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Abstract

Balling of finely comminuted solids by random coalescence and granulation of iron ore fines and other minerals by

autolayering are two major size enlargement processes.

The existing kinetic model for random coalescence does not take into account the strong dependence of coordination number

on the size distribution of agglomerating entities. We present a coordination number based coalescence model, which mimics the

underlying physical process more realistically. Simulations show that in spite of highly diverse model structures, random and

coordination coalescence models give remarkably similar results.

Only static models of autolayering are available presently. These map the input size distribution of feed solids into steady state

or terminal size distribution of granules, with little or no information on the path traversed by the process. We propose a

continuous-time dynamic model of autolayering within the population balance framework. The model, which is based on the

proportionate growth postulate of autolayering, agrees reasonably well with experimental data.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction autolayering for a special case of the layering mech-
Based on carefully designed and demonstrably

reproducible experiments on a laboratory scale balling

drum, Kapur and Fuerstenau (1964) proposed a suite

of elementary growth mechanisms for a class of size

enlargement processes, known variously as agglomer-

ation, balling, granulation or wet pelletization. These

mechanisms are designated as random coalescence,

nonrandom or preferential coalescence, crushing and

layering, snowballing or layering, and abrasion trans-

fer. Later, Kapur et al. (1993) employed the term
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anism, which plays a dominant role in granulation of

iron ore fines. The overall growth of pellets in an

agglomerating device takes place either by a single

elementary growth mechanism or by coupling of two

or more mechanisms. Moreover, the pattern of growth

may switch from one mechanism to another as pellets

grow in size along with compaction, that is, reduction

in the porosity. In many instances, it is sufficient as

well as convenient to assume that growth is primarily

driven by a single elementary mechanism, at least over

some defined region or regions of growth. Thus in the

balling of finely comminuted solids, random coales-

cence dominates in the nuclei growth and the transition

regions (Kapur and Fuerstenau, 1964, 1969), while

nonrandom coalescence is the principal mechanism in
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the ball growth region (Kapur, 1972; Ouchiyama and

Tanaka, 1974; Pulvermacher and Ruckenstein, 1975).

Again, granulation of iron ore fines occurs essentially

by coating of fines present in the feed onto the coarse

size fractions which act as seeds or nuclei, that is, by

the autolayering mechanism (Kapur et al., 1993).

Many attempts have been made to describe the

kinetics of balling and granulation by various elemen-

tary growth mechanisms (Sastry and Fuerstenau, 1970,

1977; Kapur, 1971, 1972, 1978; Ouchiyama and

Tanaka, 1982; Litster et al., 1986; Adetayo and Ennis,

1997). The particle population balance based kinetic

models are useful for analyzing the agglomeration

systems, especially the continuous industrial circuits.

Moreover, the specific growth rate constant in these

phenomenological models provides a uniform and

consistent basis for comparing the ‘‘ballability’’ of a

particulate material as a function of the agglomeration

machine and the feed characteristics, such as fineness,

moisture content, etc. (Kapur, 1978). In most industrial

applications of balling and granulation, the mean pellet

size and dispersion or spread in size are of utmost

importance. The kinetic models track the evolution of

pellet size spectrum and provide quantitative informa-

tion on its statistical parameters. Finally, these models

can be embedded in appropriate strategies for model-

based, extended-horizon on-line control of the size

enlargement processes.

In this communication, we propose to reexamine

the existing kinetic models for two of the most

important agglomeration processes, namely, balling

by random coalescence and granulation by autolayer-

ing. The objective in first case is to update the

mathematical model in order to mimic the underlying

physical process in a more realistic manner than what

has been possible hitherto. In the second case, a

dynamic model is proposed in place of the currently

available models, which are only static in nature.
2. Coalescence mechanism

2.1. Random coalescence model

The mathematical description of the kinetics of

coalescence between pellets is somewhat similar to

that of the coagulation phenomenon in colloidal sus-

pensions. In latter case, the rate of coagulation between
particles (or coagula) of two discrete sizes, say i and j,

is proportional to the product of their number concen-

trations, ni� nj. On the other hand, Kapur and Fuer-

stenau (1969) argued that an agglomerating charge has

the character of a loosely packed bed of particles (or

granules) where each pellet at any instant of time is

surrounded by a cage of neighbors. Therefore, the rate

of coalescence in this so-called restricted-in-space

(Sastry and Fuerstenau, 1970) environment should be

proportional to number of pellets of size i and number

fraction of pellets of size j, or vice versa. Moreover, in

random coalescence, specific rate constant or coales-

cence kernel k is by definition independent of the size

of the interacting pellets. Under these stipulations, the

balling kinetics may be formulated in the framework of

particle population balance (Kapur and Fuerstenau,

1969; Kapur, 1978).

dniðtÞ
dt

¼ �kniðtÞ
Xl
j¼1

njðtÞ
NðtÞ þ

k

2

Xi�1

j¼1

ni�jðtÞ
njðtÞ
NðtÞ ;

i ¼ 1; 2; 3 . . . ð1Þ

where ni(t) is the number of pellets of size index i at

balling time t. Ignoring reduction in pellet porosity as a

second-order effect, the volume size vi associated with

the i-th size index is i times v1, the initial nuclei volume

size at t= 0. Since the total number of pellets at any

instant N(t) is

NðtÞ ¼
Xl
i¼1

niðtÞ ð2Þ

Eq. (1) simplifies to:

dniðtÞ
dt

¼ �kniðtÞ þ
k

2NðtÞ
Xi�1

j¼1

ni�jðtÞnjðtÞ;

i ¼ 1; 2; 3 . . . ð3Þ

Moreover, it is readily shown by summing Eq. (3) over

all sizes that the rate of depletion of the agglomerating

species conforms to the first order decay kinetics.

dNðtÞ
dt

¼ � k

2
NðtÞ ð4Þ

Starting with single size nuclei of volume v1 and

employing generating functions (or z-transform),



P.C. Kapur, V. Runkana / Int. J. Miner. Process. 72 (2003) 417–427 419
Kapur and Fuerstenau (1969) solved simultaneously

the set of infinite number of equations in Eq. (3).

niðtÞ ¼ Nð0Þð�1Þiþ1
exp � kt

2

� �
� 1

� �i�1

exp½�kt�
ð5Þ

Moreover, they showed that the mean volume size

grows exponentially with time

v̄ðtÞ ¼ v1exp
kt

2

� �
ð6Þ

Even though the random coalescence model is appar-

ently in agreement with many experimental data

(Kapur, 1978), it is not entirely satisfactory at the

conceptual level. This is because the size and number

of nearest neighbor pellets in a cage are strong func-

tions of the instantaneous pellet size distribution of the

agglomerating charge. Consequently, the assumption

of a size-independent kernel in the random coales-

cence model is seemingly quite drastic and the agree-

ment between the model and the balling data is

somewhat inexplicable and indeed intriguing. In what

follows, we propose a modified coalescence model

that explicitly incorporates the size-dependent coordi-

nation number of pellets in the balling charge, and

compare the results with the random coalescence

model. Our objective is to ascertain if the more realistic

coordination number-based coalescence model (or

coordination coalescence model) would lead to results

that are similar to the random coalescence model.

2.2. Coordination coalescence model

In a series of papers Suzuki and coworkers (Suzuki

et al., 1981; Suzuki and Oshima, 1983, 1985) have

shown that in a packed bed of size distributed particles

(or pellets), the number of particles of diameter j

coordinated around a particle of diameter i is given by

Kj;i ¼ SjKj;iðbÞ ð7Þ

where the fraction of surface area associated with

particles of size j is

Sj ¼
njðtÞv2=3jXl

k¼1

nkðtÞv2=3k

ð8Þ
and coordination number in a binary bed of i and j size

particles only is given by

Kj;iðbÞ ¼ 0:134Kð/Þ

�

vi

vj

� �1=3

þ1

1þ vi

vj

� �1=3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi

vj

� �1=3
vi

vj

� �1=3

þ2

 !vuut

0
BBBBBB@

1
CCCCCCA
ð9Þ

where K(/) is coordination number in a bed of single

size particles packed to solid fraction /.
Even though the composition of the cage is dis-

tributed and it fluctuates continuously in a dynamic

environment, for our purpose it is sufficient to con-

sider the average indices of the agglomerating bed.

Accordingly, the total number of pellets surrounding a

pellet of size i is given by

Ki ¼
Xl
j¼1

Kj;i ð10Þ

The rate of coalescence between pellets of size i and j

is

Rateðj; iÞ ¼ kniðtÞ
Kj;i

Ki

ð11Þ

Hence, the equation for coordination coalescence

model becomes

dniðtÞ
dt

¼ �kniðtÞ
Xl
j¼1

Kj;i

Ki

þ k

2

Xi�1

j¼1

ni�jðtÞ
Kj;i�j

Ki�j

;

i ¼ 1; 2; 3 . . . ð12Þ

where the collision frequency of pellet of size i with its

neighbors and the probability of coalescence, given a

collision, both assumed independent of size, are em-

bedded in the rate constant k. Because of the asym-

metric nature of the coordination number, the number

of j size pellets coordinated around the i size pellet is

not same as the number of i size pellets coordinated

around the j size pellet. While both kinds of combina-

tions are enumerated in the appearance or gain term

(second term in right hand side of the equation above),

only one kind of combination is counted in the



Fig. 1. Correction factor in coordination coalescence model as a function of mean pellet volume.

Fig. 2. Number of pellets remaining in agglomerating charge with

balling time in random and coordination coalescence models.

k(random)/k(coordination) ratio is adjusted to 1.2 for best agreement.
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disappearance or the loss term (first term in right hand

side). A consequence of this lack of symmetry is that

the total volume of the solid may not be conserved. In

order to ensure that the volume loss and volume gain

rates are always equal, we introduce a correction factor

w in the disappearance term and rewrite Eq. (12) in a

simplified form as

dniðtÞ
dt

¼ �kw niðtÞ þ
k

2

Xi�1

j¼1

ni�jðtÞ
Kj;i�j

Ki�j

;

i ¼ 1; 2; 3 . . . ð13Þ

The correction factor is computed by invoking the time

invariance of total volume

d
Xl
i¼1

viniðtÞ

dt
¼ 0 ð14Þ

Recalling vi = iv1, Eqs. (13) and (14) combine to yield

w ¼

Xl
i¼1

i
Xi�1

j¼1

ni�jðtÞ
Kj;i�j

Ki�j

2
Xl
i¼1

iniðtÞ
ð15Þ

A set comprising 1000 equations of the kind seen in

Eq. (13) were solved simultaneously by the Runge–

Kutta method. The initial condition used was 105

nuclei of volume size one. The results were compared

with the analytical solutions to the random coalescence

model given in Eqs. (4)–(6). For a comparison that is

as fair as possible, we chose not to use the techniques

of breaking up the size scale in geometrically increas-

ing segments, proposed by Hounslow et al. (1988) and
others for reducing the number of equations and

increasing the size increment ratio.

Fig. 1 shows variation of the correction factor as a

function of pellet mean volume. Note that w = 1 in

random coalescence model. It would seem that a

relatively small correction, ranging from unity to about

0.85, is needed to conserve the material volume in

coordination coalescence model. The sharp increase in

the correction factor when mean volume exceeds about

250 units (i.e. 250 times the initial volume) is due to

the truncation error that begins to manifest because of

the limited number of 1000 discrete sizes employed

rather than the infinite number required by the model.

Fig. 2 compares the total number of pellets remaining

as a function of balling time in random and coordina-

tion coalescence models. In the former case, granules

are depleted exponentially, as evident from Eq. (4).

The specific rate constant k in the latter case is adjusted



Fig. 3. Variation of pellet population with balling time in discrete

sizes 2, 3, 4, 6 and 8 in random and coordination coalescence models.
Fig. 5. Variation of pellet population with balling time in discrete

sizes 30, 40, 50, 75 and 150 in random and coordination coalescence

models.
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in order to obtain a population drop, which follows the

random coalescence kinetics as closely as possible, as

shown in the figure. The ratio of specific rate constants

k(random)/k(coalescence) in two cases turns out to be

1.25. Figs. 3–5 compare the growth and decay curves

of pellet population in various discrete size intervals,

as generated by Eq. (5) for the random coalescence

model and by numerical solution of the coordination
Fig. 4. Variation of pellet population with balling time in discrete

sizes 10, 12, 15, 20 and 25 in random and coordination coalescence

models.
coalescence model. Even though the divergence be-

tween the two sets of curves increases with size, the

overall trends including position and height of the

peaks are quite similar. Fig. 6 compares the evolution

of mean pellet size in the two models for different rate

constants while maintaining the rate ratio at 1.25 in all

cases. The agreement is quite good. In practice, balling

rates can be altered over a broad range by controlling

the moisture content.
Fig. 6. Growth of mean pellet diameter with balling time in random

and coordination coalescence models.



Fig. 7. Notation used to represent a seed of size xs layered with fines

of distributed size xf to give a granule of size y at time t.
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3. Autolayering mechanism

3.1. Static modeling of autolayering

Millions of tons of iron ore fines and other

minerals are granulated every year as sinter feed by

the autolayering mechanism. The raw feed is charac-

terized by a rather broad size distribution, ranging

from about 10 mm to finer than 0.063 mm. It is

customary to classify the feed particles as seeds,

intermediates and fines (Litster et al., 1986; Kapur

et al., 1993). The presence of fines in the sinter bed is

highly detrimental for the permeability of the bed and

hence for the sintering process. The objective of

granulation is to eliminate fines by simple expedient

of layering these onto coarse particles of the feed,

which act as seeds or nuclei. Depending primarily

upon the moisture content of the granulating charge

and the relative proportion of seeds and fines, the

intermediate size particles can act as either nuclei or

layering fines or both, or seemingly take no part in the

granulation (Furui et al., 1977; Nagano et al., 1985;

Litster et al., 1986; Peters et al., 1989). The classifi-

cation of feed particles may be generalized by intro-

ducing a partition function (Litster et al., 1986),

defined as fraction of particles of a given size that

act as seeds. Thus, in the limits, partition function is

unity when all particles are embedded as nuclei in the

granules and it is zero when all particles are con-

sumed by layering.

The autolayering process has been described in

terms of two idealized postulates (Kapur, 1995). In

the t-postulate, the rate of pick up of fine particles is

proportional to surface area of the rolling granule and a

layer is formed whose thickness t is the same irre-

spective of the seed size (Peters et al., 1989). In the

more general p-postulate, the rate of layering is pro-

portional to volume of the rolling granule, and conse-

quently, the granule size is proportional to the seed

size. In the mixed postulate, layering occurs initially

by a coating of fixed thickness, which is followed by

proportionate growth of granules (Litster and Waters,

1988).

Only static modeling of autolayering has been

attempted so far, presumably because of the highly

nonlinear nature of the process. These models map the

input size distribution of feed into steady state or

terminal granule size distribution, with little or no
information on the path traversed by the process.

Litster et al. (1986) invoke mass balance to calculate

the final granule size distribution, starting with a

priori knowledge of the partition function. On the

other hand, Kapur et al. (1993) incorporate a known

value of thickness t or of proportionate growth pa-

rameter p into an interval-by-interval marching algo-

rithm, which essentially mimics the process in a

virtual domain. The partition function and the size

distribution of fines in the deposited layer are gener-

ated concurrently in the course of the computations.

Unfortunately, neither approach is suitable for contin-

uous-time dynamic simulation of granulation by auto-

layering. In what follows, we employ the particle

population balance to construct an explicitly dynamic

model of autolayering.

3.2. Dynamic model of autolayering

The absolute number–diameter distribution of feed

n(x), 0 < x <l is divided into two components, layer-

ing fines and coarse seeds. For sake of clarity, separate

notations are assigned to fines 0 < xf < xc, and seeds

xcV xs <l, where xc is a cutoff size which separates

the components. Fig. 7 illustrates a granule of instan-

taneous size y(t) having a nucleus of size xs, which is

layered by size distributed fines xf. It is postulated that
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the rate at which fines layer onto the surface of a

granule of size y(t) is given by

Rateðy; xf Þ ¼ kybðtÞnðxf ; tÞ ð16Þ

where k is a specific rate constant and b is an unspec-

ified exponent. Because of continuous depletion of

fines by layering, the absolute number–diameter dis-

tribution of fines n(xf,t) varies with time in following

manner

dnðxf ; tÞ
dt

¼ �knðxf ; tÞ
Z l

ycðtÞ
ybðtÞnVðyÞdyðtÞ;

0 < xf < xc ð17Þ

where yc(t) is size of the granule with smallest seed

of size xc and nV( y) or nV( y(t)) is absolute number–

diameter distribution of granules, which is an implicit

function of time. It is readily shown that the rate of

increase of a granule volume v(t) is

dvðtÞ
dt

¼ pk
6ð1� eÞ y

bðtÞ
Z xc

0

x3f nðxf ; tÞdxf ð18Þ

where e is fractional porosity of the deposited layer.

Converting granule volume into diameter y(t) yields

dyðtÞ
dt

¼ k

3ð1� eÞ y
b�2ðtÞ

Z xc

0

x3f nðxf ; tÞdxf ð19Þ

with the initial condition

yð0Þ ¼ xs; xcVxs < l ð20Þ

Next, we set b = 3 in Eq. (19) and integrate

yðtÞ ¼ xsexp
k

3ð1� eÞ

Z t

0

Z xc

0

x3f nðxf ; tVÞdxf dtV
� �

ð21Þ

Or, in terms of a lumped parameter p

yðtÞ ¼ yð0Þpðk; e; xc; tÞ ð22Þ

which is the expression for proportionate growth of

granules stated above in the p-postulate and, as such,
justifies the specialization of exponent b= 3. More-

over, given that there is only one seed per granule,

conservation of total number of seeds in the granu-

lating charge requires that

nVðyÞdy ¼ nðxsÞdxs ð23Þ

In other words, Eq. (17) can be rewritten as

dnðxf ; tÞ
dt

¼ �knðxf ; tÞ
Z l

xc

y3ðtÞnðxsÞdxs ð24Þ

Simultaneous solution of Eqs. (19) and (24) results in

a dynamic model of granulation by autolayering. For

the purpose of computations, it is convenient to

discretize the size such that the layering fines lie in

first g intervals and the seeds reside in intervals g + 1

and above. If ỹi(t) is the mean granule size in i-th

interval and x̃j is the mean layering fine in j-th

interval, Eqs. (19) and (24) can be written as

dnjðtÞ
dt

¼ �knjðtÞ
Xu
i¼gþ1

ỹ3i ðtÞni; j ¼ 1 . . . g ð25Þ

with the initial condition nj(0) = nj, the distribution of

feed in discrete size intervals at t= 0, and

dỹiðtÞ
dt

¼ k

3ð1� eÞ ỹiðtÞ
Xg
j¼1

x̃3j njðtÞ; i ¼ g þ 1 . . . u

ð26Þ

with the initial condition ỹi(0) = x̃i in the seed inter-

vals. Obviously, the computational accuracy would

depend on the number of size intervals chosen and

the interval width employed, which need not be

identical.

For demonstration, the proposed model was

employed to simulate the granulation of iron ore

fines in a laboratory batch drum. The experimental

details are given elsewhere (Venkataramana et al.,

1997). The feed, which had 20.17% minus 100-

mesh (0.15 mm) fines and 5.61% moisture, was

divided into 11 size intervals. The first six intervals

were assigned to layering fines and remaining five

intervals were allotted to seeds. The cutoff size was

1 mm. The resulting 11 simultaneous equations

were solved numerically using the MathematicaR
package. The porosity of the layer was assumed

50%. The specific rate constant k was estimated by



Fig. 8. Comparison of measured mean granule size and autolayering

model as a function of granulation time. Best possible fit is obtained

by adjusting the value of the specific rate constant k.
Fig. 10. Simulation of fines remaining in size intervals as a function

of granulation time.
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matching the simulated overall surface-volume

mean granule diameter with experimental data, as

shown in Fig. 8. The best agreement was obtained

with k = 0.11, which was used in all simulations. It

will be seen that granulation occurs in two stages.

Initially in the transient autolayering regime, mean

granule size increases steeply and then growth

virtually stops or undergoes a very slow rate of

growth/decay, presumably by the abrasion transfer

mechanism. For all practical purpose, the terminal

size distribution of granules is attained in less than

a minute of granulation time in this system. Fig. 9

shows the simulated growth of mean granule size in

each of the five seed intervals, while Fig. 10 tracks

the depletion of layering fines in the six intervals.
Fig. 9. Simulation of granule growth in individual seed size

intervals with granulation time.
The model cumulative finer distributions are com-

pared in Fig. 11 with the experimental data at

various granulation times. The feed size distribution

is also included in the figure. Unfortunately, it was

not possible to acquire reliable experimental data in

the transient regime. This is because significant

time lags occur due to inertia and friction within

the sticky charge when the granulation drum is

started and stopped. These end effects can introduce

considerable noise in measurements at short time

durations. Nevertheless, the overall agreement in the

figure is quite satisfactory. Finally, Fig. 12 shows

that the growth ratio p (granule diameter/seed

diameter) calculated from Fig. 9 is 1.224. Although

the consistency of p is a consequence of the choice

of exponent b = 3, it also suggests that the discre-
Fig. 11. Model granule size distributions compared with measured

distributions at different granulation times.



Fig. 12. Ratio of granule size and seed size, showing the operation

of p-postulate in autolayering.
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tization procedure, leading to Eqs. (25) and (26),

does not introduce any significant distortion at the

implementation stage of the model.
4. Concluding remarks

The total volume may not be conserved in coor-

dination coalescence model because of two reasons.

One, volume gain or loss due to asymmetric nature of

coordination number, and two, volume loss due to

limited number of size classes chosen for numerical

computation. It is, however, not difficult to distin-

guish between the two causes. In the latter case,

volume loss is discernible only when a significant

number of pellets begin to form whose sizes are

larger than the maximum size employed in the model.

Thus, in the simulation carried out here with 1000

discrete size classes, the volume loss begins to

overwhelm the volume gain when mean pellet vol-

ume exceeds about 250 units. Evidently, the correc-

tion factor w represents a composite correction for

both the underlying causes. It is remarkable that in

spite of their different structures, random and coor-

dination coalescence models should lead to similar

results. Consequently, notwithstanding its somewhat

unrealistic basis, random coalescence model provides

a satisfactory representation of the balling process,

apart from the fact that it is much more convenient to

compute and implement.

Since it cannot be calculated from first princi-

ples, specific rate constant k in the coalescence

models as well as the dynamic autolayering model
must be estimated from experimental data. In addi-

tion, for implementing the autolayering model it is

necessary to provide an estimate of either the cutoff

size xc or the proportionate growth parameter p

from experimental data. Kapur (1995) had earlier

shown that, in theory at least, p could be calculated

by exploiting the water balance in the granulating

material

p ¼ aeql þW eqs

aeql þW eqs þWqs

� �1=3
ð27Þ

where aV 1 is a small correction for any trapped

air bubbles in the layer and, due to curvature of the

liquid–air interface at granule surface, W is water

per unit weight of solid feed, and ql and qs are

liquid and solid densities, respectively. This rela-

tionship is strictly valid if feed particles are non-

porous and wetting, and both particles and granules

are exactly spherical. Moreover, some uncertainty is

invariably associated with porosity e of the depos-

ited layer, since it depends on the extent of packing

of size distributed particles in a relatively thin layer.

Further investigation and model testing will be

needed before one can take advantage of the water

balance for modeling autolayering kinetics.
Notation

Coalescence mechanism

K(/) coordination number in a bed of single

size pellets (or particles) packed to solid

fraction /
Ki total number of pellets surrounding a pellet

of size i

Kj,i number of pellets of size j coordinated

around a pellets of size i

Kj,i(b) number of pellets of size j coordinated

around a pellets of size i in a bed of i and j

size pellets only

k random coalescence kernel or specific rate

constant

N total number of pellets or granules

ni number of pellets of size index i

Sj fraction of surface area associated with

pellets of size j

t balling time
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v1 initial nuclei volume size

vi volume size associated with the i-th size

index

v̄ mean volume size

w correction factor

/ volume fraction of solids

Autolayering Mechanism

b exponent in the rate equation for layering

g size index or class of the largest size fines

k specific rate constant of layering

n(x) absolute number–diameter distribution of

feed

nV( y) absolute number–diameter distribution of

granules

W water content per unit solid mass of the

agglomerating charge

x size of feed particles

xc cutoff size for layering

xf mean size of fines

xs mean size of seeds

x̃ mean feed size

y granule size

ỹ mean granule size

yc size of the granule with the smallest seed of

size xc
p model parameter or constant of proportion-

ality in p-postulate

u size index or class of the largest size nuclei

v granule volume

a correction factor for layer of fines

e fractional porosity of the layer

ql, qs liquid and solid densities
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