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Abstract 
A variational multiscale constitutive model that accounts for strain rate dependent ductility of 

nanocrystalline materials during intergranular failure has been presented. The presented model is an 

extension of the previous work [1], in which a nanocrystalline material is modelled as two-phase with 

grain interior being modelled using crystal plasticity theory while grain boundary affected zone using 

porous plasticity model which accounts for ductile damage due to void growth and coalescence. The 

model capability of capturing the strain rate dependent deformation and failure has been demonstrated 

through validations against uniaxial test data taken from literature. The validated results show a good 

agreement between experimental and simulated response. 

Keywords: Variational Updates, Nanocrystalline materials, crystal plasticity theory, Intergranular failure, 

strain rate sensitivity 

Introduction 
Enhanced strain rate sensitivity of yield stress and ductility has been observed in nanocrystalline 

materials in the recent past [2]–[16]. It has been reported that high diffusivity in grain boundaries 

enhances void growth and coalescence [17], [18]. It has also been reported that in nanocrystalline 

metals changing the strain rate changes the ductility [2]–[7]. Numerical simulations of deformation and 

rate independent failure in nanocrystalline materials have been performed in the recent past [19]–[23]. 

Siddiq and El Sayed [1] presented rate independent constitutive model for intergranular failure in 

nanocrystalline materials by considering void growth and coalescence in the grain boundary region. 

In the present work, the rate independent model proposed in Siddiq and El Sayed [1] is extended to rate 

dependent case. The model comprises of a grain boundary affected zone and grain interior. Similar to 

Siddiq and El Sayed [1], grain boundary affected zone is modeled using the fully variational rate sensitive 

porous plasticity model with void growth and coalescence during failure.  

Constitutive Model Framework 
The classical model proposed by Gurses and El Sayed [23], [24], [26] and Siddiq and El Sayed [1] 

comprises of two phases for each grain. Each grain consists of a single crystalline core where deviatoric 
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dislocation mediated plasticity is the dominating deformation mechanism and grain boundary affected 

zone where atomic shuffling, grain boundary sliding, void growth and coalescence are operative [1].  

The extended model is briefly discussed in the following with major modifications. Details about the 

variational formulation of the model can be found in Siddiq and El Sayed [1].  

Plastic flow rule is defined as 

𝐹̇𝑔𝑏
𝑝

𝐹̇𝑔𝑏
𝑝−1

= 𝜀̇𝑝Μ + 𝜃̇𝑝Ν + 𝛽𝜂̇𝑝𝑁 

Where 𝜀𝑝 is the deviatoric plastic strain, 𝜃𝑝 is the volumetric plastic strain, 𝜂𝑝 accounts for the void 

coalescence and is the percentage of voids undergoing coalescence at a given material point, 𝛽 is a 

material constant that transforms 𝜂𝑝 into a variable that measures volumetric strain, M and N are 

directions of the deviatoric and volumetric plastic deformation rates, respectively. 

Based on the experimental findings [6], [10], [27], it is assumed that plastic part of the deformation and 

the damage initiation at the onset of coalescence are strongly dependent upon the strain rates while 

damage evolution after the onset of void coalescence is rate independent. Rate-dependent plasticity is 

incorporated using a rate potential [23], [24], [26] while after the onset of the coalescence rate 

independent potentials have been used [1]. Rate dependent potentials, before the onset of coalescence, 

are given by 

𝛹𝑔𝑏
∗ (𝜀̇𝑝, 𝜃̇𝑝, 𝐽𝑝) = 𝛹𝑔𝑏

∗,𝑣𝑜𝑙(𝜃̇𝑝, 𝐽𝑝) +  𝛹𝑔𝑏
∗,𝑑𝑒𝑣(𝜀̇𝑝) 

 

𝛹𝑔𝑏
∗,𝑣𝑜𝑙(𝜃̇𝑝, 𝐽𝑝) =

𝑚2𝜎0𝜀0̇
𝑝
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𝛹𝑔𝑏
∗,𝑑𝑒𝑣(𝜀̇𝑝) =

𝑚𝜎0𝜀0̇
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Where m is the rate sensitivity exponent, 𝜀0̇
𝑝

 is the reference plastic strain rate, N is the void density, f is 

the volume fraction of voids, a is the mean void radius and 𝜎0 is the yield stress. 

For the criteria to onset void coalescence in the grain boundary region, strain rate dependent critical 

porosity is given by 

𝑓𝑐 = 𝐴𝜀̇𝐵 

Where A and B are material parameters identified from experimental stress-strain data.  

After the onset of the void coalescence, the model assumes that grain boundary zone becomes rate 

independent and uses rate independent energy potentials given by 
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𝑊𝑔𝑟𝑜𝑤𝑡ℎ,𝑔𝑏
𝑝,𝑣𝑜𝑙 (𝜃𝑝, 𝜂𝑝) =

𝑛𝜎0𝜀0
𝑝

𝑛 + 1
(1 − 𝜂𝑝) (𝑁0

4𝜋𝑎3

3
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Where n is the hardening exponent. 𝑎̃ 𝑎⁄  and ϒ are given by 

(
𝑎̃

𝑎
)

3

= 1 + 𝛼1(𝑓 − 𝑓𝑐)𝛼2  

𝛾 = (1 − 𝜂𝑝) + 𝜂𝑝 (
𝑎̃

𝑎
)

3

 

Where 𝛼1 and 𝛼2 are materials parameters.  

It must be noted that strain rate dependent critical porosity along with the void coalescence 

parameters, discussed above, will control the strain rate dependent ductility of the nanocrystalline 

materials during intergranular failure. For detailed discussion about the above constitutive model, 

please see [1], [23], [24], [26] and references therein. 

Results and Discussions 
The applicability of the presented constitutive model is shown by performing simulations on 

nanocrystalline materials. Brief description of individual experiments and validated results are presented 

in the following. 

Dalla Torre et al. [6] performed studies on electroplated nanocrystalline nickel (Ni) foils at strain rates 

between 10-5 and 103 s-1. Comparison between experimental and simulated response is shown in Figure 

1  while identified set of parameters are shown in Table 1. Results show a good agreement between 

experimental and simulated response. 
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Figure 1: Comparison of model prediction and experimental data reported in Dalla Torre et al. [6] 

Table 1: Material parameters identified using inverse modelling approach 

Material Properties Dalla Torre et al. [6] Zhang et al. [10] Schwaiger et al. [27] 

E (GPa) 92.73d3 85.d3 182.7d3 

 0.31d0 0.34d0 0.31d0 

0 (T0) 40 43 450 

𝜺𝟎
𝒑

 0.0113d0 0.01d0 0.013d0 

𝜺𝟎
𝒑̇

 0.002 0.02 0.012 
m 1.d0 5.1d0 25.0d0 
n 1.75d0 2.3d0 4.5d0 
a0 5.00E-07 7.60E-07 1.00E-06 
N0 1.00E+15 1.00E+16 1.00E+16 

𝜶𝟏 0.0001 0.01 0.1 

𝜶𝟐 10 10.8 0.1 

𝜷 0.05 0.05 0.012 
A 0.58 0.01 0.16 
B 3 3 3 

 

Schwaiger et al. [27] performed tensile testing of ultrafine grain Ni between strain rates 3e-4 to 3e-1 s-1. 

It was reported that ultra-fine grain Ni showed significant rate sensitivity over the selected strain rate 

range. It was also suggested that this could be because of rate-sensitive grain-boundary affected zone. 

The results of the comparison of experimental and simulated stress-strain response are plotted in Figure 

2 while parameters identified are shown in Table 1 . 
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Figure 2: Comparison of model prediction and experimental data reported in Schwaiger et al. [27] 

 

Figure 3: Comparison of model prediction and experimental data reported in Zhang et al. [10] 

Zhang et al. [10] performed experimental studies  to understand tensile behavior of ultrafine grain 

Copper (Cu). It was reported that as the strain rate is increased ductility is also increased.  A comparison 
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between model predictions and experimental results are presented in Figure 3 shows a decent 

agreement. 

Conclusions 
A fully variational multiscale constitutive model for strain rate dependent ductility of nanocrystalline 

metals was presented. Numerical validations were presented based on inverse modelling approach and 

showed a good agreement with experiments. As a future work, experimentalists have reported strain 

rate dependent grain growth in the literature and this model is planned to be extended to account for 

strain rated dependent grain growth in nanocrystalline metals. 
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