching techniques and binary

associative neural networks for novelty detection in such data. A protocol for applying pattern

matching to automatically recognise specific waveforms in time series based on their shapes is

described together with a system called Advanced Uncertain Reasoning Architecture (AURA) Alert for

autonomous determination of novelty. AURA is a class of binary neural network that has a number of

advantages over standard artificial neural network techniques for condition monitoring including a

sound theoretical basis to determine the bounds of the system operation. Results from application to

several case studies are provided including both hydraulic and water quality data. In the case of

pattern matching, the results demonstrated some transferability of burst patterns across District

Metered Areas; however limitations in performance and difficulties with assembling pattern libraries

were found. Results for the AURA system demonstrate the potential for robust event detection

across multiple parameters providing valuable information for diagnosis; one example also

demonstrates the potential for detection of precursor information, vital for proactive management.
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INTRODUCTION
Population growth, urbanisation, industrialisation and cli-

mate change are placing increasing pressure on water

resources. The water-energy-food nexus is a term being

used to describe the complex linkages and dependencies

among water, energy and food security (Olsson ).

Global demand for water is forecast to outstrip supply by

40% by 2030 due to factors such as population growth and

climate change (Parliamentary Office of Science and Tech-

nology ). This building pressure on water availability is

driving a greater consideration of optimal management of

clean water resources. Continuous online monitors and sen-

sors are increasingly being used to measure a wide range of
potable water hydraulic and quality variables within water

distribution systems (WDSs) (Wu et al. ). Obtaining

system information from these data can facilitate proactive

system operation and maintenance. For water quality in

particular, online data are generally not as reliable as labora-

tory-based discrete sample analysis with many associated

problems that include absolute accuracy, maintenance,

calibration, connectivity issues and local disturbances

(Aisopou et al. ). This situation is compounded by the

ever increasing volumes of data being collected at a higher

than ever seen before frequency of sampling and with

coverage of hundreds or even thousands of sites.
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Data from online monitors potentially provide a

wealth of information about what is happening within

WDSs and intelligent algorithms can be applied to turn

these data into information for water utility companies.

Many companies are not making effective use of what

is being collected in this regard and are missing an

opportunity to better understand and assess current

system status. Any data interpretation system employed

must be able to deal with ‘dirty data’ such as inherent,

though improving data variability and quality limit-

ations. Hence systems need to include strategies for

handling missing values and dealing with noise, e.g.

Branisavljević et al. (). Analysis systems need to pro-

vide useful classifications of system status, events and

conditions and not provide an onerous amount of

alerts or alarms to system operators who will otherwise

ignore warnings hence compromising the value of the

information.

This paper presents the application of pattern matching

techniques and binary associative artificial neural networks

(ANNs) for novelty detection in time series data collected

from WDSs. Algorithms are described and a protocol devel-

oped for applying the approach to case study data, both

hydraulic and water quality, from water supply systems in

the UK.
Table 1 | Leak event detection techniques applied to DMA data

Technique Reference

Time Delay Neural Network Mounce & Machell
()

Belief Rule Based System Xu et al. ()

Self Organising Map Neural Network Akselaa et al.
()

Mixture Density Neural Network and Fuzzy
Inference System

Mounce et al. ()

Kalman Filtering Ye & Fenner ()

Support Vector Regression with Novelty
Detection

Mounce et al. ()

Multilayer Perceptron, Bayesian System and
Statistical Process Control

Romano et al.
()

Principal Component Analysis Palau et al. ()
APPROACHES FOR EVENT DETECTION IN WDS
MEASURED TIME SERIES DATA

A water distribution network is a complex, distributed,

non-linear dynamic system, and thus it may not be effec-

tively or satisfactorily described using purely linear

methods or models. It is not possible to build an accurate

non-linear model completely describing the system from

data due to the uncertainties present. However, data-

driven modelling is highly applicable. It has the advantage

of not requiring a detailed understanding of the interacting

physical, chemical and/or biological processes that affect a

system before model inputs can be mapped to outputs.

Data-driven models can complement and sometimes

replace deterministic models (Solomatine ). Recent

developments in the field of computational intelligence

(sometimes termed soft computing or machine learning)
are helping to solve various problems in the water

resources domain.

A number of approaches from the fields of artificial

intelligence and statistics have been applied for detecting

abnormality in WDSs from time series data. Alert systems

that convert flow and pressure sensor data into usable

information in the form of timely alerts (event detection

systems) have been developed with a focus on burst detec-

tion to help with the issue of leakage reduction. Some of

the most recent approaches are summarised in Table 1.

Most of these systems are for detecting leaks/bursts at Dis-

trict Metered Area (DMA) level. DMAs are designed to be

hydraulically isolated areas that are generally permanent in

the system.

Interest is growing in applying similar event detection

systems to online water quality measurements, including

from WDSs. The detection of anomalous events is of inter-

est for both daily operational management, with a focus

on maintaining high water quality, as well as for identifi-

cation of intentional or ‘natural’ contamination events.

Jarrett et al. () explore data processing and anomaly

detection techniques for data from WDSs including con-

trol charting, time series analysis, Kriging techniques

and Kalman filter techniques. They concluded that no

single methodology could be judged to always be the

best choice. Open source software known as CANARY

(McKenna et al. ) has been developed by the United
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States Environmental Protection Agency for the analysis

of water quality time series data. CANARY uses statistical

and mathematical algorithms to identify the onset of

periods of anomalous water quality data, while at the

same time, limiting the number of false alarms that

occur. A two-step process is adopted: state estimation

for future water quality value and a second stage of

residual classification for determination of expected or

anomalous value (an outlier).

The aforementioned event detection systems generally

have the following features in common:

(i) They learn from training data in some way to make a

prediction about expected future values.

(ii) They have some type of methodology or rules for decid-

ing when sufficient deviation from normality constitutes

an abnormal event.

Common difficulties with their application include an

often large number of parameters to be tuned, poor quality

data and how to define the appropriate training data

(‘normal’ data). Failure signatures often overlap with com-

plex spatio-temporal processes that occur in water

distribution networks, for example network configuration

changes and abnormal demands (such as industrial

processes). This makes differentiation difficult. Another

limitation of these techniques is that they generally focus

only on anomaly detection being interpreted as outlier

detection (Hodge & Austin ). However, this simplifica-

tion produces methods that cannot necessarily discover

novel patterns formed by subtle changes across multiple

variables over multiple time instances. It is hypothesised

that precursor features of a smaller magnitude than such

outlier thresholds may be present in some sensor time

series datasets, which could be potentially picked up

before a major failure event (such as a catastrophic burst).

Two approaches are considered here for dealing with

these difficulties. (i) Pattern matching – i.e. how to identify

generalised features of a pattern corresponding to classes of

WDS events. (ii) Associative memories – how a monitoring

system stores representation of normal distribution system

operation and issues warnings when parameters are deviat-

ing from this behaviour so as to detect abnormality and

possibly precursors.
THEORETICAL BACKGROUND

Pattern matching

The problem of finding patterns of interest in time series

databases (termed ‘query by content’, i.e. to search for an

occurrence of a particular pattern within a longer sequence)

is an important one, with applications in many diverse fields

of science. Application areas include: patterns associated

with growth in stock and share prices (Zhang et al. ),

in neuroscience for analysing the nervous system (Fletcher

et al. ), for space shuttle sensor monitoring (Keogh &

Smyth ) and in transportation for signal timing in traffic

management (Mounce et al. ). In diagnosis and fault

detection applications an engineer may wish to query a pat-

tern database in real-time to determine what past situations

(contexts) are most similar to the current sensor profile. Pat-

tern matching can thus be used for identifying anomalies in

an online monitoring system. As well as detecting that data

are abnormal, it is also useful to be able to determine in

what way the data are abnormal and ideally to be able to

classify the event type which the data correspond to.

One approach (called sequential scanning or subse-

quence matching) is to use brute force and ‘slide’ the

shorter query sequence Q against the longer reference

sequence R, calculating the error term at each point based

on some similarity measure. A number of steps are required

for a general scheme in which we consider a univariate

signal uniformly sampled in time, which is the case with

WDS time series data:

1. Data pre-processing. The data must be processed into

such a form so that data from different sensors can be

compared on a like-for-like basis. The data for each vari-

able may need normalising both with respect to a mean

and with respect to the amplitude.

2. Populating the libraries. Each library needs to be popu-

lated with data from profiles corresponding to that

event type. Firstly, the key variables for this event type

need to be identified and then profiles for these variables

from past events placed into the library. Figure 1 illus-

trates some example burst profiles from a library for

flow and pressure variables (top and bottom,

respectively).



Figure 1 | Burst patterns for WDS hydraulic data (flow top, pressure bottom).
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3. Searching the libraries. This search is over each of the vari-

ables in the data stream. A similarity-based search is used

so that similar-shaped profiles of different amplitudes are

matched (within a given scaling factor). Matches that are

over a given threshold score are returned.

Data pre-processing

It is necessary to pre-process the data in order to be able to

compare patterns from different sensors and at different

times on a more equal basis. Suppose that the time series

for a particular variable is represented by xtð Þt∈T . Firstly,

we transform the time series to differences from the mean,

i.e.

xt ! xt � μt (1)

for each time t, where μ(t) is either:

(i) the current average on somemoving window [t�tA, t], i.e.

μt ¼

P
t�tA�u�t

xu

n
(2)

where tA is the length of the time window for averaging

and n is the number of time series values in the interval

[t�tA, t].

(ii) the average for that time of day, i.e.

μt ¼

P
t�tA�u�t
τ(u)¼τ(t)

xu

n
(3)
where τ(u) ¼ τ(t) means that times u and t are at the

same time of day and n is the number of measurements

u that meet the criteria in the summation.

Secondly, we need to normalise these differences by the

standard deviation over the same time series window as the

mean is calculated from, so that overall

xt ! xt � μt
σt

(4)

where σt is the standard deviation of the values on which the

mean is calculated.
Populating the libraries

The libraries need to be populated with profiles for the

different relevant variables. These profiles consist of con-

secutive measurements over possibly different event

window lengths. It is important to use profiles that are typi-

cal and indicative of the given event type. A level of expert

knowledge and/or water network records may be required

to obtain these exemplars.
Searching the libraries

Define t(E) to be the duration of event E. At each time t, the

time series profiles used for comparison with event library L

are the time series

xuð Þt�tl�u�tjtl ∈ t(E)jE ∈ Lf g
n o

(5)
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so that if the event library has profiles of length 30, 60 and

90 minutes, at each time step we would perform a search

over the last 30, 60 and 90 minutes worth of data

respectively.

The distance between profiles (which must be of the

same length in terms of time) is found using the l2 norm

(Euclidean distance), i.e. the distance between the two

n-vectors x ¼ (x1, x2, . . . xn) and y ¼ (y1, y2, . . . yn) then

d(x� y) ¼ jx� yj jj ¼
Xn
i¼1

(xi � yi)
2

 !1=2

(6)

Match scores can then be generated by calculating

(assuming we are comparing profile x with library pattern y),

score(x, y) ¼ jxj jj � d(x, y)
jxj jj (7)

so that if d(x, y)¼ 0 then the match score is 1. A threshold

can then be used above which two time sequences are

said to be similar.

In order to calculate similarity with profiles that are of a

similar shape but different magnitude we can calculate

instead

dS(x, y) ¼ min
α∈[A,B]

d(x, αy) (8)

where [A, B] determines the amplitudes of the patterns to

compare with, i.e. if this were [0.5, 2] we would compare

with patterns of amplitude between half and double that of

the library pattern. For practical purposes, the minimum in

Equation (8) has to be estimated from a number of inter-

mediate points between A and B.

This research uses this type of pattern matching for

populating a pattern library and then comparing a new

data stream against it for detecting faults.
Associative memories

Novelty detection is the identification of new or unknown

data that a machine learning system has not been trained

on or previously seen. Many applications exist for analysing

temporal sequences (Keogh et al. ). Rather than relying
on manual review, it is useful to have some form of auto-

mated analysis system, which can scan the time series

generated by monitoring sensors, and report any abnormal

observations. This can be crucial in safety-critical environ-

ments. Novelty detection is a two class problem in that it

needs to be ascertained whether acquired data come from

a normal operating condition or not. There are many tech-

niques for novelty detection including using outlier

analysis, however some types of faults do not involve any

one variable departing from normal operating range.

Since the classification of novelty is a priori unknown,

this is a challenging problem and rules out the use of many

supervised techniques. There is often no clear-cut boundary

between novel events and normal events in real-world appli-

cations and a lack of meta-data (such as information about

water treatment or process changes, maintenance events,

industrial processes, etc.) in WDSs is a particular problem.

We can treat the WDS, or sub-areas (such as individual

DMAs) in the context of real-time condition monitoring

(CM), where it is critical to identify deviations from normal

behaviour in sensor readings. A key element of CM is the

early detection of potential faults in the monitored system

or asset (such as a building, an engine or a pipeline), allowing

preventative action to be taken before major damage occurs

(for example a catastrophic burst). The CM system has to

identify these potential faults based on the values of a (poss-

ibly large) number of variables.

In the field of ANNs, an associative memory is a net-

work which stores mappings from specific input

representations to specific output representations. Hence,

a system that ‘associates’ two patterns is one that, when pres-

ented with only one of these patterns later, can reliably

recall the other. There are two types of associative

memory: auto-associative and hetero-associative. Auto-

associative memories are capable of retrieving a piece of

data upon presentation of only partial information from

that piece of data, while hetero-associative memories can

recall an associated piece of data from one category upon

presentation of data from another category. Auto-associative

mapping can be created by training an ANN to reproduce its

input at its output (Masters ). A set of reference signal

patterns (e.g. parts of a time series) are learned by the

auto-associative network. When presented with an input

pattern resembling one of the reference patterns, but
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contaminated with noise, the network’s output should be

close to the learned pattern that most closely represents

the trial input. Thus if the trial input were very close to a

reference signal (e.g. part of a diurnal flow pattern), with

the addition of noise (or missing parts of the signal), the

auto-associative network will act as a noise filter (or perform

pattern completion). A standard Multilayer Perceptron with

D inputs, D outputs and M hidden units can be used in this

manner albeit if M<D then additional hidden layers are

required to perform non-linear dimensionality reduction

(Bishop ).

Recurrent networks allow recurrences through feedback

connections. This feature is used in associative memories

such as the Bidirectional Associative Memory and Hopfield

network. The former are ANNs that are used for performing

hetero-associative recall (Kosko ). Hopfield networks

(Hopfield ) have been shown to act as associative

memories – after a network trains on a set of examples, a

new stimulus will cause it to settle into an activation pattern

corresponding to the example in the training set that most

closely resembles the new stimulus.

This research uses binary associative neural networks

for detecting faults, by storing a representation of normal

behaviour and monitoring when the asset’s activity deviates

from this behaviour. They are an example of a hetero-

associative memory (although can also be used in an

auto-associative fashion).
METHODOLOGY AND SOFTWARE

Signal Data Explorer

The Signal Data Explorer (SDE) is a general purpose data

browser and search engine for time series signal data

(Fletcher et al. ). The SDE allows a user to specify the

signal event to be searched by supplying a short example

of that event (query by content). This can be specified

using manually created examples, historical sample inputs,

or examples imported from other systems. The user is then

able to select the (possibly large) datasets for the search.

The search returns a number of potential hits for particular

classes of events that can then be browsed using a powerful

viewer which assists in the visualisation of multiple signal
data channels and enables the user to examine the details

of one or more features extracted from the time series

data. The SDE also contains efficient spike detection and

dynamic filtering functionality. An example of the SDE

opening a WDS water quality sensor file is shown in

Figure 2. Using the SDE, a user can explore and view any

portion of the data rapidly. The output of the data processing

tools can be viewed immediately and compared to the raw

data by displaying them in the same window. Pattern match-

ing is one of the primary functions of the SDE. The pattern

matching functions allow a user to search for particular pat-

terns within or across variables in datasets. The SDE

generates a search index based on binary vectors, in a

similar fashion to a conventional text search engine.

The SDE provides an interactive and intuitive search

capability, which is feature driven, in that the user can high-

light a region of interest in a time series signal or select an

instance from the pattern template library (as described ear-

lier) and request a pattern matching process to be carried

out against the target datasets. Similarity measures are

used to provide a ranking system that can score results for

the search process. The search process is scalable to terabyte

datasets. Application domains for the SDE have included

engine vibration data (frequency-power spectra from aircraft

engines searching for events such as bird strikes), structural

data (e.g. environmental ‘shake and bake’ tests) and medical

data (for finding events in electrocardiography and

electroencephalography) (Fletcher et al. ).

Correlation Matrix Memories (CMMs) and Advanced

Uncertain Reasoning Architecture (AURA) Alert

AURA is a set of general-purpose methods for searching

large unstructured datasets (Austin ). AURA is a class

of binary neural network built on CMMs, as an underpin-

ning technology for efficient, scalable pattern recognition

in complex and large scale CM applications. During asset

operation, the current state of the system can be compared

to the stored normal operating behaviour (in the CMM) to

see if that combination of variable values has been seen pre-

viously. If not, this could be indicative of a problem, even if

no individual variables have deviated from their normal

value range (Austin et al. ). Firstly, a quantisation pro-

cess (binning) is used with each potential value for each



Figure 2 | Signal Data Explorer opening a water quality sensor data file.
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variable assigned to a bin and each bin corresponding to a

different bit that will be set in the binary pattern – with

only one bit set (as illustrated as part of Figure 3). The

simplest binning method is to use bins of equal width,

although AURA allows the option to set a threshold for

the number of values that can be placed in the extreme

bins and, once exceeded, the bin values are reset and the

memory retrained. The codes for each variable are then con-

catenated to create a binary representation of the state,

which is stored in a binary CMM (Willshaw et al. ) of

an AURA associative memory. A binary CMM is a single

layer, fully connected network that is capable of very fast

storage and retrieval of data. A CMM with input width n

and output width m can be represented as a n ×m binary

matrix M. For a given input binary vector Ik and associated

binary output vector Ok, the kth training update of a CMM

is defined as:

Mk ¼ Mk�1 ∪ ITkOk (9)
where Mk and Mk-1 are the CMM after and before the train-

ing (with M0¼ 0 and ∪ denoting a logical OR operation

between the vectors). The recall vector Si associated to the

input Ii is defined as:

Si ¼ IiM (10)

This recall vector is generally an integer vector and the

value of each element of the recall vector is called the

‘score’ of the CMM matching on the relevant column

vector. The recall vector can then be thresholded to a

binary output vector by either using a fixed threshold or

selecting the L closest matches. This process is shown in

Figure 3 using small vectors for illustrative purposes (fixed

threshold of 2).

In practice, the recall system needs to factor in not only

the number of bins that match exactly, but also the distance

between the assigned bins when they differ since this will

provide important information on the closeness of match.



Figure 3 | Input variable binning and the CMM recall process.
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This can be achieved by weighting the inputs. Hence AURA

scores can be used to apply weights to the bins, according to

their distance from the current values. A vector of scores

(rather than a binary pattern) is created, which defines a

set of kernels that quantify the distance of each bin from

the value. For example this could be a triangular shaped

kernel centred around the recall value. Weeks et al. ()

discuss various kernels that can be used to provide different

approximations of distance. However, a kernel which

approximates to the Euclidean distance between two

points is described in Equation (11) and has been found to

provide good results for fixed binning (Hodge et al. ).

Parabolicbinsk ¼
max nð Þ

2

� �2

� binst � binskð Þ2 max nð Þ2
n2
f

 !" #

(11)

where the output is the value of bin number k (binsk) and the

value of the variable has been assigned to bin t (binst),

max(n) is the number of bins for any variable and nf is the

number of bins for this variable.
This scoring system now more accurately reflects the

actual distance between each stored point and the recalled

vector and hence the current and recorded asset states.

Some modifications are then necessary to the threshold

technique (Austin et al. ). AURA k-Nearest Neighbour

(k-NN) can then be used as a filter to reduce a large

number of stored states to a more manageable quantity of

closer matches (Hodge & Austin ).

The k-NN pattern matching method is widely used in

data clustering, classification and prediction. Based on a

specific distance metric or similarity measure, k-NN exam-

ines vector distances to determine the nearest neighbours

(Cover & Hart ). One approach could be to use k-NN

on the raw values of each variable at each time interval

and compare the recalled points to each of these. However,

the resultant time complexity of performing these separate

comparisons would severely limit the number of states that

can be stored in the system. The standard algorithm is com-

putationally slow for large datasets. A binary neural

network-based k-NN has been developed (Zhou et al.

; Hodge & Austin ) which can search millions of
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states very quickly. AURA k-NN is efficient and scalable,

and has shown to be up to four times faster than the tra-

ditional k-NN (Hodge et al. ). AURA Alert is the

implementation of AURA within the SDE.

Using this approach, the system will locate the nearest k

matching patterns. The score associated with the most clo-

sely matching column(s) can then be used to determine

how different the current state is to any that have been

seen before, to provide a measure of the novelty of the

event. The AURA Alert software can thus continuously pro-

vide a measure of novelty across a time series. Note that

only an outline of CMMs and AURA Alert has been pro-

vided here. An in-depth description of CMMs, AURA and

AURA k-NN can be found in: Austin (), Zhou et al.

(), Liang & Austin (), Hodge et al. (),

Hodge & Austin (), Furber et al. () and Fletcher

et al. ().

Water distribution system time series data

Data streams from WDSs can be somewhat different to other

domains such as found in engine or power plant monitoring.

Some variables, particularly hydraulic parameters, such as

flow and pressure, possess a diurnal pattern which reflects

the daily demand profile dominated by residential use,

pressure in Figure 2 illustrates this. Some water quality

measurements also reflect this, so that chlorine concentration

for example will (generally) have a periodic sinusoidal like

profile. However, other water quality parameters such as con-

ductivity are more similar to those measurements usually

encountered in CM. Finally, some can have both character-

istics, such as turbidity (as seen in Figure 2).

In order to use AURA alerts on data with periodic (e.g.

daily) cycles, it is necessary to introduce an extra ‘time of

day’ variable (e.g. the number of elapsed hours of the day).

This enables AURA alerts to detect patterns in the data

that are unusual at that time of day. The data collected

from sensors are first formatted into input files for a

MATLAB pre-processing program which identifies and fills

in any missing timestamps or values so as to provide a con-

tinuous stream of data. The data are finally reformatted into

an appropriate comma delimited format required by the

SDE. Note though that for non-periodic data streams, the

AURA system is able to deal with completely missing data,
with a zero code indicating the absence of data – particu-

larly useful for dealing with instrumentation or telemetry

problems in online systems.

AURA Alert is then provided with data from an

extended period of time (at least 2 weeks) during which

the WDS sensor has been known to perform correctly

with ‘normal’ conditions in the distribution system. At regu-

lar time intervals during this period, the values of a

representative set of variables from the data are converted

into a pattern, which represents the state of the WDS zone

at that time instance. This pattern is then stored in an

AURA associative memory.
RESULTS AND DISCUSSION

Pattern matching

Data analysis was conducted using the SDE and a query by

content approach for pattern matching. In addition, pattern

matching software was developed in C# using Microsoft

Visual Studio. Libraries of event profiles were created

from .csv data to allow batch processing. Ten DMA inlet

flows (A to J) were obtained for a large water supply

system, with a mixture of urban and rural areas, for an

approximate 8 month period for use in selecting burst pro-

files (industry standard 15 minute sampled data) along

with the Work Management System (WMS) mains repairs

record. A pattern library of known bursts for these DMA

flow inlets using the SDE was assembled from this dataset.

These were identified from within the 10 DMA flow inlet

datasets (normalised as described previously in order to

allow generalisation from the DMA flow values) by using

WMS information to confirm large burst events and hence

creating a set of profiles consisting of a number of consecu-

tive measurements (described in the pattern matching

section). These were chosen to capture the significant first

features of change in parameter due to an event – using

between one and two hours of data. The SDE allows search-

ing for similar patterns in this library. One DMA (G) was

held back for testing using the pattern library. An example

is provided in Figure 4 of a detected burst in this DMA,

which was matched with a very high probability to a burst

from another DMA.



Figure 4 | Pattern matching bursts in DMA flow data.
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Three other matches of above 90% match score were

obtained for DMA G for the whole period of analysis – sum-

marised in Table 2. In the case of each of the detections,

visual analysis revealed that the profile was briefly unusual,

although there was only one correlation found with WMS

history. The results for an Artificial Intelligence (AI) analysis

system and all mains burst repairs (MR) for the same DMA

are also reported in Table 2 (after Mounce et al. ).

Table 2 reports three MR in the period of which two were

detected by the AI system (the other having no significant

impact on the nightline). In particular, a burst was repaired

on 24/12/05 of significant duration detected by the AI

system (a total of three AI detections> 85% confidence)

but not resulting in a hit using pattern matching.
Table 2 | Pattern matching results for DMA G compared to AI system

Pattern matching (PM) positive classification period

None

Match at 15/04/2006 07:30 in PM library with Burst DMA E flow
190406 0000-0130 (score 91%)

Match at 16/04/2006 06:00 in PM library with Burst DMA E flow
190406 0000-0130 (score 93%)

None

Match at 12/05/2006 00:00 in PM library with Burst DMA F flow
170206 0000-0045 (score 98%)

Match at 29/05/2006 08:45 in PM library in with Burst DMA E flow
190406 0000-0130 (score 91%)

None
Although this example illustrates the transferability of

the concept of a ‘burst’ pattern, a limitation in the approach

is in the manual assembly of the pattern library and the

uncertainty prevalent in defining event classes for WDS.

Even when limited to burst only patterns, performance on

the test DMA was found not as accurate as an AI system uti-

lising outlier detection. Accurate selection of precursor

patterns is also far from obvious. Using AURA Alert to auto-

matically calculate a novelty score for any type of event,

possibly never encountered before, was thus identified as a

more attractive technique with the possibility of detecting

precursor features before major failure.

AURA Alert

The AURA Alert system utilising CMMs has been used for

the detection of irregularities in highly complex assets in a

variety of different industries. Applying AURA Alert on

real data from two different WDSs to explore the capabili-

ties of the method and results obtained are now described.

Flow data analysis

The DMA inlet flows A – J, used in the pattern matching test,

were each analysed by the AURA system and performance

compared to WMS and the aforementioned AI system

(a 4 week period was used to create the CMM model).
WMS record
repair date AI positive classification period

MR 24/12/05 23/12/05 14:00–24/12/05 06:15 (96%
confidence, burst est. 0.74)

None None> 85% confidence

None None> 85% confidence

MR 09/02/06 None >85% confidence

MR 12/05/06 11/05/06 21:15–12/05/06 11:45 (99%
confidence, burst est. 3.13)

None None >85% confidence

None 03/06/06 14:30–04/06/06 05:30 (99%
confidence, burst est. 0.60)
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A match score threshold of 85% was used to identify reason-

ably large deviations from normality resulting in 20 overall

detections (in comparison to 16 for the AI system). Of these,

four detections corresponded well to WMS burst repairs (for

the AI based system this number was five – with three of

these detected by both systems). Of the remainder, 13 were

correlated visually with abnormal temporary increases in

flow and three with likely short sensor drop outs to zero.

Overall the performance was thus comparable to the AI

detection as reported in Mounce et al. (). AURA offers

other possible advantages such as across multi-parameter

analysis or potential short precursor event detection as

further explored in the next two examples.

Water quality example

A multi-parameter water quality dataset was obtained for a

measuring instrument based at a DMA inlet in an urban

WDS deployed as part of a pilot study. Parameters measured

were water temperature, pH, conductivity, turbidity and

pressure at a 5 minute resolution. Data from a period of sev-

eral weeks when the DMA was considered to be operating

normally were presented to the AURA Alert system and

the learned configurations encountered were stored in the

AURA memory. Figure 5 shows the five channels corre-

sponding to the raw data. The AURA Alert output can be

seen in the ‘Match Strength’ channel (bottom axes), which

has a value of 100 when in a previously seen state and

drops down when a novelty is detected. In Figure 5 note

how the matching strength remains high during the period

of normal activity earlier in the period (the greyed out sec-

tion indicating the end of the training data) but later

reports the presence of novelty, indicating that the asset

state has departed from its usual operating behaviour (in

fact this was a known burst affecting the DMA being

monitored).

In addition to reporting the matching strength of the

state of the system at each time instance, AURA Alert is

able to indicate which channels are the likely causes of

the irregularities. By using an L-Max threshold (the metric

where L highest sums are set to 1 and all others to 0) on

the AURA output, the most similar stored pattern to the cur-

rent asset state can be obtained. By comparing the current

state to the most similar state, the causes of the differences
can be calculated and reported along with the matching

strength. The reported novelties (not shown here) indicate

that the turbidity, pressure and conductivity are deviating

from their expected values, suggesting a burst event.

Although a burst has been used for illustration, the prolifer-

ation in measured parameter options in new WDS water

quality instrumentation paves the way for detection and

classification (based on which parameters are novel) for

other types of abnormality such as contamination events

(intentional or accidental) (e.g. Leeder et al. ).

Pre-cursor example

The final example presented is in the use of AURA Alert to

identify novelties in multiparameter data several days before

a catastrophic failure in a complex asset, without any prior

knowledge of similar failures. A flow and pressure dataset

was assembled for a DMA. The data consisted of 15

minute readings, the WMS record and any associated custo-

mer contacts (CC) (complaints to call centres). These data

include pressure data from the DMA inlet in addition to

two specific point pressure loggers located at critical (deter-

mined by expert judgement) locations in the DMA.

Hydraulic data were utilised, with AURA trained using sev-

eral weeks of normal data, and a test period with known

multiple events and supporting information has then been

used to illustrate the possibility of precursor detection.

Figure 6 provides the Match Strength output with WMS

and CC information overlaid and in addition the online

detection from an online AI system (Mounce & Boxall ).

Figure 6 plots a period of 9 days during which two

water main burst repairs were flagged and marked as

repaired in the DMA. Information in the WMS reveals

that one repair had a start date of 20th September and a

completion on 24th September. The second had a start

date of 24th September and a completion date the day

after. We see from the flow plot, that a burst main repair

resulted in a drop of the nightline on 23rd September

once completed. Before this, a new burst was first detected

by an online AI system 06:00 23/9, which preceded a

number of CCs (11 customers complaining of no water,

and two of discolouration). The Match Strength drops

below 90 several hours before this. However, of more inter-

est is the large drop in Match Strength on 18th September



Figure 5 | AURA Alert for abnormal event in water quality data.
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around midnight prior to any other warning of a problem

and corresponding to short duration drops in both pressure

and flow; this may be a burst precursor indicative of a

developing problem or some activity on the network

which subsequently caused the major burst several days
later. The fact that the water company noted a repair

start date to the WMS database on 20th September sup-

ports this. Whilst Figure 6 shows the potential for

precursor detection, confirmation can be rather subjective

due to the resolution of data and in particular the



Figure 6 | AURA Alert Match Strength and supporting information for potential precursor.
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supporting information. Validation of this capability would

require a more extensive bespoke study.

It has been demonstrated that the AURA Alert system

has the potential for detecting changes across multiple par-

ameters, allowing robust detection and information for

interpretation, and offering scope for detection of event pre-

cursors. Timely event detection and diagnosis offer

significant improvements in service delivery with a move

towards proactive maintenance, while the implication of

precursor information is to provide network engineers

additional time to investigate the cause of abnormal con-

ditions and perhaps prevent major asset failure before

customers are impacted. Of course, datasets with more

exhaustive information (such as known artificial hydrant

flushing) could be used to evaluate more rigorous

quantifiable error metrics such as the level of false-positives.
General discussion

WDS sensors monitor assets (reservoirs, pipes, valves, etc.)

with the performance of these assets being indicated by the col-

lected measurements. At the present time, the granularity, i.e.

number of devices and sampling interval, is quite limited

compared to other industries. However, the quantity and com-

plexity of sensor and environmental data are growing at an

increasing rate and it seems clear that in the future the water
sector can and should be penetrated by Information and Com-

munications Technologies and Internet-like technologies. It is

easy to anticipate that the environment may before very long

be teeming with tens of thousands of small, low-power, wire-

less sensors. Each of these devices will produce a stream of

data, and those streams will need to be monitored and com-

bined to detect changes of interest in the environment. The

easier it is to collect and analyse large datasets the more

water utilities will collect and, in a decade, tens or even hun-

dreds of petabytes of data may be routinely available.

Demands for solutions and tools will become more urgent to

meet the aspiration for intelligent water networks, proactively

managed through access to timely information. Permanent

installation of high frequency (several hundred or even thou-

sand Hz) pressure monitoring devices may also become

routine and pilot studies using these have demonstrated how

the arrival times of the burst inducedwave at themeasurement

points can beused to derive the location of the burst using tran-

sients (Misiunas et al. ). The data compression facilities of

systems such as AURA could prove very useful for these future

data quantities.

This proliferation of monitoring will facilitate the con-

tinuous and simultaneous monitoring of the complete

WDS (or at least significant sub-areas). By evaluating devi-

ation from normality from a set of distributed sensors,

both detection and location of abnormal events will be
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possible – such as using multiple pressure loggers to locate a

burst (e.g. Farley et al. ; Romano et al. ). The moni-

toring of sewerage systems has not progressed as far as for

WDSs, however there is increasing interest and deployment

of instrumentation for example for Combined Sewer Over-

flow level measurement and pump station flows. There are

many other potential applications in the water resources

domain.

AURA Alert is being developed as an online system

which automates the training data selection (by selecting

data with high Match Strength) and use of validation data

for selecting Match Strength thresholds for alert generation.

This can be deployed by the cloud as a Software as a Service,

leveraging Grid technology and permitting secure, rapid

delivery of information to the viewer.
CONCLUSIONS

The effective and efficient operation of WDSs is essential for

three important reasons: maintaining safe and continuous

supply to consumers, avoiding loss of water resources

through leaks and bursts in the pipe network, and reducing

the energy and other resources input to the system and so

minimising the carbon footprint of water system operations.

To achieve this efficiency, information is continually

required about current system performance, so adjustments

can be made where necessary and interventions can occur

before any fault or failure impacts on the customer. This

paper has presented the use of pattern matching and

binary associative neural networks using time series from

WDS. Using AURA Alert, time series data from sensors

(variables) are converted into vectors using a quantisation

process. Vectors are then stored in a historical database in

the correlation matrix memory. New data presented as vec-

tors can either be used to generate the k best matching

historical patterns or alternatively a measure of novelty

(termed Match Strength) can be generated. One of the

major features of the system is its ability to search small

and very large datasets very quickly. The key conclusions

of this research are as follows:

• A pattern matching approach can be proficient at finding

known patterns in data and has been applied successfully
for many applications. The transferability (i.e. not tuned

per DMA) of burst patterns was demonstrated here to

some extent. However, overall the performance was

found to be not as high as when using outlier detection

based methods for this type of WDS time series data. A

limitation of the approach is in the manual assembly of

the pattern library and the uncertainty prevalent in defin-

ing event classes for WDS.

• AURA Alert (Advanced Uncertain Reasoning Architec-

ture, utilising a class of binary neural network built on

CMMs) can rapidly learn and model the normal operat-

ing envelope for a system, with the ability to search

through complex high-dimensional multivariate spaces

to detect deviations from normal conditions. The novel

use of AURA Alert in WDS so as to automatically calcu-

late a continuous novelty score for every time step and

hence enable the detection of any type of event, possibly

never encountered before, was proposed, explored and

demonstrated. Examples have demonstrated successful

early detection of abnormality in systems using multi-par-

ameter data as well as significant potential for precursor

event detection beyond typical outlier detection

approaches. These precursors could be linked to appro-

priate maintenance requirements for water infrastructure.
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