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Topological defects in crystals: A density-wave theory
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Abstract. A new approach for describing dislocations and other topological defects in
crystals, based on the density wave theory of Ramakrishnan and Yussouff is presented.
Quantitative calculations are discussed in brief for the order parameter profiles, the atomic
configuration and the free energy of a screw dislocation with Burgers vector b =(a/2, a/2,
a/2) in a bee solid. Our results for the free energy of the dislocation in a crystal of size R,
when expressed as (Ab%/4n) In (aR/|b|) where A is the shear elastic constant, yield, for
example, the value a«=1-85 for sodium at its freezing temperature (371°K). The density
distribution in the presence of the dislocation shows that the dislocation core has a
columnar character. To our knowledge, this study represents the first calculation of
dislocation structure, including the core, within the framework of an order parameter theory
incorporating thermal effects.

Keywords. Dislocations; core energy and structure; topological defects in crystals; density
wave theory.

1. Introduction

In this paper we outline briefly (for details see Raj Lakshmi et al 1987) a new
approach that we have developed for describing dislocations and other topological
defects in crystals. This approach is an extension of the density-wave theory of
Ramakrishnan and Yussouff (Ramakrishnan and Yussouff 1979; Haymet and
Oxtoby 1981; Ramakrishnan 1984; for an uptodate list of references, see Haymet
1987) to allow for topological singularities in the phase of the density wave. It is
analogous to theories for vortices in superfluids and superconductors (Fetter and
Hohenberg 1969) in that it is an order parameter description and includes thermal
effects.

2. Description of inhomogeneous solids in the density wave theory

In the density-wave theory of Ramakrishnan and Yussouff, the following functional
gives the excess free energy for creating a general density configuration p(r) in a
liquid of uniform density p;:

pQ-Q)=p fdr Uem) [p()—p]+ Jdr p(6)In[p(r)/p]

- Jdr [p‘(r)”pz]—%fdrfdrl 2 r)Lo@=pllo@)=pl+ ... (1)

where U, (r) is the external potential and ¢?)(r) is the direct correlation function of
the (supercooled) liquid; (. .. represents contributions from higher order correla-
tions which we will neglect). ‘
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Minimization of Q gives the self-consistent equation:

pPX)=p exp[— LU, (r)+ f dry ¢ 1) [p(r,) - py]. )

As shown in the references above, even in the absence of U, (r), equation (2) can
Support non-uniform solutions for p(r), with lower free energy than that of the

uniform liquid provided @ (r) is sufficiently large; for example, for a uniform solid,
ome has a solution of the form

P()=pi[1+X 0} exp(iG-1)] (3)
For an inhomogeneous solid, consider the circumstances whére

p(r)=p,[1 +§ N6 (r) exp (iG-1)] )
sucﬁ that {ng(r)} vary slowly on the scale of the unit cell and of the range of A r).

en, a gradient expansion plus a local approximation in (1) gives (Haymet and
Oxtoby 1981)

Q—'Ql 1
A o )= fdrw{’?(;(r)}‘zfd”g o (r) V2 Mo (r)
1 G. 2
—ZG¢Ojrdrczn-G<r)%nG(r)+ o )

Here

cell

w{ﬂc}jfdr[l * Z M6 exp(iG 1)) In[1+ X ngexp(iG-r)]
—710_%‘% g ngl* (6)

is the (local) free-energy functional of {n¢} for the homogeneous case;

2.(2)
C=p, fdr eXP (iG 1) ¢ ()= p, ¢ () =) d’c (Q){ ’
q9=G

=G> Cc=p dq2

and we have assumed ¢ = p,de® (q)/dqfq =¢ =0 for simplicity.

Minimizing (5) we get the self-consistent equations for {#, ()} as

26V 0 )= 800/6m0 = — U, {1, 1), 1, 1), (7a)
(A ) |
3Cq 'Gl ’76&')‘50)/571(;:: “U_G{?]O(l‘), }76(]-)}‘ ) (7b)

Clearly, U, (y,, {n¢})/B and Ue (0> {ns})/B can be interpreted as the Fourier
components of an external potential that would be required to stabilize. (locally) any

giveq Mo and {#¢} in a homogeneous situation. They are hence determined as
solutions of the implicit equation:

1316 XD (iG .0 =exp [(con,— 1)+ Z(conle—Ugexp (iG-n].  (8)
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3. Application to dislocations

In general, 14 (r) are complex: {56(r)} ={us(x) exp (idg (r) }. Dislocations are topo-
logical defects which are characterized by the condition ¢ dog=2nm for paths
encircling the dislocation. Asymptotically, far from the core of the dislocation, one
expects that the solid is locally periodic, i.e. Vg ocG= ¢¢ =G -u(r); u(r) is then
interpretable as the local displacement field in the solid. This condition is then
equivalent to the more familiar one ¢ du=b, where b is the Burgers vector.

The singular part of the phase ¢g(r) is determined by the geometry and
configuration of dislocations in terms of the singular part of the displacement field
(Landau and Lifshitz 1970), for example (i) for a serew dislocation along z-axis with
b =biu e (r)=b2¢/2n, and (ii) for an edge dislocation along z-axis with b=bx,
U ging (1)=bX¢/2n, where ¢ is the azimuthal angle.

Given these, the amplitudes {4 (r) } and the regular part of the phases {6 (¥) } can
be determined by solving the set of nonlinear differential equations (7), subject to the
following boundary conditions

(1) as|r|— o0, {ug(r) } > n¥ of the undeformed solid,
(i) as |r|—0, ie., at the core of the dislocation, {t (r) } -0

for those G for which G-b#0; that is, ¢ dgps=2mm+#0 as one goes around the
dislocation.

4. Sﬁecifics for a 1a [111] screw dislocation in a bee solid

For simplicity, we take to be non-zero only ¢, (c¢ at G=0) and c,, ¢,"(=cg, ¢g”
evaluated at the first peak of ¢® (g)). This approximation is known to give a reason-
able description of the bce solid (Ramakrishnan and Yussouff 1979), its elastic
properties (Ramakrishnan 1984) and its interface with the melt (Oxtoby and Haymet
1982).

Then, by the symmetry of the problem, only two independent amplitudes u, and
1 are enough to characterize the dislocation. Namely, ug =y, for G= {[110], [101],
[011]} and {[110], [T0T], [0T1]} for which ¢;= +¢ respectively; and ug=pu, for
G={[110], [101], [01T], [110], [101], [0T1]} for which ¢¢=0. Furthermore, y, and
U, will be functions only of the radial distance r from the axis of the dislocation.

The set of nonlinear partial differential equations (7) now reduces to

o (Pug 1duy p

1 (drzl +;_d;1_—;71 =12U, (1, pa), (12a)
. (Pp,  1du |
“ (dff +;“af‘)=4 Ua (b, ). (12b)

Here, the functions U, and U, are determined as solutions of the following
equations, which follow from (8):

w1 (g1 ([ (w1 (r))
<N2> o (1+1"Co>vfdr W, (r)

exp [6(c,p;, — U)w, (r)+ 6(cipy— Uy)w,(r)] (13)
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where

1 cell
¢o=rfdr exp [6(c,p, — Uy)w, (r)+6(chu2 —Uy)w,(r)],
cell
1 2 2
Wy (r)=-3-(cos%7£(x+y)+cos%(y+z)+cos-§(z+x)),

1 2 2 2
W, (r)=§(cos:?(x“y)-i-cos—g(y-—z)+cos§(z~x)).

(In writing these equations, use has been made of the fact that leol is large, to make
an expansion in powers of (1 — co) " h).

The coupled nonlinear differential equations (12) are to be solved with the
following boundary conditions (cf, the previous section):

() as 70, u,~0 and du,/dr—0,
(]I) as r—aoo, His Hy _')771*‘

5. Some details of the calculations

The asymptotic behaviour of the solutions to (9) cah be obtained analytically and is
given by (with 7 =r/Jle,”))
(i) as F—0

U= alF*4U1 (Oa az) an

H2=a;— U, (0, a,)7?,

where g, d» are constants that are to be determined by solving the boundary value

problem.
(i) as F> o0
@U /o,y n¥ 1
=ni——2
Ha=ni det 72
(aUz/aﬂl)*’ff 1
2=n¥F— Mo s
Ka=n3 det 72

where the * on the derivatives means that these are to be evaluated for Uy, uy=nf
and

det_(aUl_aUz_aUI.am)!
(?[ll 5/12 6#2 alu’l Hy, .Uzzﬂalk‘

The 7— oo solution is consistent with what is expected for an elastically distorted

solid with the displacement field TI=75¢/27:, and a shear elastic constant

/1=p£kBchl”HGllz nT2/3 (Ramakrishnan 1984).
For obtaining the full numerical solution to (9), one has to know U

1 (.ula 43) and



Please contact to Foxit Software for the licensed copy.

Web Site:
www.FoxitSoftware.com

Sales and Information:
Sales@FoxitSoftware.com

Techincal Support:
Support@FoxitSoftware.com


PDF Page Organizer - Foxit Software

Topological defects in solids 49

U, (41, 42). The computation of these functions by solving (10) is extremely expensive
in terms of computer time. However, we can use a trick to reduce the numerical work
considerably. Instead of working with the variables u,, t, we work with &,, &, the
fourier components of the molecular field, which are defined as

Si=cu — Uy Ey=cipuy— U,

Then, using (10), p4, u,, and thence U, and U, are expressible as power series in &,
and ¢, the coefficients of which series can be easily calculated. Equations (9) are now
recast as (more complicated looking) differential equations for ¢ 1 (r) and &,(r) and
solved numerically. The asymptotic r-dependence of ¢, &, is similar to that of p,, u,
(for details see Raj Lakshmi et al 1987).

6. Some results

6.1 Order-parameter profiles

Figure 1 shows the profiles for &, (), &,(r) and 5, (r), the fractional mean density
change (which turns out to be equal to just In ¢y(&,, $2) /(1 —co)), calculated using
values for the parameters ¢,, ¢, and c¢,” for sodium at its freezing temperature
I'=371°K=T, (obtained from extrapolations of experimental data). This figure
shows that the radius of the dislocation core is approximately 2-3 lattice spacings.
Note also that £, (r) which characterizes &, (r) for those G for which ¢ #0, vanishes
at the core of the dislocation.

6.2 Dislocation core energy

Using the order parameter profiles we have calculated the free energy of the disloca-
tion as the sum of two parts: (i) from the near region, using the numerical solution,
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Figure 1. Profiles of the molecular field components &, (r) and &,(r), and the fractional
density change 7, (r) for a 4a[111] screw dislocation in a bee solid at freezing (sodium at

T=T,;=371°K). 7=r/\/ ley”| is the reduced radial distance from the dislocation axis.
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and (i) from the far region, using the asymptotic solution. It is conventional to
express the result in the form (Ab*/47) 1n («R/b), where 4 is the appropriate shear
elastic constant. Then « is a measure of the core emergy, and we get for

T=T;(=371°K), a=1.94 a/ \/le,"] ~1-85 (using experimental values for the

parameters). We have also done the calculations for another temperature

T=T,~-100° (=271°K) and find =248 a/\/fcl”l. o
The only other calculation of the core energy is in the atomistic description (i.e.

T'=0) which gives g ~4-5 (see Vitek et gl 1970; Puls 1981; Christian 1983; Duesbery
1986).

6.3 Configuration of the dislocation

Within our formulation, we can obtain Pp(r), the density distribution in the solid
with the screw dislocation; this has the following features:

() pp(r) in the presence of the dislocation retains the same periodicity in the [111]
direction as the uniform solid.

(i) The positions of the maxima of p,,(r), which may be identified with the atomic

compared to the uniform solid. Since &1 (r) vanishes at the core of the dislocation, the

modulation of p, (r) along the dislocation axis is small within the core. Thus the
dislocation core has a columnar character.

7. Concluding comments

The scheme that we have presented here for describing dislocations in solids has the
following advantages as compared to other schemes:

(1) Our scheme reduces to the correct elastic continuum theory far away from the

the continuum elasticity theory.
(i) Thermal, statistical mechanical effects are included from the outset, whereas the
atomistic description is essentially a zero-temperature theory.

(i) The parameters which are mputs to the theory are structural properties of the
(supercooled) liquid which are either directly measurable or can be related to
i ast, the atomistic theory uses poorly known atomic

At the level of approximation discussed here, the free energy of the dislocation is
independent of its location in the unit cell. This implies a zero Peierls-Nabarro
barrier, ie. the dislocation can move freely through the crystal. The degree of
validity of the gradient and local approximations depends on the largeness of ¢,”. In
our theory, the smallness of the experimentally observed barrier (~10"% of the
extrapolated elastic energy needed for 10% strain, say) is understandable (and
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framework for investigating the structure and energetics of dislocations and other
topological defects (such as grain boundaries) in crystals.
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