The Vibrational Analysis of Cyclopentanone¹

V. B. KARTHA,² H. H. MANTSCH,³ AND R. N. JONES

Division of Chemistry, National Research Council of Canada, Ottawa, Canada K1A 0R6 Received May 2, 1972⁴

The infrared and Raman spectra of cyclopentanone, $\alpha\alpha\alpha'\alpha'-d_4$ -cyclopentanone, $\beta\beta\beta'\beta'-d_4$ -cyclopentanone and d_8 -cyclopentanone have been measured and a normal co-ordinate analysis performed based on a twisted C_2 conformation. The 36 normal vibrations were computed using a selective valence force field comprising 16 diagonal and 16 off-diagonal force constants. The 4 isotopic species provided 144 frequencies to refine 15 diagonal force constants. The initial values of the constants were transferred from a force field for cyclohexanone computed in this laboratory. The infrared and Raman spectra were analyzed in terms of the potential energy distribution coefficients categorized as group frequencies, zone frequencies.

Les spectres infrarouge et Raman de la cyclopentanone, de la cyclopentanone $\alpha\alpha\alpha'\alpha'-d_4$, de la cyclopentanone $\beta\beta\beta'\beta'-d_4$ et de la cyclopentanone- d_8 ont été étudiés et une analyse (en coordonnées normales) a été effectuée en se basant sur une conformation C_2 croisée. Les 36 vibrations normales ont été evaluées en utilisant un champ de force valentielle sélectif qui comprend 16 constantes de force diagonales et 16 autres non-diagonales. Les 4 espèces isotopiques ont engendré 144 fréquences qui ont aidé à déterminer 15 constantes de force diagonales. Les valeurs initiales des constantes ont été obtenues d'un champ de force pour la cyclohexanone calculé dans ce laboratoire. Les spectres infrarouge et Raman ont été analysés en fonction des coefficients de distribution d'énergie potentielle classés selon des fréquences de groupe, des fréquences de zone et des fréquences délocalisées.

Can. J. Chem., 51, 1749 (1973)

[Traduit par le journal]

Introduction

This paper is concerned with a vibrational analysis of cyclopentanone and three deuterium substituted species (1-4); it supplements earlier work on cyclohexanone (1). These studies are being made to assess the capabilities and limitations of a simplified normal co-ordinate treatment to aid in the interpretation of the vibrational spectra of molecules of low symmetry related to natural products with particular reference to steroids.

Several conformations varying from planar $(C_{2\nu})$ to lower symmetries (C_2, C_5, C_1) have been

¹NRCC No. 13046. Presented in part at a joint session of the Physical Chemistry and Organic Chemistry Divisions of the Chemical Institute of Canada, Halifax, Nova Scotia, May 1971.

²NRCC Postdoctorate Fellow, 1967–1969.
 ³NRCC Postdoctorate Fellow, 1969–1971.
 ⁴Revision received December 29, 1972.

.

proposed for cyclopentanone; they have been

1750

reviewed by Howard-Lock and King (2). The ground state geometry assumed in this work (Fig. 1) is based on a least squares fit of the bond parameters (Table 1) to the rotational constants of 1, 2, 4, and two conformers of α -d-cyclopentanone (5, 6). The rotational constants were taken from microwave data in the literature (3-7). Calculations were performed with the twisted C_2 and the bent C_3 structures.⁵ All 9 parameters were allowed to adjust until the sum of the squares of the differences between the reported and computed rotational constants was minimal. The only restraint was that the C_2 — C_3 and C_3 — C_4 bond

FIG. 1. Atom numeration and geometric parameters in the skew configuration.

 TABLE 1. Molecular parameters for cyclopentanone derived from microwave measurements

No.	Parameter	Refined value
1	$C_1 - C_2$	1.512 Å
2	$C_2 - C_3$; $C_3 - C_4$	1.542 Å
3	C=0	1.241 Å
4	С—Н	1.086 Å
5	$\angle C_5 C_1 C_2$	110.283°
6	$\angle C_1 C_2 C_3$	103.576°
7	$\angle C_2 C_3 C_4$	103.443°
8	∠ HCH	108.999°
9	Twist angle	24.519°

⁵See Fig. 2 of ref. 2.

lengths remained equal and the calculations were considered self-consistant when the variations in the bond lengths were less than 0.001 Å.⁶ The C_2 conformation in which the ring is twisted in a skew configuration gave much the better fit. Such a C_2 ground state is consistent with similar calculations⁷ of Kim and Gwinn (7) and Howard-Lock and King (2) and with more recent far infrared studies of Ikeda and Lord (8), and electron diffraction measurements of Geise and Mijlhoff (9).

The Cartesian co-ordinates of the equilibrium positions of the atoms were computed with respect to an origin centered at the mid-point of the C_2-C_5 axis (Table 2). The 47 selected internal valance co-ordinates are identified⁸ in Figs. 2 and 3. Under C_2 symmetry the 36 normal vibrations divide into 18 type A (Raman polarized) and 18 type B (Raman depolarized), and all are infrared and Raman active. The 47 internal co-ordinates were combined into 47 non-normalized symmetry co-ordinates (Table 3). As there are 36 normal modes 11 symmetry co-ordinates are redundant. The local redun-

⁶All molecular dimensions are reported in Å (1 Å = 10^{-10} m).

⁷The refined bond parameters in Table I differ slightly from those reported in refs. 2 and 7. Our twist angle (24.5°) is close to that of Kim and Gwinn (24°) but Howard-Lock and King obtained 33°. Our differences from Kim and Gwinn's bond lengths are probably due to the fact that they held the C—H and C==O bond lengths and the CH₂ angles fixed during refinement while we allowed them to adjust.

⁸Figure 1 exhibits the true projections of the non-planar ring but the projection diagrams appearing elsewhere have been distorted to permit more space to portray the bond and angle motions within the ring.

Atom No.*	Co-ordinates (Å)	Atom No.	Co-ordinates (Å)
1(C)	$\begin{cases} x = 0.0 \\ y = 0.0 \\ z = 0.864448 \end{cases}$	8(H)	$\begin{cases} x = -1.945792 \\ y = 0.758048 \\ z = 0.329162 \end{cases}$
2(C)	$\begin{cases} x = -1.241065 \\ y = 0.0 \\ z = 0.0 \end{cases}$	9(H)	$\begin{cases} x = -0.641546\\ y = 1.392274\\ z = -1.569303 \end{cases}$
3(C)	$\begin{cases} x = -0.701264 \\ y = 0.319867 \\ z = -1.408063 \end{cases}$	10(H)	$\begin{cases} x = -1.330775\\ y = -0.118765\\ z = -2.176788 \end{cases}$
4(C)	$\begin{cases} x = 0.701264 \\ y = -0.319867 \\ z = -1.408063 \end{cases}$	11(H)	$\begin{cases} x = 0.641546\\ y = -1.392274\\ z = -1.569303 \end{cases}$
5(C)	$\begin{cases} x = 1.241065 \\ y = 0.0 \\ z = 0.0 \end{cases}$	12(H)	$\begin{cases} x = 1.330775\\ y = 0.118765\\ z = -2.176788 \end{cases}$
6(O)	$\begin{cases} x = 0.0 \\ y = 0.0 \\ z = 2.105452 \end{cases}$	13(H)	$\begin{cases} x = 1.730035\\ y = 0.969616\\ z = 0.019405 \end{cases}$
7(H)	$\begin{cases} x = -1.730035 \\ y = -0.969616 \\ z = 0.019405 \end{cases}$	14(H)	$\begin{cases} x = 1.945792 \\ y = -0.758048 \\ z = 0.329162 \end{cases}$

TABLE 2. Cartesian co-ordinates of cyclopentanone in the C_2 skew conformation

*For numbering of atoms see Fig. 1.

FIG. 2. Internal valence co-ordinates.

FIG. 3. Numerical identification of the internal valence co-ordinates.

dancies at the 5 carbon atoms are easily recognized and the remaining 6 are eliminated during normalization by the GMAT program (1, 10).

Experimental

1 and 4 are commercially available compounds while 2 and 3 were prepared by exchange reactions at the active α positions.

Cyclopentanone (1)

An Eastman Organic Chemical reagent grade sample was distilled under reduced pressure in a Nester-Faust spinning band column.

$\alpha \alpha \alpha' \alpha' - d_4$ -Cyclopentanone (2)

Cyclopentanone (30 ml), purified as above, was stirred with D_2O (99.7%, 60 ml) and Na_2CO_3 (600 mg) at room temperature for 24 h in a sealed glass tube. The product was extracted with ether, dried (MgSO₄), the ether removed, and the residue distilled under reduced pressure (55-60 Torr). The product was twice recycled under the same conditions. In the final distillation the first fraction (3.5 ml) was discarded and the next 5 ml collected. The infrared spectrum showed negligible H_2O or D_2O absorption and indicated almost complete α -deuteration. Mass spectrum analysis, when extrapolated to zero ionization voltage, indicate a d_4 content in excess of 90%.

$\beta\beta\beta'\beta'$ -d.,-Cyclopentanone (3)

 d_8 -Cyclopentanone (1 ml) was stirred with H₂O (3 ml) and Na₂CO₃ (30 mg) in an all-glass system for 24 h at room temperature. The product was extracted with ether, the ether removed by evaporation at room temperature, and the residue again treated for 24 h with H₂O (2 ml)

Internal co-ordinates involved*	Approximate description
Type A	
$S_1 = d_1 + d_2 - d_3 - d_4$	asym α CH stretch
$S_2 = d_5 + d_6 - d_7 - d_8$	asym β CH stretch
$S_3 = d_1 + d_2 + d_3 + d_4$	sym α CH stretch
$S_4 = d_5 + d_6 + d_7 + d_8$	sym β CH stretch
$S_5 = v_9$	C=O stretch
$S_6 = r_{10} + r_{11}$	α C—C stretch
$S_7 = r_{12} + r_{13}$	β C—C stretch
$S_8 = r_{14}$	γ C—C stretch
$S_9 = \delta_{15} + \delta_{16}$	α CH ₂ scissor
$S_{10} = \delta_{17} + \delta_{18}$	β CH ₂ scissor
$S_{11} = \gamma_{19} + \gamma_{20} + \gamma_{21} + \gamma_{22} - \gamma_{23} - \gamma_{24} - \gamma_{25} - \gamma_{26}$	α CH ₂ wag
$S_{12} = \gamma_{27} + \gamma_{28} + \gamma_{29} + \gamma_{30} - \gamma_{31} - \gamma_{32} - \gamma_{33} - \gamma_{34}$	β CH ₂ wag
$S_{13} = \gamma_{19} + \gamma_{20} - \gamma_{21} - \gamma_{22} - \gamma_{23} - \gamma_{24} + \gamma_{25} + \gamma_{26}$	α CH ₂ twist
$S_{14} = \gamma_{27} + \gamma_{28} - \gamma_{29} - \gamma_{30} - \gamma_{31} - \gamma_{32} + \gamma_{33} + \gamma_{34}$	β CH ₂ twist
$S_{15} = \gamma_{19} + \gamma_{20} - \gamma_{21} - \gamma_{22} + \gamma_{23} + \gamma_{24} - \gamma_{25} - \gamma_{26}$	α CH ₂ rock
$S_{16} = \gamma_{27} + \gamma_{28} - \gamma_{29} - \gamma_{30} + \gamma_{31} + \gamma_{32} - \gamma_{33} - \gamma_{34}$	β CH ₂ rock
$S_{17} = \gamma_{19} + \gamma_{20} + \gamma_{21} + \gamma_{22} + \gamma_{23} + \gamma_{24} + \gamma_{25} + \gamma_{26}$	Redundant
$S_{18} = \gamma_{27} + \gamma_{28} + \gamma_{29} + \gamma_{30} + \gamma_{31} + \gamma_{32} + \gamma_{33} + \gamma_{34}$	Redundant
$S_{19} = \omega_{35} + \omega_{36}$	α -CCC bend
$S_{20} = \omega_{37} + \omega_{38}$	β-CCC bend
$S_{21} = \chi_{39} - \varepsilon_{40} - \varepsilon_{41}$	C_{α} COC _a bend
$S_{22} = \chi_{39} + \varepsilon_{40} + \varepsilon_{41}$	Redundant
$S_{23} = \tau_{43} + \tau_{44}$	$C_{\alpha}C_{\alpha}$ torsion
$S_{24} = \tau_{45}$	$C_{\beta}C_{\beta}$ torsion
$S_{25} = \tau_{46} + \tau_{47}$	$C_{\alpha}C(O)$ torsion
Type B	
$S_{26} = d_1 - d_2 - d_3 + d_4$	asym α CH stretch
$S_{27} = d_5 - d_6 - d_7 + d_8$	asym β CH stretch
$S_{28} = d_1 - d_2 + d_3 - d_4$	sym α CH stretch
$S_{29} = d_5 - d_6 + d_7 - d_8$	sym β CH stretch
$S_{30} = r_{10} - r_{11}$	α C—C stretch
$S_{31} = -r_{12} + r_{13}$	β C—C stretch
$S_{32} = \delta_{15} - \delta_{16}$	α CH ₂ scissor
$S_{33} = \delta_{17} - \delta_{18}$	β CH ₂ scissor
$S_{34} = \gamma_{19} - \gamma_{20} + \gamma_{21} - \gamma_{22} - \gamma_{23} + \gamma_{24} - \gamma_{25} + \gamma_{26}$	α CH ₂ wag
$S_{35} = \gamma_{27} - \gamma_{28} + \gamma_{29} - \gamma_{30} - \gamma_{31} + \gamma_{32} - \gamma_{33} + \gamma_{34}$	β CH ₂ wag
$S_{36} = \gamma_{19} - \gamma_{20} - \gamma_{21} + \gamma_{22} - \gamma_{23} + \gamma_{24} + \gamma_{25} - \gamma_{26}$	α CH ₂ twist
$S_{37} = \gamma_{27} - \gamma_{28} - \gamma_{29} + \gamma_{30} - \gamma_{31} + \gamma_{32} + \gamma_{33} - \gamma_{34}$	β CH ₂ twist
$S_{38} = \gamma_{19} - \gamma_{20} - \gamma_{21} + \gamma_{22} + \gamma_{23} - \gamma_{24} - \gamma_{25} + \gamma_{26}$	α CH ₂ rock
$S_{39} = \gamma_{27} - \gamma_{28} - \gamma_{29} + \gamma_{30} + \gamma_{31} - \gamma_{32} - \gamma_{33} + \gamma_{34}$	β CH ₂ rock
$S_{40} = \gamma_{19} - \gamma_{20} + \gamma_{21} - \gamma_{22} + \gamma_{23} - \gamma_{24} + \gamma_{25} - \gamma_{26}$	Redundant
$S_{41} = \gamma_{27} - \gamma_{28} + \gamma_{29} - \gamma_{30} + \gamma_{31} - \gamma_{32} + \gamma_{33} - \gamma_{34}$	Redundant
$S_{42} = \omega_{35} - \omega_{36}$	α CCC bend
$S_{43} = -\omega_{37} + \omega_{38}$	β CCC bend
$S_{44} = \varepsilon_{40} - \varepsilon_{41}$	C=O bend in-plane
$S_{45} = \rho_{42}$	C==O bend out-of-plane
$S_{46} = \tau_{43} - \tau_{44}$	$C_{\alpha}C_{\beta}$ torsion
$S_{47} = \tau_{46} - \tau_{47}$	$C_{-}C(O)$ torsion

TABLE 3.	Symmetry co-ordinates of cyclopentanone in the C_2 skew configuration
	(not normalized)

 $\frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease or decrease of the bond length or bond angle during the vibration.} \\ \frac{S_{47} = \tau_{46} - \tau_{47}}{\text{*The + and - signs respectively identify an increase or decrease or de$

and Na_2CO_3 (200 mg). The product was extracted three times with 4 ml portions of ether and the bulked extracts dried with freshly regenerated molecular sieve type 4A. The ether was removed by distillation and the residue distilled under reduced pressure for the infrared and Raman measurements.

d₈-Cyclopentanone (4)

This material was purchased from Merck, Sharpe, and Dohme (Canada) Ltd. and used as received.

The infrared spectra of the pure liquids and solutions were measured in a Perkin-Elmer Model 521 infrared spectrophotometer. The digitally recorded spectra were processed as described elsewhere (1, 11). The same operating conditions, spectral slit widths, and solvent ranges were used as for cyclohexanone (1).

The Raman spectra were obtained with the 4880 Å excitation of a Spectra-Physics induction ion laser and a Spex 1400 recording spectrometer. The samples were distilled into quartz capillary tubes and sealed under helium at a pressure of 100–200 Torr. Under these conditions good Raman spectra could be obtained and reliable polarization measurements could be made.⁹ The infrared spectra are shown in Fig. 4, and the Raman spectra in Fig. 5. The positions of the peaks of both the infrared and Raman bands are listed in Table 4*a*-*d*. Averaged values of the infrared and Raman peak positions were used in the computations except for the C=O stretch bands for which infrared values were employed.

Discussion

Factors influencing the choice of the initial set of force constants have been discussed in connection with cyclohexanone (1). Theoretically there are 1128 quadratic force constants. An initial set of 16 diagonal and 60 off-diagonal constants was used. During the refinement many of the interaction constants were eliminated and a satisfactory force field was achieved with the 16 diagonal and 16 off-axis constants listed in Table 5. Initially the starting constants were transferred from literature data for acetone and the generalized alicyclic hydrocarbon as was done for cyclohexanone (1). Subsequently the refined values obtained for cyclohexanone were used as starting values for cyclopentanone. Both computations converged to a similar force field but convergence from the cyclohexanone input data was much faster and only these values will be reported.¹⁰

The same systematic trend towards the differentiation of the force constants associated

with the α and β carbon atoms was observed as with cyclohexanone *viz*:

$$K_{d(\alpha)} > K_{d(\beta)}$$

$$K_{r(\alpha)} > K_{r(\beta,\gamma)}$$

$$H_{\gamma(\alpha)} < H_{\gamma(\beta)}$$

$$H_{\omega(\alpha)} > H_{\omega(\beta)}$$

$$H_{\delta(\alpha)} < H_{\delta(\beta)}$$

$$H_{\chi} > H_{\iota}$$

$$H_{\tau(\alpha)} < H_{(\beta,\gamma)}$$

The stretch constant $(K_{r(\beta,\gamma)})$ and the corresponding C—C torsion $(H_{\tau(\beta,\gamma)})$ (internal coordinates 14, 45) were kept fixed in the sense that values for the β and γ positions were not allowed to differ. All the interaction constants were kept fixed during the refinement. A total of 144 experimental frequencies, derived from the four isotopic species, were used to refine 15 adjustable diagonal force constants. The force constants associated with the alicyclic part of the molecule are all well determined, but force constant No. 12 (H_{χ}) proved to be strongly correlated with force constant No. 3 (K_v) and had to be kept fixed during the refinement.

The analysis of the 36 normal modes is based on the potential energy distribution coefficients (E_p) and the normal vibrations are classified as GF, ZF, or DF (1). These are listed in Table 4a-d together with the observed and calculated frequency data. Only the four largest E_p coefficients are listed, and these only if they exceed unity. In the vibrational diagrams only motions associated with $E_p > 10$ are indicated.

The C-C-C Skeletal Vibrations

The six normal modes below 600 cm⁻¹ are listed in Table 6; they can be traced through the isotopic series by the E_p coefficients. The lowest band is a ring pucker (τ_{α} , τ_{ρ}); it has been described as a pseudo-rotation of the ring (2, 12) and has been recently investigated in detail by Ikeda and Lord (8). We observe it in the Raman spectra of **1** and **2**. The next higher fundamental at 239 cm⁻¹ in **1** is an out-of-plane ring distortion with symmetric twists of the β and γ C—C bonds (τ_{β} , τ_{γ}) and closure of the β CCC angles (ω_{β}). Bands III and IV of Table 6 involve deformations of the C_{α} —CO— C_{α} group (ρ , ε) and will be discussed with the carbonyl vibrations.

The two in-plane ring vibrations V and VI

⁹We wish to thank Dr. W. F. Murphy for making these measurements for us.

¹⁰The detailed numerical calculations for the refinement from the cyclohexanone input data will be found in ref. 10 where they are used as illustrative examples in the description of the computer programs.

FIG. 5. Raman spectra of the pure liquids measured without polarizers; excitation with 4880 Å argon ion source. The region $\Delta v = 4600-1800$ cm⁻¹ is not shown, but the peak positions are listed in Table 12.

overlap near 570 cm⁻¹ in 1 and near 490 cm⁻¹ in 4; they are well separated in 2 and 3. The C_{α} —CO— C_{α} angle (χ) and the α C—C—C angle (ω_{α}) participate in V which is sensitive to α -deuteration. Both V and VI are highly delocalized. Mode VI emphasizes the effect of deuterium substitution on the mixing of the internal co-ordinates (Table 7*a*); on β -deuteration a large contribution to the energy of this mode is injected from the β D—C—C angle bend (γ_{β}). Above 600 cm⁻¹ contributions from H—C—C and D—C—C bend motions predominate and the C—C stretch motions in this region are discussed with the C—H and C—D deformations.

The Carbonyl Group

Linear stretch of the C=O bond (v) contributes only about 80% to the mode energy of the "C=O stretching group vibration" (Table 8) and the remaining energy is localized mainly in the α C--C stretch (r_{α}) and the C_{α}-CO--C_{α} bend (χ). In 1 the position of the C=O stretch vibration is strongly affected by Fermi resonance.¹¹ This has not been considered in these calculations since the displacement effect is small, especially for the pure liquid. Of potentially greater significance is the large downward shift in the C=O stretch frequency in passing from

¹¹See ref. 13 and other references cited therein.

TABLE 4. Vibrational analysis

(a) Cyclopentanone (1)

		Wav	enumber (cr	n⁻¹)						
Band Symmetry		Obs	erved	Raman	Poten	Mode				
No.	No. type	Calculated	Infrared	Raman	polarization		(E	p)		type*
1	В	106	(105)†	95	-	37(τ _α)	35(τ _β)	12(ρ)	8(ω _α)	ZF
2	Α	239	(240 w)†	239 w	0.76	51(τ _{β,γ})	26(ω _β)	10(ω _α)	5(γ _β)	ZF
3	В	440	450 m‡	452 m	0.79	75(p)	10(γ _α)	$4(\tau_{\alpha})$	4(τ _{β,γ})	\mathbf{GF}
4	В	478	471 vs	472 vs	0.83	75(ε)	$7(r_{\beta})$	$6(r_{\alpha})$	2(ω _α)	GF
5	A	545	564 m‡	572 s	0.30	27(χ)	25(ω _α)	$11(r_{\beta,\gamma})$	11(ε)	DF
6	В	573	580 s	580 s	0.83	47(ω _β)	20(ω _α)	13(γ _β)	$5(r_{\alpha})$	DF
7	A	771	706 w	712 vs	0.03	66(<i>r</i> _a)	11(γ _α)	6(γ _β)	6(ω _α)	GF
8	A	832	806 m	811 vvs	0.07	61(γα)	13(γ _β)	$10(r_{\alpha})$	$10(r_{\beta,\gamma})$	ZF
9	В	832	831 s	837 w	d.p.	61(γ _β)	21(γ _α)	$5(r_{\beta})$	$4(r_{\alpha})$	ZF
10	A	894	889 w	892 vvs	0.03	79(r _{β,γ})	7(γ _β)	7(γ _α)	_3(ω _β)	GF
11	В	954	∫ —			$55(r_{\beta})$	22(γ _α)	6(γ _β)	6(ε)	ZF
12	В	974	(958 vs	958 s	0.80	49(γ _α)	29(γ _β)	$8(r_{\beta})$	3(p)	ZF
13	А	1038	1021 m	1025 vs	0.59	35(γα)	$28(r_{\beta,\gamma})$	24(γ _β)	2(ω _β)	DF
14	A	1066				41(γ _β)	$32(r_{\beta,\gamma})$	$11(\gamma_{\alpha})$	4(ω _α)	ZF
15	A	1149	∫1148 vvs	1151 s	0.70	66(γα)	30(γ _β)	$5(r_{\beta,\gamma})$	<u> </u>	GF
16	В	1154	≀ —			49(γ _α)	$42(r_{\alpha})$	7(ε)	$3(r_{\beta})$	ZF
17	В	1174	1176 s	_	-	45(γ _α)	$40(r_{\alpha})$	9(e)	8(γ _ь)	ZF
18	Α	1184		1200 m	0.6	68(γα)	26(γ _β)	$19(r_{\beta,\gamma})$	$2(r_a)$	GF
19	В	1211	1227 m	1232 s	0.79	84(γα)	$21(r_{\beta})$	11(γ _β)	3(ε)	GF
20	В	1231	∫1262 s	1268 s		79(γ _β)	12(γ _α)	$10(r_{\alpha})$	$1(r_{\beta})$	GF
21	A	1232	1 —		—	71(γ _β)	21(γ _α)	$9(r_{\beta,\gamma})$	$2(r_{\alpha})$	GF
22	Α	1280	1274 s	1276 s		79(γ _β)	$21(r_{\beta,\gamma})$	18(γα)	2(δ _β)	GF
23	В	1327	1311 s	1311 m	0.77	91(γ _β)	8(γα)	$6(r_{\beta})$	$4(\delta_{\alpha})$	GF
24	A	1412	∫1409 vs	1410 vs	0.70	74(δ _α)	25(γ _α)	2(γ _β)	2(δ _β)	GF
25	В	1418	} ≶			70(δ _α)	25(γ _α)	4(γ _β)		GF
26	Α	1460	1454 vs	1456 vs	0.74	72(δ _β)	28(γ _β)	$1(\delta_{\alpha})$		GF
27	В	1467	1469 s	1468 m		73(δ _β)	27(γ _β)	—		GF
28	А	1745	1748 vvs)1732 vs)1743 vs	0.3(0.4	78(v)	$13(r_{\alpha})$	5(χ)	2(ε)	GF
29	В	2884	2873 s	·		$99(d_{\beta})$				GF
30	А	2885	2885 vs	2886 vs		$99(d_{\beta})$				GF
31	В	2899	2898 s	2905 vs		$99(d_{a})$	_			GF
32	Α	2901) —			$99(d_a)$				GF
33	В	2952	∫2946 s		-	$97(d_{\beta})$	$3(d_{\alpha})$			GF
34	Α	2958) —			$89(d_{\beta})$	$11(d_{\alpha})$			GF
35	В	2970	(2969 vs	2972 vs		$97(d_a)$	$3(d_{\rm B})$	<u> </u>		GF
36	Α	2971	1 —	_	-	$89(d_a)$	$11(d_{\beta})$			GF

*GF, group frequency; ZF, zone frequency; DF, delocalized frequency. †These are new measurements on a Perkin-Elmer Model 180 spectrophotometer made after completion of the numerical analysis. ‡Inflection. \$Fermi resonance doublet.

(b) $\alpha \alpha \alpha' \alpha' - d_4$ -Cyclopentanone (2)

		Wave	number (cm	-1)						
Band	Symmetry		Obse	rved	Raman	Poter	ation	Mode		
No. type	Calculated	Infrared	Raman	polarization	10101	type*				
1	В	96	(98)†	. 89		$38(\tau_a)$	$36(\tau_{B})$	10(p)	8(ω _α)	ZF
2	Α	222		223 m		$50(\tau_{\beta,\gamma})$	$26(\omega_{B})$	$9(\omega_a)$	5(γ _β)	ZF
3	В	387	378 m	380 s	0.75	69(p)	$21(\gamma_{\alpha})$	$3(\omega_{0})$	$2(\tau_{\alpha})$	GF
4	В	456	442 vs	443 vs	0.75	74(ε)	$6(\gamma_{\alpha})$	$6(r_{\beta})$	$5(\gamma_{\alpha})$	GF
5	Α	530	519 s	521 m	0.26	26(x)	$25(\omega_a)$	$11(\gamma_{\alpha})$	11(ε)	DF
6	В	560	557 s	560 m	0.73	43(ω _β)	20(ω _α)	13(γ _β)	6(γ _α)	\mathbf{DF}

1756

TABLE 4. (Continued)

(b) $\alpha \alpha \alpha' \alpha' - d_4$ -Cyclopentanone (2)

		Wave	number (cn	1 ⁻¹)						
Band	Symmetry		Obs	erved	Raman	Potential energy distribution				Mode
No.	type	Calculated	Infrared	Raman	polarization		(È	type*		
7	A	666	624 vw	628 vvs	0.03	67(γ _α)	$13(r_{x})$		$3(r_{\beta,\gamma})$	GF
8	A	704	710 s	713 s	0.58	38(γα)	$35(r_a)$	5(ω _α)	4(ω _β)	ZF
9	в	743	760 s	764 m	0.76	62(γα)	16(γ _β)	5(ρ)	5(ω _β)	ZF
10	Α	787		736 s	0.16	80(γα)	$13(r_{\beta,\gamma})$	$2(r_{\alpha})$		GF
11	А	811	825 s	829 vvs	0.04	37(γα)	$35(r_{\beta,\gamma})$	$12(r_{\alpha})$	6(γ _β)	ZF
12	В	825	∫853 vs	858 w‡		57(γα)	$27(r_{\beta})$	3(ω _β)	$3(\gamma_{\beta})$	ZF
13	в	873	} −			76(γα)	$13(\gamma_{\beta})$	5(p)	$1(r_{\alpha})$	GF
14	В	901		904 vw		57(γ _β)	29(γ _α)	5(ρ)	$2(r_{\beta})$	ZF
15	Α	992	970 s	972 vs	0.60	$45(r_{B,y})$	$32(\gamma_{\alpha})$	$12(\gamma_{\beta})$	$9(r_{\alpha})$	ZF
16	В	1023	1020 s	1026 m*		$78(\delta_{\alpha})$	$23(\gamma_a)$	$5(r_{\rm B})$	$2(\omega_{\alpha})$	GF
17	Α	1029	1031 s	1037 vs	0.49	62(δ _α)	$21(\gamma_{\alpha})$	$11(\gamma_{B})$	$4(r_{\alpha})$	ZF
18	В	1063	1087 vvs	1091 m		$40(r_{\rm B})$	$36(\gamma_{\alpha})$	20(E)	$8(r_a)$	ZF
19	Α	1067		1105 vs	0.38	$64(\gamma_{\beta})$	$10(r_{0,y})$	$10(\gamma_{\alpha})$	$10(\delta_{\alpha})$	ZF
20	Α	1092	1145 vs	1142 w		$67(r_{B,\gamma})$	$25(\gamma_{\alpha})$	$8(\gamma_{B})$	$5(r_{\alpha})$	GF
21	В	1166	1163 vvs	1167 m	0.83	$77(r_{\alpha})$	$16(r_{\rm B})$	9(γ _β)	$9(\gamma_{\alpha})$	GF
22	Α	1219	1218 w‡	1219 vs	0.64	$91(\gamma_{B})$	$4(r_{0,\gamma})$	$3(\gamma_{\alpha})$	$2(r_{\alpha})$	GF
23	B	1222	1204 vvs	1212 s‡	0.80	$88(\gamma_0)$	$8(r_{\alpha})$	$2(\gamma_{\alpha})$		GF
24	Α	1269	1269 w	1267 vw		97(γ _β)	$26(r_{B,\gamma})$	$2(\delta_{\beta})$	$1(\omega_{\alpha})$	GF
25§	В	1325	1309 s	1310 m	0.68	99(γ _b)	$8(r_0)$	$1(\delta_{\beta})$	$1(r_{\alpha})$	GF
26	Α	1458	1454 s	1456 vs		$74(\delta_{B})$	$29(\gamma_0)$			GF
27	В	1467	1469 m	1468 s	0.80	73(δ _β)	$27(\gamma_{B})$			GF
28	Α	1743	1744 vvs	1734 vs	0.3	78(v)	$13(r_{a})$	5(γ)	2(ε)	GF
29	В	2120		2126 s‡		$97(d_{a})$	$1(r_{\alpha})$			GF
30	Α	2124	2130 vs	2130 vs		$97(d_{n})$	$1(r_{0,y})$			GF
31	Α	2215		2210 s‡		$98(d_{a})$	$1(\gamma_{\alpha})$			GF
32	В	2217	2223 vs	2221 s		$98(d_{\pi})$	$1(\gamma_{a})$			GF
33	В	2884	(2881 vs	2879 vs		$99(d_0)$				GF
34	Α	2885	1 _			$99(d_{\rm A})$				GF
35	В	2952	2944 vs	2946 m‡	_	$100(d_{0})$				GF
36	Α	2959	2964 vs	2969 s		99(d _β)				GF

*GF, group frequency; ZF, zone frequency; DF, delocalized frequency. †These are new measurements on a Perkin-Elmer Model 180 spectrophotometer made after completion of the numerical analysis. Inflection. \$We have taken note of the anomaly in the Type B assignment of the Raman Band 25 which appears to be polarized.

(c) $\beta\beta\beta'\beta - d_4$ -Cyclopentanone (3)

		Wave	number (cm	-1)								
Band	Symmetry	Calaulatad	Obse	erved	Raman	Pote	ntial ener	gy distrib	oution	Mode type* ZF ZF GF ZF ZF ZF ZF		
NO. type	Calculated	Intrared	Kaman	polarization		(E	p)		iype*			
1	В	101				$37(\tau_n)$	$35(\tau_{B})$	$12(\rho)$	8(ω _a)	ZF		
2	Α	203		206 m		$50(\tau_{0,y})$	$25(\omega_{B})$	$10(\omega_{a})$	$8(\gamma_0)$	ZF		
3	В	438		434 m	0.76	71(p)	$10(\gamma_{\alpha})$	5(ω _β)	$4(\tau_{\alpha})$	GF		
4	В	468	—-	467 vs	0.73	71(ε)	$8(r_{\beta})$	$6(r_a)$	2(ω _α)	GF		
5	В	515		505 m	0.78	34(ω _в)	$34(\gamma_{B})$	$14(\omega_{\alpha})$	6(p)	ZF		
6	А	532		542 m	0.19	26(χ)	23(ω _α)	$12(r_{0,y})$	$11(\varepsilon)$	\mathbf{DF}		
7	в	688	731 s	732 w	d.p.	63(γ _β)	13(ω _β)	7(ω _α)	$5(r_{\alpha})$	ZF		
8	А	716		674 vvs	0.04	43(γ _B)	$25(r_{a})$	$22(\gamma_{\alpha})$	$3(\omega_{\beta})$	ZF		
9	Α	775	748 vs	746 m	0.40	56(γ _β)	$15(r_{0.7})$	$12(r_{\alpha})$	5(ω _α)	ZF		
10	Α	807	813 s	820 vvs	0.06	$33(r_{\alpha})$	$27(r_{\beta,\gamma})$	$15(\gamma_{\alpha})$	$10(\gamma_{\beta})$	\mathbf{DF}		
11	В	831	<u>۱</u> –			$72(\gamma_{B})$	$16(\gamma_{\alpha})$	$4(r_{\beta})$	2(ε)	GF		
12	В	857) 847 vs	853 s	0.80	42(γ _β)	$27(r_{\beta})$	12(γ _α)	7(ε)	ZF		

TABLE 4. (Continued)

(c) $\beta\beta\beta'\beta$ -d₄-Cyclopentanone (3)

		Wave	enumber (cn	1 ⁻¹)						
	a .		Obs	erved						
Band No.	Symmetry type	Calculated	Infrared	Raman	Raman polarization	Pote	ential ener (E	gy distrib	ution	Mode type*
13	А	877	§ 883 w	889 vs	0.16	72(γ _β)	$14(r_{\beta,\gamma})$	2(χ)	2(γ _α)	GF
14	Α	910	}			42(γ _β)	$27(r_{\beta,\gamma})$	15(γα)	$6(r_{\alpha})$	ZF
15	Α	967	940 m	941 m	0.8	$51(\gamma_{\alpha})$	$30(\gamma_{\beta})$	$9(r_{\beta,\gamma})$	$3(\omega_{\beta})$	\mathbf{ZF}
16	В	994	1028 s	1032 s	0.86	58(γα)	$25(\gamma_{\beta})$	5(p)	$3(r_{\beta})$	ZF
17	Α	1056	{1058 vvs	1060 s	0.78	74(δ _β)	$26(\gamma_{\beta})$	$11(r_{\beta,\gamma})$	3(γ _α)	\mathbf{GF}
18	В	1063	1			74(δ _β)	23(γ _β)	$6(r_{\beta})$	4(ω _β)	GF
19	В	1124	1113 vs	1114 s	0.84	57(γ _b)	$45(r_{\beta})$	$11(\gamma_{\alpha})$	$2(\omega_{\beta})$	ZF
20	Α	1130	1092 m	1095 vs	0.09	57(γα)	$29(r_{\beta,\gamma})$	$16(\gamma_{\beta})$	3(δ _β)	ZF
21	В	1158	1177 vvs	1184 w	d.p.	$53(r_{\alpha})$	36(γ _α)	11(ε)	7(ω _α)	ZF
22	А	1172		1171 m		$60(r_{\beta,\gamma})$	$42(\gamma_{\alpha})$	18(γ _β)	2(ω _α)	ZF
23	В	1179	1196 vs	1204 s	0.83	50(γ _α)	$40(r_{\alpha})$	8(ε)	3(γ _β)	ZF
24	А	1217	s —			86(γα)	$10(r_{\beta,\gamma})$	9(γ _β)	$5(r_{\alpha})$	GF
25	В	1218)1241 s	1247 vw	d.p.	100(γ _α)	$9(r_{\beta,\gamma})$	$3(r_{\alpha})$	l(ε)	GF
26	Α	1412	∫1408 vs	1411 s		77(δ _α)	25(γ _α)	—		GF
27	В	1416	<i>ì</i> —			74(δ _α)	25(γ _α)			GF
28	А	1745	1744 vvs	1737 vs		78(v)	$13(r_{\alpha})$	5(χ)	2(ε)	GF
29	В	2107	2114 s	2111 vs		$98(d_{\beta})$	$1(r_{\beta})$			GF
30	Α	2112	2131 s	2137 vs		$97(d_{\beta})$	$2(r_{\beta,\gamma})$			\mathbf{GF}
31	В	2200	2225 vs	2225 s		$99(d_{\beta})$	$1(\gamma_{\beta})$		—	\mathbf{GF}
32	Α	2218	2247 s	2252 m		$97(d_{\beta})$	2(γ _β)	_		GF
33	В	2899	∫2901 s	2904 vs		$99(d_{\alpha})$				GF
34	А	2900	1 -			$99(d_{\alpha})$				GF
35	А	2969	∫2967 s	2968 s		$100(d_{a})$			_	GF
36	В	2970	1 —			$100(d_{\alpha})$	_	—		GF

*GF, group frequency; ZF, zone frequency; DF, delocalized frequency.

(d) d_8 -Cyclopentanone (4)

		м	/avenumber										
Dand Symposit	Szuma ma otasz		Obse	rved	Paman								
No.	type	Calculated	Infrared	Raman	polarization			(gy distrib (p)		type*			
1	В	93	~	_	_	$38(\tau_{\alpha})$	36(τ _β)	10(p)	8(ω _α)	ZF			
2	Α	189	_	191 m	_	$50(\tau_{\beta,\gamma})$	25(ω _β)	9(ω _α)	8(γ _β)	ZF			
3	В	384	368 m	370 s	0.74	65(p)	$22(\gamma_{\alpha})$	$4(\omega_{\beta})$	$3(\tau_{\alpha})$	\mathbf{GF}			
4	В	450	438 vs	442 vs	0.70	72(ε)	$7(r_{\rm B})$	$5(r_{\alpha})$	5(γ _α)	GF			
5	В	503	481 s	_		33(γ _β)	$31(\omega_{\beta})$	$14(\omega_{\alpha})$	8(p)	DF			
6	А	518	493 s†	493 s	0.55	25(x)	$24(\omega_{\alpha})$	$12(\gamma_{\alpha})$	10(ε)	DF			
7	А	629	618 w	623 vs	0.04	55(γ _x)	$23(\gamma_{\beta})$	$9(r_{\alpha})$	$4(r_{\beta,\gamma})$	ZF			
8	В	668	689 m	700 m		47(γ _β)	$16(\gamma_{\alpha})$	$15(\omega_{\beta})$	7(ω _α)	DF			
9	А	697	706 m†	710 s	0.33	$38(r_a)$	31(γ _α)	$5(\omega_{\alpha})$	5(γ _β)	ZF			
10	в	758	727 vs		d.p.	$41(\gamma_{\alpha})$	$24(\gamma_{\beta})$	$21(r_{\beta,\gamma})$	$2(\omega_{\beta})$	ZF			
11	В	766	756 s	761 m†		$45(\gamma_{\beta})$	$44(\gamma_{\alpha})$	4(p)	$1(r_{\beta})$	ZF			
12	Α	774	769 s	773 vs		$45(r_{\beta,\gamma})$	$23(\gamma_{\alpha})$	9(γ _β)	$9(r_{\alpha})$	ZF			
13	А	781	§785 m	788 vvs	0.04	$68(\gamma_{\alpha})$	$12(\gamma_{\beta})$	$6(r_{\beta,\gamma})$	$3(r_{\alpha})$	GF			
14	Α	798	1 —			$58(\gamma_{B})$	$28(\gamma_{\alpha})$	$4(r_{\beta,\gamma})$	$2(r_{\alpha})$	ZF			
15	Α	864	856 vw	856 w	p.	$80(\gamma_{B})$	8(γ _α)	$4(r_{\beta,\gamma})$	1(δ _α)	GF			
16	В	870	902 m	904 s	0.80	$76(\gamma_{\alpha})$	$12(\gamma_{\beta})$	5(p)		GF			
17	В	919	972 s	974 w	d.p.	$56(\gamma_{B})$	$29(\gamma_{\alpha})$	5(p)	$1(d_{\alpha})$	ZF			
18	А	945	942 s	946 vs	0.76	$56(\gamma_{B})$	$24(\gamma_{\alpha})$	$6(r_{\beta,\gamma})$	$3(\tau_{\beta,\gamma})$	ZF			
19	В	1019	996 vs	989 m		50(γ _α)	24(γ _β)	$11(\delta_a)$	10(e)	ZF			
20	В	1024	1033 vs			66(δ _α)	26(γ _α)	$12(r_{\beta})$	3(ε)	GF			

TABLE 4 (Concluded)

(d) d_8 -Cyclopentanone (4)

		V	Vavenumber										
Band Symmet No. type			Obse	erved									
	Symmetry type	Symmetry type	Calculated	Infrared	Raman	Raman polarization	Pote	ential ener (E	gy distrib)	oution	Mode type*		
21	A	1036	1044 s†	1048 s	0.54	71(δ _α)	23(γ _α)	$10(r_{\alpha})$	$2(\omega_{\alpha})$	GF			
22	В	1060	(1067 vs	1070 vs	0.46	$70(\delta_{\beta})$	$25(\gamma_{B})$	$22(r_{\beta,\gamma})$	$4(\gamma_{\alpha})$	GF			
23	В	1066	1 -			73(δ _β)	$23(\gamma_{\beta})$	$4(\omega_{\beta})$	$4(r_{\beta})$	GF			
24	Α	1071	·		~	46(γ _α)	$28(r_{\beta,\gamma})$	$12(r_{a})$	$10(\gamma_{\beta})$	ZF			
25	В	1129	1127 s	1134 s		57(γ _β)	$45(r_{\beta})$	5(e)	$4(r_{\alpha})$	ZF			
26	Α	1157		1142 s	p.	$86(r_{\beta,\gamma})$	$41(\gamma_B)$	$3(\omega_{\alpha})$	$1(\gamma_{\alpha})$	GF			
27	В	1167	1181 vvs	1187 vw	d.p.	$90(r_{\alpha})$	$11(r_{\rm B})$	11(e)	$8(\gamma_{\alpha})$	GF			
28	А	1743	1742 vs	1732 vs	~	78(v)	$13(r_{\alpha})$	5(χ)	2(E)	GF			
29	В	2107	∫2110 vs	2099 m		$97(d_{\beta})$	$1(r_{\beta})$			GF			
30	А	2111	1			$90(d_{\beta})$	$7(d_{\alpha})$	$2(r_{\beta,\gamma})$	_	GF			
31	В	2119	{2119 s†	2120		$97(d_{\alpha})$	$1(r_{\alpha})$			GF			
32	А	2125	1 -			$90(d_{\alpha})$	$7(d_{\rm B})$	$1(r_{\beta,\gamma})$		GF			
33	В	2198	∫2181 s	2181 m	-	$87(d_{\rm B})$	$12(d_{a})$			GF			
34	Α	2206	1 -			$56(d_a)$	$43(d_{\rm B})$			ZF			
35	В	2219	§2229 vs	2231 vs		$86(d_a)$	$12(d_{B})$	$1(\gamma_a)$		GF			
36	A	2227	1			$54(d_{\beta})$	$43(d_{\alpha})$	2(γ _β)	1(γ _α)	ZF			

*GF, group frequency; ZF, zone frequency; DF, delocalized frequency. †Inflection.

the vapor to the liquid state (\sim 30 cm⁻¹). The liquid state values were used in this work.¹²

The in-plane C=O deformation (ε) is easily identified as a strong band in both the infrared and Raman spectra at 471, 456, 467, and 442 cm⁻¹ in 1-4 respectively. It is highly localized with E_p 71-75. The out-of-plane C=O vibration (ρ) is the lowest of the three carbonyl frequencies at 451, 379, 434, 369 cm⁻¹; it is a medium-strong depolarized Raman band, strongly affected by α -deuteration, and in all four isotopic species accounts for 65-75% of the mode energy. This contrasts with cyclohexanone in which it is highly delocalized.

Bending Vibrations Involving CH and CD Bonds

There are 21 normal vibrations between 600 and 1500 cm⁻¹ that involve HCH, HCC, DCD, and DCC angle deformations. Rigorous classifi-

cation of these as methylene wag, twist, or rock vibrations is impractical since the normal modes are too complex and many couple strongly with C--C stretch co-ordinates.

The CH₂ scissors motions are all good group frequencies $(E_p 70-77)$ with the residual energy localized mainly in the rock/twist motions on the same carbon atom. For the CD₂ scissor the $E_{\rm p}$ range is 62–74 which brings one of them down into the marginal group frequency range $(E_{\rm p} < 66)$.¹³ At each of the C_a and C_b atoms the scissors motion may be in-phase or out-ofphase with its partner across the ring. The calculated wavenumber differences between such pairs are in the range $4-12 \text{ cm}^{-1}$ but not all are separated in the measured spectra (Table 9). The empirically well known displacement of the C_{α} methylene motion to lower wavenumber is confirmed by the calculations. The corresponding effect on the $H_{\gamma(\alpha)}$ force constant has been noted (see Discussion section). Only a few of the other methylene deformation motions can be clearly identified as rocks, wags, or twists¹⁴ (Table 10).

¹²In one computation the observed "carbonyl stretch" frequency was changed to a vapor phase value of 1771 cm⁻¹ for all four species with all other experimental frequencies and all input force constants unchanged. Only three of the refined force constants were altered (Table 5), and these were marginal except for the C=O stretch; there were no significant changes in the E_p coefficients (Table 8). It follows that the vibrational modes are not substantially affected by the use of the condensed state experimental frequencies and even less so by the much smaller Fermi resonance displacement in **1**.

¹³This is band 17 in **2** (Fig. 4b).

¹⁴The differentiation between a wag and a twist or between a scissor and a rock depends on the relative signs of the appropriate eigenvectors. These are not included in Table 4a-d but are recorded in the eigenvector matrices which are listed in ref. 10.

No.	Symbolic description*	Co-ordinates involved	Common atoms	Starting value†	Refined value‡
			Stretch		
1 2 3	$K_{d(\alpha)} \\ K_{d(\beta)} \\ K_{\nu}$	C—H C—H C=O		4.685 4.610 9.652	4.694 4.645 10.149 (10.546)
4 5	$K_{r(\alpha)} K_{L(\beta,\gamma)}$	C—C C—C		4.564 4.186	4.252 4.144
			Bend		
6 7	$H_{\delta(\alpha)}$ $H_{\delta(0)}$	∠ HCH ∕ HCH		0.554	0.495
8 9	$ \begin{array}{c} H_{\gamma(\alpha)} \\ H_{\gamma(\beta)} \end{array} $	∠ HCC ∠ HCC		0.628 0.657	0.601 0.677
10 11 12	$egin{array}{c} H_{\omega(lpha)}\ H_{\omega(eta)}\ H_{\mu} \end{array}$	∠CCC ∠CCC / CCC		1.068 1.024 1.111	1.012 (1.000) 0.878 (0.882) 1.111
13 14	H_{ϵ} H_{ρ}	∠CCO ∠C—CO—C	_	0.919 0.534	0.905 0.341
15 16	$H_{\tau(\alpha)} \ H_{\tau(eta, \gamma)}$	∠ CC—CC ∠ CCCC		0.008 0.093	0.032 0.089
		Interaci Stre	tion Constants tch–Stretch		
17 18 19	$F_{d, d} \\ F_{r, r(\alpha)} \\ F_{r, r}$	C—H, C—H C==0, C—C C—C, C—C	C C C	0.006 0.0 0.101	0.006 0.0 0.101
		Str	etch–Bend		
20 21 22 23 24 25	$F_{\nu,\chi}$ $F_{r,\gamma}$ $F_{r,\varphi}$ $F_{r,\omega}$ $F_{r(\alpha),\chi}$ $F_{r(\alpha),\varepsilon}$	C==0, ∠ CCC CC, ∠ HCC CC, ∠ HCC CC, ∠ CCC CC, ∠ CCC CC, ∠ CCO	C C—C C—C C—C C—C C—C	0.0 0.328 0.079 0.417 0.417 0.417	0.0 0.328 0.079 0.417 0.417 0.417
		Be	end–Bend		
26 27 28 29 30 31 32	$F_{\gamma,\gamma}$ $F_{\gamma,\omega}$ $F_{\gamma,\gamma}^{qt}$ $F_{\gamma,\gamma}^{qc}$ $F_{\gamma,\gamma}^{qc}$ $F_{\omega,\omega}$ $F_{\omega,\gamma}$	∠ HCC, ∠ HCC ∠ HCC, ∠ CCC ∠ HCC, ∠ HCC ∠ HCC, ∠ HCC ∠ HCC, ∠ HCC ∠ CCC, ∠ CCC ∠ CCC, ∠ CCC	CC CC CC CC CC CC CC	$ \begin{array}{c} -0.021 \\ -0.031 \\ 0.0 $	$ \begin{array}{c} -0.021 \\ -0.031 \\ 0.0 $

TABLE 5. Valence force constants*

*The force constant units and symbolism are described in ref. 1. The superscripts on the bend-bend interaction constants are qt (quasi trans), qg (quasi gauche), qc (quasi cis). \uparrow The initial values for the force constants were taken from the refined force field established for cyclohexanone (see Table 3 of ref. 1). \uparrow The values in parentheses are obtained if an observed C=O stretch frequency of 1771 cm⁻¹ is used, corresponding to a vapor state measurement. No other force constants change significantly.

C—C Stretch Vibrations

The bands identifiable as C-C in-plane stretch group frequencies are listed in Table 11. Most notable are the 1166 cm^{-1} (calcd) band in 2 and the bands at 1167 and 1157 cm^{-1} (calcd) in 4. These motions are illustrated in 7-9 respectively. The intense band at 891 cm^{-1} in 1 is strongly polarized in the Raman spectrum and has been attributed to a ring breathing motion (2) and the E_p coefficients support this

(Table 7b). However, in the deuterated species the "corresponding" bands as judged by the Raman intensity and polarization are readily assigned at 827, 817, 787 cm⁻¹ in 2–4 respectively, but the $E_{\rm p}$ data in Table 7*b* suggest that with α -deuteration the energy in the $r_{\beta,\gamma}$ co-ordinate is greatly reduced and much of it transferred to the γ_{α} and γ_{β} angle bends. If this is so these modes can no longer be classified as ring breathing motions in 3 and 4 where the $r_{\beta,\gamma}$

1760

Ring ibration	Contractory		Isotopic			
	type	. 1	2	3	4	description
I	В	106 (95)	96 (89)	101 ()	93 ()	Pseudo-rotation
II	А	239 (239)	222 (223)	203 (206)	189 (191)	Ring torsion
III	В	440 (451)	387 (379)	438 (434)	384 (369)	C=O out of-plane bend
IV	В	478 (472)	456 (443)	468 (467)	450 (440)	C=O in-plane bend
v	Α	545 (568)	530 (520)	532 (542)	518 (493)	Sym, ring mode
VI	В	573 (580)	560 (559)	515 (505)	503 (481)	Asym. ring mode

TABLE 6. Vibrational modes below 600 cm^{-1} *

 $*v_{e_{old}}$ is given first followed by v_{obs} in parentheses; the observed postions are the mean of the infrared and Raman measurements. Ring vibrations are as follows:

co-ordinates contribute less than 30% of the mode energy. One must bear in mind however that it is in this 800-1100 cm⁻¹ region that the computations are most sensitive to small changes in the force field and over-simplified normal co-ordinate analyses are most prone to error.

C-H and C-D Stretch Vibrations

-

ν

There are 8 calculated frequencies for each isotopic species in the C—H, C—D stretching region (Table 12). The wavenumber differences $(1-8 \text{ cm}^{-1})$ calculated for the pairs of in-phase and out-of-phase motions at the C_{α} and C_{β} positions correlate with bands in the observed spectra and are reflected in the corresponding force constants. The C—H stretch modes are all

good group frequencies with over 90% of the potential energy localized in the C—H bonds. This is true also of most of the corresponding C—D modes except for the symmetric C—D

TABLE 7. Effect of isotopic substitution on the potential energy distribution

(a) In-plane ring mode (VI of Table 6)

Structure	Observed Raman	Developingtion	Potential energy distribution (E_p)			
	(cm ⁻¹)	ratio	(ω _β)	(ω _α)	(γ _β)	
1	580	0.83	47	20	13	
2	560	0.73	43	20	13	
3	505	0.78	34	14	34	
4	481*		31	14	33	

(b) "Ring breathing" mode*

*Infrared band position.

	Observed Raman	Depolarization ratio	Potential energy distribution (E_p)			
Structure [†]	(cm ⁻¹)		$(r_{\beta,\gamma})$	(γ _β)	(γα)	(<i>r</i> _a)
1	892	0.03	79	7	7	1
2	829	0.04	35	6	37	12
3	820	0.06	27	10	15	33
4	788	0.04	6	12	68	3

*Only motions associated with internal co-ordinates for which $E_p \ge 10$ are shown in the diagrams. The terms " Ψ -wag" etc. indicate that the eigenvectors associated with some of the C—D deformations are near zero; these are indicated as ## in the diagrams. This may not be significant within the error limits of the calculations. # is vibrations as follows:

D writek D 3

stretch in 4 where there is appreciable coupling between the C_{α} and C_{β} atoms.

Concluding Remarks

One may anticipate that these empirical force fields for cyclohexanone and cyclopentanone should aid in setting up similar computations on more complex molecules such as the β -decalones (with and without methyl substituents at the ring junctions) and the corresponding hydrindanones which would be closer analogs of steroids and other cyclic terpenoids. The replacement of C=O by N-H would open a route via piperidine and pyrrolidine to a set of potentially transferable force field parameters applicable to related *N*heterocyclic systems. As a wider variety of molecular structures is investigated one may expect that a body of practical lore will evolve based on the co-ordination of the work of the various investigators who are taking this approach (14-16). At an earlier period most of the characteristic vibrational group frequencies of complex mole-

TABLE 8. Potential energy distributions associated with "C=O stretch" mode

		Infrared frequency (cm ⁻¹)		Potential energy distribution (E_p)				
Phase	Structure	Calcd	Observed	(v)	(γ _α)	(χ)	(γ _α)	(3)
Liquid	1 2 3 4	1745 1743 1745 1743	1748 1744 1744 1742	78	13	5	5	2
Vapor*	1 2 3 4	1771	1771	79	12	5	2	2

*The vapor phase computations were obtained by using the measured vapor phase band position of 1 for all four isotopic species; no other observed band positions were changed. The same starting values for all the force constants were used (Table 5, column v). The following differences were observed in the refined force constants (cf. Table 5, column vi): $K_v 10.546$, $H_{\omega(\alpha)} 1.000$, $H_{\omega(\beta)} 0.878$ (mdyn Å⁻¹).

TABLE 9. Methylene scissor modes*

	Wavenumber (cm ⁻¹)							
			↓ ↓ ↓	↓×.				
Structure	asym C_{β}	sym C _β	asym C_{α}	sym C _a				
1	1467 (1468)	1460 (1455)	1418 (1410)	1412 (1410)				
2	1467 (1468)	1458 (1455)	1023 (1023)	1029 (1034)				
3	1063 (1059)	1056 (1059)	1416 (1410)	1412 (1410)				
4	1066 (1068)	1060 (1068)	1024 (1033)	1036 (1046)				

*vcalcd is given first followed by vobs averaged for infrarcd and Raman in parentheses.

cules were established in just such a fashion and, in many cases, it was only later that these were rationalized in terms of more formal vibrational theory. In retrospect the sequence of these events tends to be forgotten.

Molecular spectroscopists who are conditioned to the elegant vibrational analysis that can be made for small molecules of high symmetry may be disconcerted by such drastic simplification of the force fields, but this situation is not uncommon when theoretical concepts developed on the basis of simpler model systems are extended to a more general body of scientific data. The caution which must be exercised in applying normal co-ordinate analysis to polymers has been aptly summarized in eight aphorisms by Zerbi¹⁵ and these are also relevant to molecules of the type considered here.

¹⁵See ref. 16, pp. 223–224.

1764

CAN. J. CHEM. VOL. 51, 1973

Approximate Structure E_{p} description[‡] v_{obs} † Vcalcd 91(γ_β) 1327 1311 1 β CH₂ wag (o.o.p.) 79(γ_β) 1280 1275 β CH₂ wag (i.p.) 71(γ_β) 1232) β CH₂ twist (i.p.) 1265 1231 β CH₂ twist (o.o.p.) 79(γ_β) 84(γ_α) αCH_2 wag (o.o.p.) 1211 1232 2 1325 1310 99(γ_β) β CH2 wag (0.0.p.) 1269 97(γ_β) β CH₂ wag (i.p.) 1268 1222 1208 88(γ_β) β CH₂ twist (0.0.p.) 1219 1219 91(γ_β) β CH₂ twist (i.p.) 76(γ_α) α CD₂ twist (0.0.p.) 873 853 80(γ_α) 787 736 α CD₂ twist (i.p.) 666 α CD₂ rock (i.p.) 626 67(γ_α) 1218 1244 3 $100(\gamma_{\alpha})$ α CD₂ wag (o.o.p.) β CD₂ twist (i.p.) β CD₂ twist (o.o.p.) 877 886 $72(\gamma_{\beta})$ 831 849 $72(\gamma_{\beta})$ 870 903 4 76(γ_α) a CD2 twist (0.0.p.) 864 856 80(γ_β) β CD₂ twist (i.p.)

TABLE 10. Vibrational modes assignable as methylene rock, wag, or twist group frequencies (cm⁻¹)*

*By our definition a group frequency must have at least 66% of the potential energy localized in the assigned in-ternal co-ordinates (ref. 2). †Average of the infrared and Raman band positions. ‡0.0.p. = out-of-phase; i.p. = in-phase.

TABLE 11. In-plane C-C stretch modes

Structure	v_{calcd}	vobs(i.r.)			ΣE_{p}		
- 1	894* 771	889 706	$79(r_{\beta,\gamma})$ $66(r_{\alpha})$	7(γ _β) 11(γ _α)	7(γ _α) 6(γ _β)	3(ω _β) 6(ω _α)	96 89
2	1166† 1092	1163 1145	77(<i>r</i> _α) 67(<i>r</i> _{β,γ})	$16(r_{\beta,\gamma}) 25(\gamma_{\alpha})$	9(γ _β) 8(γ _β)	$9(\gamma_{\alpha})$ $5(r_{\alpha})$	111 105
3							
4	1167† 1157†	1181 1142‡	90(r_{α}) 86($r_{\beta,\gamma}$)	$\frac{11(r_{\beta,\gamma})}{41(\gamma_{\beta})}$	11(ε) 11(ε)	8(γ _α) 8(γ _α)	120 145

*For diagram of this vibration see Table 7. Note that for these bands ΣE_p is appreciably greater than 100. This must be taken into account in assessing the relevance of the vibrational analysis. This is the Raman peak position; the band was not observed in the infrared spectrum.

			 A start for the start of the st	the second se	
	5 A A A A A A A A A A A A A A A A A A A		and the state of the		
				· · · · ·	
	segment of the second			The state of the s	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
			and the second		
	213×13	the second s			
	1. J. 1997		 Montplate and the state of the		
	18 BBANK				
(1) 11.	- 51 - 51 - 51 - 51 - 51 - 51 - 51 - 51			and the second	
	オーガン オート・				
				N. S.	
1				it and the	
					a de la companya de l
			and the second		1 N.
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	the state of the s
			and the second		
10	New Part				the first second se
			and the second	11 11 11	
			and the second sec	1	and many set of the se
	a second second and a second	and a second			

TABLE 12. C—H and C—D stretch group frequencies*

*The observed positions are the mean of the infrared and Raman measurements. Asym (antisymmetric) and sym (symmetric) refer to the local site symmetry. o.o.p. = out-of-phase; i.p. = in-phase. +These two modes are appreciably coupled.

1766

We wish to thank Dr. L. C. Leitch for advice and assistance with the preparation of the deuterated compounds, and Dr. K. G. Kidd for comment and discussion during the preparation of the manuscript. We are also indebted to Professor G. W. King and Dr. H. E. Howard-Lock of McMaster University who provided us with an advanced copy of their publication and with whom we exchanged information during the course of the work. Our thanks are also due to Mrs. M. A. MacKenzie and Mr. A. Nadeau for their skilful technical help with the measurement of the spectra.

CAN. J. CHEM. VOL. 51, 1973

- 1. H. FUHRER, V. B. KARTHA, P. J. KRUEGER, H. H. MANTSCH, and R. N. JONES. Chem. Rev. 72, 439 (1972).
- 2. H. E. HOWARD-LOCK and G. W. KING, J. Mol. Spectrosc. 35, 393 (1970).
- G. ERLANDSSON. J. Chem. Phys. 22, 563 (1954). 3.
- 4. J. H. BURKHALTER. J. Chem. Phys. 23, 1172 (1955).
- 5. G. ERLANDSSON. Arkiv för Fysik, 9, 399 (1955).
- 6. P. G. KÖKERITZ and H. SELÉN. Arkiv för Fysik, 16, 197 (1959).

- 7. H. KIM and W. D. GWINN. J. Chem. Phys. 51, 1815 (1969).
- 8. T. IKEDA and R. C. LORD. J. Chem. Phys. 56, 4450 (1972).
- 9. H. J. GEISE and F. C. MIJLHOFF. Rec. Trav. Chim. Pays. Bas. 90, 577 (1971). 10. H. FUHRER, V. B. KARTHA, K. G. KIDD, H. H.
- MANTSCH, and R. N. JONES. NRCC Bulletin No. 15. In preparation.
- 11. R. N. JONES. Pure and Appl. Chem. 18, 303 (1969).
- 12. L. A. CARRIERA and R. C. LORD. J. Chem. Phys. 51, 1815 (1969).
- 13. R. CATALIOTTI and R. N. JONES. Spectrochim. Acta, 27A, 2011 (1971).
- 14. S. CALIFANO. Pure and Appl. Chem. 18, 353 (1969). 15. T. SHIMANOUCHI. In Physical chemistry, an advanced treatise. Vol. IV. Edited by H. Eyring, D. Henderson, and W. Jost. Academic Press, New York. 1970. Chapt. 6.
- 16. G. ZERBI. Appl. Spectrosc. Rev. 2, 193 (1969).