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Abstract. We re-examine and correct an earlier derivation of the distribution of the Wigner phase delay
time for wave reflection from a long one-dimensional disordered conductor treated in the continuum limit.
We then numerically compare the distributions of the Wigner phase delay time and the dwell time, the
latter being obtained by the use of an infinitesimal imaginary potential as a clock, and investigate the
effects of strong disorder and a periodic (discrete) lattice background. We find that the two distributions
coincide even for strong disorder, but only for energies well away from the band-edges.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 72.70.+m Noise processes and
phenomena – 73.23.-b Electronic transport in mesoscopic systems

1 Introduction

The delay time associated with potential scattering is one
of the important quantities related efficiently to the dy-
namical aspect of scattering in quantum mechanics. One
of the common measures for this quantity is the Wigner
phase (φ) delay time (Tφ = ~(∂φ/∂E)) [1], which essen-
tially entails following a fiducial feature such as the peak
of the wavepacket as it traverses the scattering region.
This procedure is, however, rendered meaningless under
conditions of strong distortion of the wavepacket by the
scattering potential [2,3]. Further, there is the problem of
indentifying the position of the particle with the peak of
the wavepacket. Several researchers have made other pro-
posals for identifying a physically meaningful timescale
of interaction of the particle with the scattering poten-
tial (see for recent reviews [4,5]). These include the quan-
tum clocks that utilize the co-evolution, in a locally ap-
plied infinitesimal field / potential, of an extra degree of
freedom (such as the spin [6]) attached to the travers-
ing particle. Even these proposals are not completely free
from problems [4,5,7,8]. One related quantity that has,
however, remained uncontroversial is the dwell time ob-
tained with the ‘non-Unitary’ clock [3,7–9] involving ab-
sorption/amplification due to a locally applied infinitesi-
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mal imaginary potential (Vi)

τRd =
~
2

lim
Vi→0

∂ ln |R|2
∂Vi

, (1)

for the case of total reflection (|R|2 = 1). In this case,
it also turns out to be the average Smith dwell time
τd = (1/j)

∫
|ψ|2dx, where j is the incoming flux in the

steady state situation, and ψ is the wavefunction in the
scattering region of interest. In this paper, we will con-
sider the Wigner phase delay time and the dwell time,
given by the non-Unitary clock, for total reflection from
a long one-dimensional disordered medium. These times
are, however, not self-averaging and one must have their
full probability distribution over a statistical ensemble of
random samples.

The distribution of these times for the random me-
dia has been investigated recently by several work-
ers [9–22]. A delay time distribution that appears uni-
versal for wave reflection from a long one-dimensional
(one-channel) random system was derived recently by
Texier and Comtet [16] in the limit of high energy (E)
and weak disorder as

P 0
∞(τ) =

α

τ2
exp

(
−α
τ

)
, (2)

where α = 4(∆2k)−1, ∆2 is the strength of the dis-
order (see Eq. (6)), and the dimensionless delay time
τ = ETφ/~. This was later confirmed by Ossipov et al. [17]
for a discrete random chain.

Earlier, we had derived the distribution of the dwell
time for total reflection, i.e., in the insulating limit, using
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the non-Unitary clock for both passive as well as active
(absorbing or amplifying) one-dimensional random con-
tinuous media [9]. The dwell time distribution obtained
by us, under the condition of a random phase approxi-
mation which is valid for high energy and weak scatter-
ing, coincided exactly with the delay time distribution of
Texier and Comtet. However, an earlier calculation by
Jayannavar et al. [10] for the Wigner phase delay time
had obtained a slightly different form from the distribu-
tion and it has been speculated [17] that this discrep-
ancy may well be due to the continuum model used by
them. In this paper, we first re-examine and correct the
calculation of Jayannavar et al. for the Wigner phase de-
lay time distribution. We find that the discrepancy noted
above arises actually from an inconsistency of the approx-
imations made within the random phase approximation
(RPA), and that when the approximations are carried out
consistently, their expression reduces to the universal dis-
tribution as in equation (2). We then examine numerically
the distribution of the delay times and the dwell times for
strong disorder using the transfer matrix method for a
one-dimensional disordered chain with a one-band tight
binding Hamiltonian. We find that the distribution of the
Wigner phase delay time and the dwell time, clocked by
the non-Unitary clock, agree exactly even in the strong
disorder regime, but for energies far away from the band-
edge. We further examine the effect of a periodic lattice on
the delay time by varying the energy within the band. We
find that for strong disorder, and for energies close to a
band-edge, the Wigner phase delay time distribution dif-
fers considerably from that of the dwell time given by the
Non-Unitary clock. The Wigner phase delay time can even
become negative under such conditions. The dwell time,
however, remains positive as it must for total reflection
(|R| = 1).

2 Distribution of the Wigner phase delay
time for total reflection in the RPA

Here we will re-examine the earlier calculation of
Jayannavar et al. [10,13] for the distribution of the
Wigner phase delay time for total reflection from a one-
dimensional (one-channel) disordered continuum. Again,
we will begin with the invariant imbedding equation for
the reflection amplitude R(L) =

√
r(L) exp[iφ(L)] given

by (in the notations of Ref. [10])

dR(L)
dL

= 2ikR(L) +
ik
2
ηr(L) [1 +R(L)]2 , (3)

where ηr(L) = −Vr(L)/E is the normalized fluctuating
potential. In the limit of large lengths (L � lc, the lo-
calization length), the reflection becomes approximately
total (r(L) ' 1), and equation (3) yields an equation for
the reflection phase φ(L) as

dφ
dL

= 2k + kηr(L)(1 + cosφ). (4)

The equation for the phase delay time Tφ = ~(dφ/dE) =
1/cg(dφ/dk) (where cg is the group velocity), is obtained
by differentiating the above equation for φ with respect
to k:

dTφ
dL

=
1
cg

[2 + ηr(L) (1 + cosφ− kcgTφ sinφ)] . (5)

As before, we will assume the random refractive index
ηr(L) to be a Gaussian white noise with a zero mean, i.e.,

〈ηr(L)〉 = 0, 〈ηr(L)ηr(L′)〉 = ∆2δ(L− L′). (6)

Using the Novikov theorem [23], we can now set up
a Fokker-Planck equation for the joint probability
distribution function P (Tφ, φ;L) over the ensemble of
ηr(L). However, we will be interested in the marginal
probability distribution P (Tφ;L), which can be ob-
tained by integrating over the phase angle φ. To this
end, we make the random phase approximation (RPA)
and set P (Tφ, φ;L) = P (Tφ;L)/2π, i.e., assume a fac-
tored out uniform distribution over the phase angle φ.
The RPA is a good approximation for high energy and
weak disorder [24]. We obtain the equation for P (Tφ;L) as

∂P

∂l
=

∂

∂Tφ

[
∂

∂Tφ

(
T 2
φ

2
+

3
2c2gk2

)
+
(
Tφ −

4
cg∆2k2

)]
P,

(7)

where the dimensionless length l = L/lc = 1/2 ∆2k2L.
In the limit of large lengths, l � 1, the distribution
saturates and we can set ∂P/∂l = 0. Hence, we obtain
the solution [10]

P∞(τ1) =
λeλ tan−1 τ1

(eλπ/2 − 1)(1 + τ2
1 )

, (8)

where λ = 8/
√

3∆2k and the dimensionless time τ1 =
cgkTφ/

√
3. This expression does yield the τ−2

1 universal
tail behaviour for τ1 → ∞, but differs from the distribu-
tion of dwell times given by equation (2) at short times.
The main difference appears at τ = 0, where this expres-
sion for P∞(τ) yields a finite value in contrast to equa-
tion (2) which gives P 0

∞(τ) = 0 because of the essential
singularity at τ = 0.

This difference is readily traced to the fact that the
RPA is good only in the high energy, weak disorder limit.
Indeed, if we consistently take the high energy, weak
disorder limit in equation (7) (or in Eq. (8)), i.e., by
demanding c2gk

2 → ∞ and ∆2/cg → 0 with the product
(∆2/cg)(c2gk

2) = 4/α a constant, we obtain the solution as

P∞(τ) =
α

τ2
exp

(
−α
τ

)
, (9)

where τ = ETφ/~. This is exactly the full universal distri-
bution of delay times obtained in equation (2) [16] for the
case of a free electron with cg = ~k/m, thus reconfirming
again the universal delay time distribution. We note that
the above approximations have to be carried out consis-
tently specially for a large group velocity cg, which is the
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case for energies far away from the band edges. This also
suggests that the condition of weak disorder ∆2k � 1 for
the one-parameter scaling, which assumes a uniform dis-
tribution of the phase (RPA), may have to be modified to
∆2k/(cg/cφ)� 1, where cφ is the phase velocity.

3 Strong disorder and a periodic background:
numerical results

The probability distribution of dwell times in reference [9]
was derived for a continuum model in the limit of weak
disorder and high energy when the RPA is valid. In this
section, we will examine these limitations numerically. In
particular, we investigate the distributions of dwell times
for the case of strong disorder and compare the distribu-
tions of the dwell times and the Wigner phase delay times.
We will simulate a disordered lattice, instead of a contin-
uum. The underlying lattice will also provide a discrete
periodic background in the system, as distinct from a uni-
form continuum, whose effect on the delay times will be
investigated.

In order to go beyond the RPA, we will use the transfer
matrix method involving the products of random transfer
matrices [25] to simulate the one-dimensional random
medium using the one-band tight binding Hamiltonian
(the Anderson Hamiltonian) with diagonal disorder [26].
The Hamiltonian describing the motion of a particle on
the random lattice can be written as

H =
∑
n

[εn|n〉 〈n| + V (|n〉 〈n+ 1|+ |n+ 1〉 〈n|)] (10)

where |n〉, εn and V denote, respectively, the non-
degenerate Wannier orbital at the nth site, the site energy
at the nth site and the hopping matrix element connecting
the nearest neighbours separated by a unit lattice spac-
ing. The site energies εn can be written explicitly in the
form of εn − iη, with the real parts of the site energies
assumed to be independent random variables distributed
uniformly over the range [−W/2,W/2] for 1 < n < N and
zero otherwise. This is so that the disordered chain of N
sites is embedded in an otherwise infinitely long ordered
lattice. The imaginary part in the site energy (−iη) makes
the Hamiltonian non-Hermitian and causes the particles
to be formally coherently absorbed or emitted depending
on the sign of η, which is taken to be constant and non-zero
(though infinitesimally small) over the disordered segment
1 < n < N and zero elsewhere. Since all the energies can
be scaled with respect to V , we will set V to unity.

The reflection (R) and the transmission(T ) ampli-
tudes can now be calculated using the transfer ma-
trix method [25]. In order to calculate the Wigner
phase delay time, the reflection amplitude R(E) =√
r(E) exp[−iφ(E)] is computed at two slightly differ-

ing values of the incident wave energy, E = E0 and
E = E0+δE, for a conservative chain (η = 0). The Wigner
phase delay time is then calculated as Tφ = ~(dφ/dE) =
~[φ(E0+δE)−φ(E0)]/δE. Similarly, to calculate the dwell

time by applying the imaginary potential, the reflection
amplitude is computed at two values of the imaginary site
energy (η = 0 and η = δη). Now the dwell time is given
by τd = ~/2(d|R|2/dη) = ~/2[|R(E, η = δη)|2− |R(E, η =
0)|2]/δη. Typically the values of δE and δη are 10−6 and
the stability of the results have been checked for their
choice within the range 10−5 < δE, δη < 10−7. (We will
deal with the delay/dwell time in a dimensionless form
by multiplying it by V and setting ~ = 1.) For the cal-
culation of the averages and the distributions, we have
typically used 105 configurations of the disorder. We will
present our results for a long sample (L� lc, i.e., lengths
much greater than a localization length).

We will first examine the case of wave energies far away
from a band edge (E = 0.0, 1.0). In Figure 1, we show
the distribution of the Wigner phase delay time τw and
the dwell time τd for reflection from a long sample for dif-
ferent values of the disorder strengths (W = 0.1, 2). For
weak disorder (W = 0.1), the distributions are identical
to each other and also correspond exactly to the universal
distribution given by equation (2). It should be noted that
the RPA is not valid for exactly the band centre (E = 0)
due to a well-known anomaly, although it is valid for a
generic value of energy within the band [27]. The two dis-
tributions also coincide for higher disorder strengths [28].
It is interesting to note that equation (2) still describes the
distribution reasonably well for moderately large disorder
(W = 2.0, see Fig. 1b), though the RPA under which the
expression was derived is not valid for these cases. The
case of E = 1 shows similar behaviour, though the peak
occurs at a different value, reflecting the smaller group
velocity. In Figure 1d, we plot the distributions of dwell
and delay times for cases of symmetric disorder (the ran-
dom site energy is chosen from the range symmetric about
zero [−W/2,W/2]) and asymmetric disorder (the site en-
ergy can only be positive [0,W ] or negative [−W, 0]). The
distributions for the positive and the negative one-sided,
asymmetric disorder appear to be the same, regardless of
the sign as expected, of course (we have included these
two only as a check on our numerics). These, however, are
different from the distribution for the symmetric case. The
contribution of the prompt part of the reflection arising
from the average potential mismatch at the boundary is
clearly seen for the cases of asymmetric disorder in that
the peak of the distribution occurs slightly earlier, and
there is more weight at early times. The asymmetric dis-
order model changes on an average the lattice potential
locally only over the disordered segment (sample) and not
globally over the sample and the leads. This gives rise to
a potential mismatch at the ends of the disordered chain
and cannot be absorbed by a mere shift of the incident
energy. More formally, in the case of the symmetric dis-
order the average of the S-matrix, 〈S〉 = 0, while in the
case of the asymmetric disorder, 〈S〉 6= 0.

Now, we will examine the case of wave energies close
to the edge of the band (E = 1.9, 1.99). In Figure 2, we
show distributions of the delay time and dwell times. For
the case of weak disorder, again the Wigner delay time
distributions and the dwell time distribution coincide.
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Fig. 1. The distribution of delay and dwell times for reflection from a long disordered passive medium for wave energy at the
middle of the band (E = 0.0, 1.0).
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Fig. 2. The distribution of delay and dwell times for reflection from a long disordered passive medium for wave energy close to
the edge of the band (E = 1.9, 1.99).
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There is, however, considerable discrepancy from equa-
tion (2), as can be seen. We have explicitly verified that
the RPA is valid for this case of weak disorder by calcu-
lating the distribution of the phase. Thus, the discrepancy
cannot be an artefact of the RPA. The most probable rea-
son, perhaps, is that near the band edge, the wave does
not penetrate deep enough to fully sample the random-
ness, before getting reflected promptly. This would call
into question the factorization of the joint probability dis-
tribution of the phase and its energy derivative, particu-
larly for short times.

For intermediate and strong disorder (W = 1, 2, 3), a
more interesting effect occurs. The two distributions, i.e.,
the Wigner delay time distribution and the dwell time
distributions no longer coincide. The difference between
the distributions increase with the disorder strength and
with their proximity to the band-edge. The Wigner delay
time distribution appears quite different from the univer-
sal distribution at E = 0. Near the band-edge, in fact, for
E = 1.99 and W = 1, the Wigner delay time distribution
is non-zero for even negative times. This is, presumably,
due to the strong deformation of the wavepacket caused
by the strong dispersion near the band-edge. The dwell
time distribution given by the ‘non-Unitary’ clock, how-
ever, remains non-zero only for positive times. We also
note that the Universal τ−2 tail at long times (τ → ∞)
remains unaffected.

4 Conclusions

In conclusion, we have studied the distribution of the de-
lay and the dwell times for reflection from a disordered
medium in the limit of total reflection (|R| = 1). We have
revisited the original calculation of Jayannavar et al. [10]
for the distribution of the Wigner delay time. We show
that, by taking the high-energy limit consistently within
the RPA, the correct universal distribution of delay times
is reproduced. In the course of the derivation, we note that
the single-parameter scaling ansatz for the RPA seems
consistent under the condition ∆2k/(cg/cφ) � 1 (∆2 –
the disorder strength, cg – the group velocity and cφ-the
phase velocity), instead of ∆2k � 1 which does not ac-
count for the effects of the group velocity. This is in ac-
cord with the recent results of reference [17,29]. We have
also investigated the distribution of delay times numeri-
cally and find the distributions of the Wigner delay time
and the dwell time to coincide for energies far away from a
band-edge for all disorder strengths. This, however, breaks
down for energies close to the band-edge and strong dis-
order, when the dispersive effects of the band structure
deform the wavepacket so much so as to render the de-
scription in terms of the motion of a wavepacket mean-
ingless. The concept of a dwell time, clocked by a counter
such as the imaginary potential, however, remains mean-
ingful even under such circumstances.
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