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Weakly nonlinear analysis of the electrohydrodynamic instability of a charged membrane

R. M. Thaokar and V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

The effect of nonlinear interactions on the linear instability of shape fluctuations of a flat charged membrane
immersed in a fluid is analyzed using a weakly nonlinear stability analysis. There is a linear instability when
the surface tension reduces below a critical value for a given charge density, because a displacement of the
membrane surface causes a fluctuation in the counterion density at the surface, resulting in an additional
Maxwell normal stress at the surface which is opposite in direction to the stress caused by surface tension. The
nonlinear analysis shows that at low surface charge densities, the nonlinear interactions saturate the growth of
perturbations resulting in a new steady state with a fluctuation amplitude determined by the balance between
the destabilizing electrodynamic force and surface tension. As the surface charge density is increased, the
nonlinear terms destabilize the perturbations, and the bifurcation is subcritical. There is also a significant
difference in the predictions of the approximate Debye-Huckel and more exact Poisson-Boltzmann equations at
high charge densities, with the former erroneously predicting that the bifurcation is supercritical at all charge
densities.
su
m
on
ial
s

i
p
d
e

ge
tin
es
h
b
y
t

-
th

ta
ti
fa
e

in
d
am
o
e
e

th
fa
tic
o

an
th
io

to a
cal

ges
er-

in
e in
rva-
ssian
les.
e to
rec-
ee
are
en-
. It

es
a
ergy
the
rva-
ling
was
es

s an
re-
w-

nter-
gth
sity

ear
em-

den-
, or
ace
I. INTRODUCTION

It is well known that adsorbed charges on membrane
faces have a significant effect on the functioning of me
branes in biological systems. There are significant variati
in charge distribution@1# and the transmembrane potent
when there are shape changes in membranes. There ha
been experimental evidence to indicate that variation
charge densities could be important in influencing the sha
of vesicles made of lipid bilayers. Vesicles are usually ma
under nonequilibrium conditions, because the bending
ergy for the formation of a vesicle of micron size is lar
compared to the thermal energy. However, some interes
experimental results@2# have revealed that stable vesicl
could be made at equilibrium if a mixture of lipids wit
surface charges of opposite signs are used. There have
many studies on shape changes due to the asymmetr
inclusions in the membrane and their phase separation on
surface, and other nonequilibrium processes@3#. Phase sepa
ration of the components of a membrane could also alter
shape@4,5#, but it is expected that effects such as head-
asymmetry would lead to structures with characteris
lengths of the same magnitude as the domains on the sur
whereas typical sizes of vesicles could be two to three ord
of magnitude larger than the membrane thickness. S
shape changes in biological membranes are accompanie
changes in the transmembrane potential, it is useful to ex
ine whether shape changes of flexible charged surfaces c
be caused by changes in the surface potential. The lin
stability of surface fluctuations on a charged surface has b
studied as a function of the surface potential@6#, and it is
known that surface fluctuations become unstable when
surface potential exceeds a critical value at a given sur
tension, or when the surface tension reduces below a cri
value for a given surface potential. However, the effect
nonlinear interactions on the growth of the fluctuations c
not be studied using a linear analysis. The objective of
present analysis is to examine whether nonlinear interact
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saturate the linearly unstable shape fluctuations, leading
supercritical state, or whether the bifurcation is subcriti
where nonlinearities destabilize the linearly stable state.

It is well known that the presence of adsorbed char
could significantly alter the elasticity of membranes. Wint
halter and Helfrich@7# and Lekkerkerker@8#, as well as the
subsequent studies@9,10#, found that there is an increase
the elasticity due to adsorbed charges. There is a chang
the modulus for the mean curvature and the Gaussian cu
ture due to adsorbed charges, and the change in the Gau
curvature could favor the spontaneous formation of vesic
In these studies, the change in the electrostatic energy du
the curvature of the membrane is determined, and the cor
tions to the elasticity moduli are calculated from the fr
energy change. The corrections to the elastic moduli
manifested as additional contributions to the curvature
ergy when a net curvature is imposed on the membrane
has been shown@11# that a difference in the charge densiti
in the two lipid layers forming a bilayer could stabilize
vesicle, because there is a reduction in electrostatic en
when the higher charge density is on the outside of
vesicle. This could compensate for the increase in the cu
ture energy. The effect of charge density curvature coup
on the dynamics of fluctuations on a charged surface
analyzed@12#. The analysis showed that when the charg
are permitted to move on the membrane surface, there i
instability of the flat state of the membrane due to a cor
lated variation in the charge density and the curvature. Ho
ever, this analysis assumed that the thickness of the cou
ion layer at the surface is small compared to the wavelen
of the perturbations, and variations in the counterion den
parallel to the surface were neglected.

In the present analysis, we carry out a weakly nonlin
analysis of the fluctuations at the surface of a charged m
brane. The corresponding linear analysis@6# indicated that
perturbations become unstable when the surface charge
sity exceeds a critical value for a given membrane tension
the tension reduces below a critical value for a given surf
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charge density. However, the linear analysis cannot be u
to determine the amplitude of fluctuations, and it is necess
to include higher order terms in the amplitude expansion
the present case, a Landau analysis is used where the
higher ~cubic! term in the amplitude expansion is include
and the ‘‘Landau constant,’’ which is the coefficient of th
cubic term in the amplitude expansion, is calculated. If
coefficient of the cubic term is negative, the system is sup
critically stabilized by nonlinear interactions at a nonze
amplitude. If the coefficient of the cubic term is positive, t
system is destabilized by nonlinear interactions. The anal
is carried out using the Poisson-Boltzmann equation for
relation between the charge density and potential, as we
the simpler Debye-Huckel approximation. The Deby
Huckel approximation is valid only at low charge densitie
while the Poisson-Boltzmann equation is applicable to hig
charge densities as well. One of the important results of
analysis is that there is a significant difference in the res
of the nonlinear analysis for the two models even when
linear stability analysis provides results that are in go
agreement.

It is important to note that the wavelength of perturbatio
in this case is of the same magnitude as the thickness o
counterion layer near the surface. The counterion layer th
ness under physiological conditions is about 1 nm, which
small compared to the length scale of structures such
vesicles. However, the linear stability analysis@6# predicts
that the most unstable mode for a flat membrane has
wave number, indicating that the most unstable mode fo
system of finite size is likely to be the size of the syste
itself. However, the selection of the most unstable mode
likely to depend very sensitively on the surface poten
when the size of the structure is large compared to the th
ness of the counterion layer. There are other situations w
the thickness of the counterion layer could increase to 1mm
when the salt concentration is decreased, and the resul
the present analysis would be directly applicable in th
cases.

The linear stability analysis@6# showed that the inertia
and convective terms in the momentum and concentra
equations are zero for neutrally stable modes, and so
assumed in the present case that the Reynolds and P
numbers are zero. The limit of low Reynolds number is a
propriate for micron scale structures in biological system
The validity of the zero Peclet number limit can be estima
as follows. The diffusion of a small molecule in a liquid
O(1029 m2/s), and the Peclet number (UL/D) is small for
structures of micron scalesL;1026 m if the velocity scale
is smaller than 1023 m/s. For membranes with surface te
sion and in the absence of fluid inertia, a characteristic
locity scale can be estimated as (G/m), whereG is the sur-
face tension andm is the viscosity. The viscosity of water i
O(1023 kg/m s), and therefore the velocity is small com
pared to 1023 m/s for G,1026 kg/m s2. This is about three
orders of magnitude less than the surface tension of an
water interface, and therefore the present analysis is likel
be applicable only for membranes with very low tension.

In this analysis, we assume that the charge densities
the two sides of the membrane are decoupled. This is v
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when the dielectric constant of the hydrophobic tails in t
lipid layer is small compared to the dielectric constant of t
surrounding water. In practical situations, the ratio is ab
1/40, so the approximation is valid for distances about
times the bilayer thickness@7#. Though this is not strictly
true in cases where the dielectric constants are compara
we use this as a first approximation to make the probl
analytically tractable.

II. GOVERNING EQUATIONS

A two-dimensional coordinate system is used for anal
ing the perturbations, wherey* is the direction normal to the
membrane andx* is the direction in the plane of the mem
brane. The superscript ‘‘*’’ indicates dimensional quantitie
while nondimensional quantities are written without a sup
script. The membrane is flat in the base state, and is loc
at position y* 50 separating two Newtonian fluids whic
extend to infinity in they* direction. The membrane has
charge densitys* , while the concentration of the charge
species at a large distance from the membranes~where the
solution is neutral! is N` . In the vicinity of the membrane
there is a double layer with charge densitiesn1* (y* ) and
n2* (y* ). The electrolyte is considered to be symmetric
that the number of charges per ion are equal for the
charged species,z15z25z.

The incompressible Navier-Stokes equations for the flu
the concentration equations for the charged species, and
Poisson-Boltzmann equation relating the potential to
charge density are

“* •vl* 50, ~1!

r* ~] t* vl* 1vl* •“* vl* !52“* pf
l* 1h*“* 2vl*

1~n1
l* 2n2

l* !eEl* , ~2!

] tn1
l* 1vl* •“n1* 5“* •DF“* n11

zen1*

T
“* c l* G , ~3!

] tn2
l* 1vl* •“n2* 5“* •DF“* n22

zen2*

T
“* c l* G , ~4!

“* 2c l* 52
rc

l*

e
. ~5!

where the superscriptl is used to distinguish between th
fluid on the two sides of the membrane,l 5a for the fluid in
the half-spacey* .0, andb for fluid in the half-spacey*
,0 in the base state;v* andpf* are the velocity and pressur
in the fluid, r* andh* are the density and viscosity whic
are assumed to be equal for the two fluids for simplicity,e is
the charge of an electron,E* 52“* c* is the electric field,
c* is the scalar electric potential field, and] t* [(]/]t* ).

We consider perturbations with wavelength of the sa
magnitude as the Debye length, so that the followi
scalings are used—c* 5T/(ze)c, x* 5k21x, v*
5@N`T/(hk)v#, pf* 5N`Tpf , and time t* 5h/(N`T)t,
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wherek5(N`z2e2/(eT))1/2 is the inverse of Debye screen
ing length. With these scalings, the equations become

“•vl50, ~6!

Re~] tv
l1vl

•“~vl !!52“pf
l 1“

2vl1~“2c l !“c l , ~7!

Pe~] tn1
l 1vl

•“n1!5“•@“n11n1“c l #, ~8!

Pe~] tn2
l 1vl

•“n2!5“@“n22n2“c l #. ~9!

“

2c l52~n12n2! ~10!

where Re5(rN`T)/(h2k2) is the Reynolds number~ratio of
inertial and viscous forces for the velocity fluctuations! and
Pe5N`T/(hDk2) is the Peclet number~ratio of convective
and diffusive effects for the electrolyte concentration fiel!.
The fluid mass and momentum equations are consider
simplified for the case Re50 and Pe50

“•vl50, ~11!

2“pf
l 1“

2vl1~“2c l !“c l50, ~12!

while the Poisson-Boltzmann equation for the potential c
be written as

“

2c l5sinh@c l #. ~13!

For small potentials, (zec* /T)!1, the Poisson-Boltzmann
equation reduces to a linear equation~Debye-Huckel ap-
proximation!

“

2c l5c l . ~14!

In the present study, detailed analytical results are provi
for the Debye-Huckel approximation~henceforth called the
DH model!, while numerical results of the nonlinea
Poisson-Boltzmann equation~PB model! are also provided.
The details of the numerical procedure are given in the A
pendix B.

In the base state, the pressure and electrical potential
only in they direction, and the governing equations are

2dyPf
l 1~dy

2C l !~dyC
l !50, ~15!

dy
2C l5F1@C l #, ~16!

wheredy[(d/dy), F1@C l #5sinh@C l #, andC l for the PB
and DH models respectively. The solutions for the potent
in the base state are

Ca54 tanh21S e2y tanhFCs
a

4 G D , ~17!

Cb54 tanh21S ey tanhFCs
b

4 G D . ~18!

The following simplified solutions are obtained using t
Debye-Huckel approximation:
ly

n

d

-
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Ca5Cs
a exp~2y!, ~19!

Cb5Cs
b exp~y!. ~20!

The mean fluid pressure is related to the potential by

Pf
l 5

1

2 S ]C l

]y D 2

. ~21!

A. Boundary conditions

Since the membrane surface fluctuates, boundary co
tions are applied on the boundary that varies with positi
We consider the potential at the surface of the membran
be fixed in the present analysis, and the boundary condi
for the surface potential is

c l ux,h5Cm
l , ~22!

wherec l ux,h is the potential at the perturbed interface wh
Cm

l is the mean surface potential. The boundary condit
for the fluid velocity and stress fields are as follows. In t
limit where the amplitude of perturbations is large compa
to the thickness of the membrane, the tangential velocity
the surface is small compared to the normal velocity, and
the tangential velocity can be assumed to be zero in the le
ing approximation. The normal velocity of the fluid at th
surface of the membrane is equal to the velocity of the me
brane in the normal direction, while the difference betwe
the normal fluid stresses is balanced by the normal force
to surface tension.

While implementing boundary conditions of the type~22!,
the interface position is not knowna priori, but is deter-
mined as a part of solution, and so some care has to be t
while applying boundary conditions. Consider a mater
point on the unperturbed membrane which is labeled by ix
coordinate,x. After deformation, this moves to a new pos
tion h(x), whereh(x) is the vertical component of theLa-
grangiandisplacement of the material point at the interfac
By definition, the components of theEulerian displacement
field u are given by

uy~x,t !5h. ~23!

The unit normaln and the unit tangentt to the perturbed
interface are defined as

n5

2exS ]h

]x
D 1ey

A11S ]h

]x
D 2

t5

ex1eyS ]h

]x
D

A11S ]h

]x
D 2

. ~24!

The matching conditions for the velocity at the perturb
interface (x,h) are

~n•va!ux,h5~n•vb!ux,h5~n•vm!ux,h , ~25!

~ t•va!ux,h5~ t•vb!ux,h50, ~26!
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where the superscriptm refers to variables defined on th
membrane surface. The scaled normal stress balance c
tion is

@n•t•n#x,h
a 2@n•t•n#x,h

b 5G~“s•n!x,h , ~27!

where“s is the surface gradient along the membrane s
face, given by“s5@“2n(n•“)#, where“ is the three-
dimensional gradient operator, ands is the stress tenso
along the membrane. The term“s•n is the negative of the
mean curvature of the membrane surface, and the term
portional to this accounts for the normal stress exerted du
surface tension.

The terms in the boundary conditions~25!–~27! are ex-
panded in a Taylor series in the parameterh5uy .

~ t•vl !ux,h5Fvx
l 1vy

l S ]uy

]x D GF12
1

2 S ]uy

]x D 2

1•••G , ~28!

~n•vl !ux,h5Fvy
l 2vx

l S ]uy

]x D GF12
1

2 S ]uy

]x D 2

1•••G , ~29!

@n•t•n# l ux,h

5

F S txx
l ]uy

]x
2txy

l D S ]uy

]x D1H 2txy
l S ]uy

]x D1tyy
l J G

11S ]uy

]x D 2 U
x,h

,

~30!

“s•nux,h52

S ]2uy

]x2 D
F11S ]uy

]x D 2G3/2U
x,h

, ~31!

where the constitutive relation for the fluid stresses is

t52pf I1@“v1~“v !T#1“c“c2 1
2 I ~“c!•~“c!.

~32!

Since the position of the interface has to be determine
a part of the solution, the boundary conditions at the p
turbed interface are expanded about their values at the
perturbed interfacey50. If F indicates a fluid paramete
~fluid velocity, stresses!, thenFux,h at the perturbed interfac
are expanded in a Taylor series about their values at (x,0)

Fux,h5@F#01@]yF#0h1 1
2 @]y

2F#0h21••• ~33!

where @•••#0 represent quantities evaluated at the unp
turbed interface, andh is obtained as a part of the solutio
From the above expressions, infinite series representa
for the flow quantities are obtained as functions ofh and
these are truncated at the required order in the weakly n
linear theory. The Eulerian velocity field in the membra
(v i

m) is defined as the substantial derivative of the displa
ment field
di-

r-

ro-
to

as
r-
n-

r-

ns

n-

-

vy
m5Dtuy , ~34!

whereDt5] t1v•“ is the substantial derivative.

III. STABILITY ANALYSIS

Linear stability studies@6# have indicated that perturba
tions become unstable when the surface potential excee
critical value for a given surface tension, or when the surfa
tension is decreased below a critical value for a given surf
potential. However, the linear growth of perturbations is
fected by nonlinearities both in governing equations as w
as in the boundary conditions, although the nonlinearities
the governing equations are not present in the Debye-Hu
approximation. The nonlinearities in the boundary conditio
arise due to Taylor expansion of the boundary conditio
about the unperturbed state, as well as due to the variatio
the surface normal along the perturbed interface. The lin
stability analysis~discussed in Appendix A! indicates that
perturbations become unstable in the zero wave number l
k→0. However, in real systems there is a minimum perm
sible wave number of perturbations due to the finite late
extent of the system. Perturbations with this lowest perm
sible wave number become unstable first when the sur
potential exceeds the critical value, and the effect of non
earities on the growth of these perturbations is analyzed
the weakly nonlinear analysis. In the weakly nonline
theory, we aim to find the state of the system after it
rendered linearly unstable. The system is therefore assu
to have a tensionG slightly smaller than the critical tensio
Gc given by the linear theory. WhenG is slightly smaller
thanGc , perturbations with wave numberkc and lower be-
come unstable and generate higher harmonics due to no
ear interactions. It is useful to define the functionE(x)
5exp@i(kcx1vct)#. In the weakly nonlinear theory, an expa
sion is used in the harmonic series as well as the amplit
of the perturbations

f~x,y,t !5(
s50

`

(
n5s

`

@A1~t!#n@Esf̃ (s,n)~y!1E2sf̃†(s,n)~y!#,

~35!

where the integer superscripts indicates the harmonics with
wave number (skc) and frequency (svc), the integer super-
scriptn indicates the order in powers of the amplitude of t
perturbation, the superscript† is the complex conjugate
A1(t)5eA(t) is the amplitude of the wave that varies in th
slow time scalet ~to be defined below!, e is a small param-
eter defined later, andA(t) is anO(1) quantity. It should be
noted thatA1(t) andA(t) are real. As an aside, it is possib
at this stage to let the amplitudeA vary as a function of a
slow spatial variable in thex direction. This would result in
an envelope equation~a partial differential equation! for A as
a function of the slow spatial and temporal variables. In
expansion~35!, f̃ (0,0) refers to the variables in the mea
flow, while f̃ (1,1) are the perturbations in the linear stabili
analysis, and the results of the linear stability analysis
obtained by truncating the expansion~35! at s51,n51. To
determine whether the linear instability is supercritical
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subcritical, it is also necessary to consider equations for
perturbations at orders50,n52, s52,n52, and s51,n
53, as shown in Appendix A.

The slow time scalet referred to below Eq.~35! arises for
the following reason. In the vicinity of the transition poin
(Gc ,kc), the amplitude is governed by the Landau expans

A1~t!21dtA1~t!5sr
(0)1A1~t!2sr

(1)1•••, ~36!

wheresr
(0) is the real part of the linear growth rates(0) and

sr
(1) is the real part of the first Landau constants(1). Near the

linear neutral curve,sr
(0);(G2Gc), andsr

(0) can be written
assr

(0)5(dsr
(0)/dG)c (G2Gc). If sr

(1) is O(1), then the sec-
ond term in the right-hand side of Eq.~36! is O(e2), and a
balance is achieved if (G2Gc)(dsr

(0)/dG)c;e2. For defi-
niteness, let (G2Gc)5G2e2, whereG2 is anO(1) quantity
whose sign determines whether we are in the stable or
stable region around the neutral curve~a negativeG2 is in the
unstable region!. Now, this term should be balanced by th
term on the left-hand side of Eq.~36!, and so we introduce
the slow time scale in the time derivative asdt5e2dt . Since
A1(t) is independent of the fast time scalet, the above equa
tion becomes

A21dt A5G2~dsr
(0)/dG!c1sr

(1)A2. ~37!

This is the ‘‘scaled’’ version of the Landau equation in t
vicinity of the critical point of the linear neutral curve. Th
objective of the rest of the analysis is to determinesr

(1) which
determines whether the instability is subcritical or supercr
cal.

The details of the weakly nonlinear analysis are given
Appendix A. The boundary conditions for the problem
order (s,n) contain inhomogeneous terms of order (s,m)
wherem,n. Thus, the original nonlinear problem with a
unknown membrane interface is reduced to a hierarchy
linear ~but inhomogeneous! problems, which are solved be
ginning from the linear (1,1) problem. The nonlinear ana
sis was carried out both for the PB as well as DH mode
The linear stability analysis shows that the value of criti
surface tension for both the Poisson-Boltzmann and
Debye-Huckel models is of the same order forCs

a;O(1).
However the nonlinear analysis can be quite different e
for the regime ofCs

a;O(1) where the linear stability result
agree. This is because the governing equations in the ca
the DH model are linear at all ordersn, while they are are
nonlinear for the PB model and these nonlinearities can
fect the results considerably.

IV. RESULTS

The linear stability analysis fors51,n51 ~Appendix A!
shows that a system is linearly unstable when the sc
surface tensionx5G/((Cs

a)21(Cs
b)2) decreases below

critical value. Figure 1 shows the linear neutral stabil
curve for the system for different values of the surface
tential; the region above the curve is stable while that be
the curve is unstable. The neutral stability curve shows
the scaled value of the critical surface tension asymptote
e
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a constant value in the low wave number regime as can
seen from the analytical expression~A19!. However, for
wave numbersk@1 the critical surface tension scales
k21. The critical surface tension as predicted by models D
and PB agree well for low values of surface potentials,
the DH model underestimates the critical surface tension
larger potentials. This trend can be easily understood, s
the gradients of mean potential, as obtained from the
model, are higher than that by the DH model, thereby r
dering the system more unstable.

The Landau equation can be derived in thek→0 limit for
the case of the DH model

1

A~t!

dA~t!

dt
52

kG2

4
1

A2k~241k2!~11r 2!Cs
a2

64
A~t!2.

~38!

The Landau coefficient is negative in thek→0 limit ~note
thatG2 is negative!. Thus, the system is supercritically stab
with an equilibrium amplitude given by

A~t!5A 16uG2u

A2~42k2!~11r 2!Cs
a2

, ~39!

whereA(t) is the equilibrium amplitude whileA is the am-
plitude of height perturbations used for normalization a
has been set equal to 1.0 in the present analysis.

For k of O(1), thereduced equilibrium amplitude

Aeq5A~t!AS ~Cs
a!21~Cs

b!2

G2
D

shows a maximum~Fig. 2! at finite wave number for the DH
model. It is useful to compare the equilibrium amplitude o
tained from the DH model with the PB model forCs

a of
O(1) ~Fig. 2!. The results for the two models agree well f
low surface potentials, but for surface potential ofO(1),
there is significant difference between the equilibrium amp
tudes of the two models, although the linear stability resu
compare well forO(1) values of surface potential. This ca
be attributed to the nonlinearities present at each order w
can lead to significantly different results. Although the D

FIG. 1. Linear neutral stability curve for the charged membra
a comparison of the DH and PB models forCs

b5Cs
a . s, DH

model;n, PB modelCs
a51.0; ,, PB modelCs

a55.0.
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model indicates the presence of a supercritically stable s
for all values of surface potentials, the PB model shows t
the system goes from a supercritically stable state to a
critical instability at large values of the surface potenti
Table I gives the variation of the reduced Landau cons
with surface potential at two different values of wave nu
berk. The DH model predicts a constant value of the redu
Landau constant as can be seen from Eq.~38! and is nega-
tive, indicating supercritical stability. The PB model how
ever, shows a bifurcation from supercritical stability to su
critical instability as the surface potential is increased and
Landau constant becomes positive at high values of sur
potential.

This is more clearly seen in Figs. 3 and 4, where
reduced equilibrium amplitude is plotted as a function of
surface potential for two different wave numbers. The figu
show that the equilibrium amplitudes predicted by the
model are much lower than that for the DH model. Howev
the PB model indicates a change to subcritical instabi
whenCs

a is O(1) and this is indicated by a discontinuity i
the curves.

V. CONCLUSIONS

The nonlinear analysis of the stability of fluctuations a
charged surface have revealed two important results.

~1! At low surface charge densities, the linear instability

FIG. 2. Variation of the reduced equilibrium amplitude wi
wave numberk for the PB and DH model forCs

b5Cs
a . s, DH

model; n, PB modelCs50.1; L, PB modelCs51.0; ,, PB
modelCs53.0; 3, PB modelCs55.0.

TABLE I. Variation of scaled Landau coefficien
2sr

(1)/@(Cs
(a))21(Cs

(b))2# with surface potential.

k50.01 k51.0
Cs

a DH PB DH PB

0.001 6.31231024 6.16831024 3.67531022 3.67531022

0.01 6.31231024 8.00431024 3.67531022 3.67631022

0.1 6.31231024 2.90031022 3.73531022 3.67631022

1.00 6.31231024 1.923 3.67531022 7.13331022

3.00 6.31231024 222.556 3.67531022 27.04431021

5.00 6.31231024 2952.325 3.67531022 221.7484
10.0 6.31231024 26.0723106 3.67531022 2133068
te
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stabilized by nonlinear interactions, and has a supercrit
equilibrium state. The amplitude of fluctuations scales
(x2xc)

1/2, wherex5„G/@(Cs
a)21Cs

b#2
… is the ratio of the

surface tension and the square of the surface potential.
critical valuexc approaches a value in the low wave numb
limit, and so the amplitude of perturbations is determined
a dynamicalbalance between the stabilizing surface tens
and destabilizing surface potential. Therefore, it is expec
that the amplitudes of long wave surface fluctuations are
determined from thermodynamic equipartition of ener
considerations, but rather by electrodynamic considerati
when the system is in the unstable regime for low surfa
charge densities. In this regime, the results of the Deb
Huckel and Poisson-Boltzmann equations are in good ag
ment.

~2! At higher surface potential, the Debye-Huckel a
proximation predicts that the system is still supercritica
stable, but the Poisson-Boltzmann equation indicates
there is a subcritical bifurcation by which a linearly stab
system is rendered unstable sufficiently close to the neu
stability curve. Thus, the system does not saturate to a
steady state at high surface potential, but has to underg
shape change. The present analysis indicates that there

FIG. 3. Comparison of variation of equilibrium amplitude wit
the base state potential for different potentials for the PB and
models for (Cs

b5Cs
a) andk50.01. n, DH model;s, PB model.

FIG. 4. Comparison of variation of the equilibrium amplitud
with the base state potential for different potentials for the PB a
DH models for (Cs

b5Cs
a) and k51.0. n, DH model; s, PB

model.
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qualitative difference in the predictions of the nonline
analysis for the Debye-Huckel and Poisson-Boltzmann eq
tions for x;1, even when the predictions of the linear s
bility analysis are in close agreement. Thus, it is necessar
use the Poisson-Boltzmann equation to accurately cap
the effect of nonlinearities on the growth of perturbations

An issue of interest is whether the agreement can be
tained between the PB and DH models by renormalizing
surface potential in the DH model. This can be accomplis
only when the qualitative nature of the bifurcation~super-
critical or subcritical! is identical for the two models. The
results of the present analysis indicate that at low surf
potentials, the bifurcation is supercritical for both the D
and PB models, and so agreement can be obtained by re
malizing the potential in the DH model. However, at hig
potentials~for Ca

s greater than about 5, as shown in Figs
and 4!, the bifurcation is predicted to be supercritical by t
DH model, but subcritical by the PB model. In this case, it
clear that agreement cannot be obtained by renormalizing
surface potential in the PB model.

APPENDIX A

The s51,n51 problem. The governing equations in th
Fourier modes are

ik ṽx
l (1,1)1]yṽy

l (1,1)50, ~A1!

2 ik p̃f
l (1,1)1~]y

22k2!ṽx
l (1,1)1 ikc l (1,1)~]y

2Cl !50, ~A2!

2]yp̃f
l (1,1)1~]y

22k2!ṽy
l (1,1)1~]yCl !~]y

22k2!c l (1,1)

~A3!

1~]yc
l (1,1)!~]y

2Cl !50. ~A4!

These can be reduced to get a single governing equation
the y velocity

~]y
22k2!c̃ l (1,1)5F2@c̃ l (1,1)#, ~A5!

~]y
22k2!2ṽy

l (1,1)0, ~A6!

whereF2@c̃ l (1,1)#5c̃ l (1,1) cosh@Cl# andc̃ l (1,1) for models PB
and DH respectively. The resulting governing equations
the PB model have to be solved numerically, but analyti
solutions can be obtained for the DH model

c̃a(1,1)5A3 exp@2A11k2y#, ~A7!

c̃b(1,1)5B3 exp@A11k2y#, ~A8!

ṽy
a(1,1)5~A11A2y!exp@2ky#, ~A9!

ṽy
b(1,1)5~B11B2y!exp@ky#. ~A10!

The boundary conditions are

ṽy
a(1,1)5 ṽy

b(1,1) , ~A11!
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ṽx
a(1,1)1~]yvx

a(1,1)!ũy
(1,1)50, ~A12!

ṽx
a(1,1)1~]yvx

a(1,1)!ũy
(1,1)50, ~A13!

t̃yy
a(1,1)2 t̃yy

b(1,1)5Gk2ũy
(1,1) , ~A14!

ca(1,1)1~]yC
a!ũy

(1,1)50, ~A15!

cb(1,1)1~]yC
b!ũy

(1,1)50, ~A16!

ṽy
a(1,1)5sũy

(1,1) , ~A17!

where the normal stress perturbation is

t̃yy
l (1,1)52 p̃f

a(1,1)12]yṽy
l (1,1)1~]yc̃

l (1,1)!~]yC
l !

~A18!

and the pressure is calculated from thex direction momen-
tum balance. The eigenfunctions are then substituted in
boundary conditions, and the resultant dispersion matrix
solved to obtain the eigenvalues,

s52
Gk

4
1

~211A11k2!~11r 2!Cs
a2

4k
, ~A19!

where r is the ratio of surface potentials (Cs
b)/(Cs

a). The
expression for the growth rate indicates that the Maxw
stress destabilizes long wavelength perturbations when
potentials increase beyond a critical value (11r 2)Cs

a.2G,
and wavelengthsk2,kc

2 are rendered unstable where

kc
25

4@~Cs
a21Cs

b2!22G#

~Cs
a21Cs

b2!
.

The growth rate however is independent of the sign of
surface potential as expected. The results of linear stab
theory for the case of the PB model are obtained by num
cally calculating the eigenfunctions. The results of the t
models are in good agreement forCs

a!1, but are not in
agreement whenCs

a;O(1). It should also be noted that th
growth rate is real, so that the instability results in stand
waves.

The s50,n52 problem. This problem represents th
x-independent correction to the mean flow due to nonlin
interactions. The governing equations are

]yṽy
l (0,2)50, ~A20!

]y
2ṽx

l (0,2)2 ikc̃* a(1,1)]y
2c̃a(1,1)1 ikc̃a(1,1)]y

2c̃* a(1,1)50,
~A21!

2k2~ c̃* l (1,1)]yc̃
l (1,1)1c̃ l (1,1)]yc̃* l (1,1)!22]yp̃f

l (0,2)

~A22!

1~]yc̃* a(1,1)]y
2c̃ l (1,1)1]yc̃

a(1,1)]y
2c̃* l (1,1)!12]y

2c l (0,2)]yC
l

~A23!
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12]yc̃
l (0,2)]y

2C l50, ~A24!

]y
2c l (0,2)5Fm@c l (0,2)#, ~A25!

where for the DH model

Fm@c l (0,2)#5c̃ l (0,2)

and for the PB model

Fm@c l (0,2)#52 cosh@c̃m
l #c̃ l (0,2)1~ c̃ l (1,1)!2 sinh@c̃m

l #.

The eigenfunctions consistent with the above equations
the case of the DH model are

ṽy
l (0,2)50, ~A26!

p̃f
l (0,2)50, ~A27!

c̃ l (0,2)5Ma1
(0,2) exp@2y#, ~A28!

c̃ l (0,2)5Mb1
(0,2) exp@y#, ~A29!

ṽx
a(0,2)5Ma2

(0,2) , ~A30!

ṽx
b(0,2)5Mb2

(0,2) . ~A31!

The boundary conditions for the problem are lengthy and
not provided here. The normal velocity continuity bounda
condition is identically satisfied and so is the normal str
boundary condition so that the mean pressure develope
set to zero. The tangential velocity boundary condition a
the potential boundary condition then determine the m
correction to the tangential velocity and the potential. Bo
these corrections are exponentially decaying functions.
normalizations evaluated from the boundary conditions a

Ma1
(0,2)5@A2~2112A11k2!Cs

a#/2, ~A32!

Mb1
(0,2)5@A2~2112A11k2!Cs

ar #/2, ~A33!

Ma2
(0,2)50, ~A34!

Mb2
(0,2)50. ~A35!

Theá52,n52 problem. This problem represents the no
linear correction to the second harmonic of the linearly u
stable wavenumberk. The governing equations at ordera
52,n52 are the following:

]yṽy
l (2,2)12ia ṽx

l (2,2)50, ~A36!

22ia p̃f
l (2,2)1~]y

224a2!ṽx
l (2,2)2 ik3~ c̃ l (1,1)!2

1 ikc̃ l (1,1)]y
2c̃ l (1,1) ~A37!

12ikc̃ l (2,2)~]y
2Cs

a!12ikc̃ l (2,2)]y
2Cs

l 50, ~A38!
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2]yp̃f
l (2,2)1~]y

224a2!ṽx
l (2,2)2k2~ c̃ l (1,1)!]yc̃

l (1,1)

2]yc̃
l (1,1)]y

2c̃ l (1,1) ~A39!

1~]y
224a2!2 ṽy

l (2,2)1]yc̃
l (2,2)~]y

2Cs
a!50, ~A40!

~]y
224a2!c̃ l (2,2)5F3@c̃ l (2,2)#, ~A41!

where for the DH model

F2@c̃ l (2,2)#5c̃ l (2,2)

and for the PB model

F2@c̃ l (2,2)#54k2c̃ l (2,2)1cosh@Cm
a c̃ l (2,2)#

1$~ c̃ l (1,1)!2 sinh@Cs
m#%/2.

The PB model is solved numerically. For the DH mod
however, analytical solutions are possible and we admit
caying solutions for this problem. The eigenfunctions cons
tent with the above governing equations can be written a

c̃a(2,2)5Ma1
(2,2) exp@2A114k2y#, ~A42!

c̃b(2,2)5Mb1
(2,2) exp@A114k2y#, ~A43!

ṽy
a(2,2)5

Ma2
(2,2)1Ma3

(2,2)y

e2ky
, ~A44!

ṽy
b(2,2)5e2ky~Mb2

(2,2)1Mb3
(2,2)y!. ~A45!

At the interfacey50, there are seven inhomogeneo
boundary conditions that can be used to calculate the eig
functions for the velocities and the potential. The consta
can be easily evaluated as

Ma2
(2,2)5Ma3

(2,2)5Mb2
(2,2)5Mb3

(2,2)50, ~A46!

Ma1
(2,2)52

A2Cs
aF1

~2314A11k22A114k2!~11r 2!
,

~A47!

Mb1
(2,2)52

A2r Cs
aF2

~2314A11k22A114k2!~11r 2!
,

~A48!



ũy
a(2,2)5

2$A2@22k21~2112A11k2!~211A114k2!#~211r !~11r !%

2~2314A11k22A114k2!~11r 2!
~A49!
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where

F15@6~211A11k2!1~2514A11k22A114k2

12A11k2A114k2!r 22k2~315r 2!#,

F25@2514A11k22A114k212A11k2A114k226r 2

16A11k2r 22k2~513r 2!#.

Theá51,n53 problem. The variations of the amplitude
A(t) with the slow time scale appear as inhomogene
terms in the boundary conditions at ordera51, n53. The
governing equations are

ik ṽx
l 1]yṽy

l 50, ~A50!

2 ik p̃f
l 1~]y

22k2!ṽx
l 1 ikc l~]y

2Cl !

52ik3c̃* l (1,1)c̃ l (2,2)12ikc̃ l (1,1)]y
2c̃ l (0,2)

12ikc̃ l (2,2)]y
2c̃* l (1,1)2 ikc̃* l (1,1)]y

2c̃ l (2,2),

~A51!

2]yp̃f
l 1~]y

22k2!ṽy
l 1~]yCl !~]y

22k2!c l1~]yc
l !~]y

2Cl !

522k2c̃ l (1,1)]yc̃
l (0,2)24k2c̃ l (2,2)]yc̃* l (1,1)

2k2c̃* l (1,1)]yc̃
l (2,2)12]yc̃

l (1,1)]y
2c̃ l (0,2)

12]yc̃
l (0,2)]y

2c̃ l (1,1)1]yc̃
l (2,2)]y

2c̃* l (1,1)

1]yc̃* l (1,1)]y
2c̃ l (2,2), ~A52!

2c̃ l (1,3)2k2c̃ l (1,3)1]y
2c̃ l (1,3)50. ~A53!

The governing equations can be solved to get eigenfunct
that can be written as follows:

c̃a(1,3)5Ma3
(1,3) exp@2A11k2y#, ~A54!

c̃b(1,3)5Mb3
(1,3) exp@A11k2y#, ~A55!

ṽy
a(1,3)5~Ma1

(1,3)1Ma2
(1,3)y!exp@2ky#, ~A56!

ṽy
b(1,3)5~Mb1

(1,3)1Mb2
(1,3)y!exp@ky#. ~A57!

The inhomogeneous boundary conditions in the (1,3) pr
lem are

ṽy
a(1,3)2 ṽy

b(1,3)5g1 , ~A58!

ṽx
a(1,3)1~]yvx

a!ũy
(1,3)5g2 , ~A59!
s
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ṽx
b(1,3)1~]yvx

b!ũy
(1,3)5g3 , ~A60!

t̃yy
a(1,3)2 t̃yy

b(1,3)2Gk2ũy
(1,3)5g4 , ~A61!

ca(1,3)1~]yC
a!ũy

(1,3)5g5 , ~A62!

cb(1,3)1~]yC
b!ũy

(1,3)5g6 , ~A63!

ṽy
a(1,3)2sũy

(1,3)5g7 . ~A64!

The eigenfunctions when substituted in the boundary con
tions can then be written in the matrix form as

CuA5B ~A65!

where C5(ci j ) is the coefficient matrix, vectorA

5@Ma1
(1,3),Ma2

(1,3),Ma3
(1,3),Mb1

(1,3),Mb2
(1,3),Mb3

(1,3),ũy
(1,3)# while

vectorB5@g1 ,g2 ,g3 ,g4 ,g5 ,g6 ,g7#. The time derivative of
the amplitude is present in the inhomogeneityg7 and the
expression for the Landau coefficient is obtained using
solvability condition for the matrix equation. The adjoin
problem for Eq.~A65! is constructed by defining the inne
product of two vectorsu andv as

^u,v&5( ui
†v i , ~A66!

whereui
† is the complex conjugate ofui . Using the defini-

tion of adjoint we get

C1A150. ~A67!

whereA15@c1 ,c2 ,c3 ,c4 ,c5 ,c6 ,c7# is the nontrivial adjoint
solution for the homogeneous adjoint problem, andC1

5(cji
1) is the adjoint of the matrixC. The Landau equation

is then obtained using the Fredholms solvability condition
setting the solution of the adjoint problem orthogonal to t
inhomogeneities,

A1B50. ~A68!

APPENDIX B

Here we give the numerical procedure for calculati
eigenfunctions in the case of the PB model. Details are gi
for the linear problem and similar procedure holds for all t
other orders of nonlinearity. The governing equations to
solved are

~]y
22k2!c̃ l (1,1)5cosh@Cm

a #c̃ l (1,1), ~B1!

~]y
22k2!2ṽy

l (1,1)50. ~B2!
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The governing equation for they velocity is decoupled and
two decaying eigenfunctions admitted are given by

ṽy5e2ky and ye2ky. ~B3!

For Eq. ~B1! however analytical solutions are difficult. Th
equation is solved numerically by making a coordinate tra
formationy5e2y so that the domain of integration is tran
formed fromy50 andy5` to y51 andy50. A similar
transformation can be made for the bottom fluid namelyy
5ey and the integration limits in this case get transform
from y52` andy50 to y50 andy51. The transformed
equation then becomes

~y2]y
21y]y2k2!c̃ l (1,1)5cosh@Cm

a #c̃ l (1,1). ~B4!

To integrate Eq.~B4! numerically we need two boundar
conditions aty50. The equations are however singular
.

in
-

d

t

y50. The integration is therefore proceeded from a sm
value of y5y0 and is verified to be independent of th
choice ofy0. The boundary conditions are the solutions f
the DH model in they50 limit. The decaying eigenfunction
for the DH model is given by~A7!, so that the boundary
condition aty5yo becomes

c̃ l (1,1)uy5y0
5y0

A(k211) , ~B5!

]yc̃
l (1,1)uy5y0

5A~k211!y0
A(k211)21 . ~B6!

The numerical procedure is same for all other orders. For
adjoint problem, the homogeneous solution is obtained
the above procedure. The nonhomogeneous solution is
obtained using homogeneous boundary conditions aty5y0.
@1# A. Voight and E. Donath, inBiophysics of the Cell Surface,
edited by R. Glaser and D. Gingell~Springer-Verlag, Berlin,
1990!.

@2# E. W. Kaler, A. K. Murthy, B. E. Rodriguez, and J. A. N
Zasadzinski, Science245, 1371~1989!.

@3# M. D. Houslay and K. K. Staney,Dynamics of Biological
Membranes~Wiley, New York, 1982!.

@4# S. A. Safran, P. A. Pincus, D. Andelman, and F. C. MacK
tosh, Phys. Rev. A43, 1071~1991!.

@5# P. B. S. Kumar and M. Rao, Phys. Rev. Lett.80, 2489~1998!.
-

@6# V. Kumaran, Phys. Rev. E64, 011911~2001!.
@7# M. Winterhalter and W. Helfrich, J. Phys. Chem.92, 6865

~1988!.
@8# H. N. W. Lekkerkerker, Physica A167, 384 ~1990!.
@9# J. Oberdisse and G. Porte, Phys. Rev. E56, 1965~1997!.

@10# J. Oberdisse, Eur. Phys. J. B3, 463 ~1998!.
@11# V. Kumaran, J. Chem. Phys.99, 5490~1993!.
@12# V. Kumaran, Phys. Rev. Lett.85, 4996 ~2000!; Phys. Rev. E

64, 051922~2001!.


