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Abstract

Humans display image-independent viewing biases when inspecting complex scenes. One

of the strongest such bias is the central tendency in scene viewing: observers favour

making fixations towards the centre of an image, irrespective of its content.

Characterising these biases accurately is important for three reasons: (1) they provide a

necessary baseline for quantifying the association between visual features in scenes and

fixation selection; (2) they provide a benchmark for evaluating models of fixation

behaviour when viewing scenes; (3) they can be included as a component of generative

models of eye guidance. In the present study we compare four commonly used approaches

to describing image-independent biases and report their ability to describe observed data

and correctly classify fixations across 10 eye movement datasets. We propose an

anisotropic Gaussian function that can serve as an effective and appropriate baseline for

describing image-independent biases without the need to fit functions to individual

datasets or subjects.
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Deriving an appropriate baseline for describing fixation

behaviour

When we view complex scenes, where we look is influenced by a combination of

low-level scene statistics (Itti & Koch, 2000), higher-level interpretation of the scene

(Einhäuser, Spain, & Perona, 2008; Ehinger, Hidalgo-Sotelo, Torralba, & Oliva, 2009),

task goals (Buswell, 1935; Yarbus, 1967) and behavioural biases (Tatler & Vincent, 2009).

If we are to understand the relative contributions of these different sources of guidance in

scene viewing then techniques are required for quantifying the extent to which decisions

about where to look can be attributed to each source.

At present, existing techniques can be categorised broadly into two approaches.

First, the statistical properties at the centre of gaze can be quantified in order to measure

how strongly a particular feature is associated with where gaze is directed (e.g., Pomplun,

2006; Reinagel & Zador, 1999). Second, locations that are likely to be fixated can be

predicted based upon the distribution of statistical properties across an image and then

the correspondence between the distribution of human fixation locations and the regions

predicted as likely to be fixated from the statistical distribution can be assessed (e.g.,

Torralba, Oliva, Castelhano, & Henderson, 2006).

Both approaches can be used to assess the potential correspondence between a

variety of low- or high-level features and fixation selection: provided that the feature

under investigation can be quantified at each location in the scene, it is possible to

quantify the strength of that feature at fixation or its distribution over the image.

However, both approaches require a baseline measure in order to consider whether the

association between the feature under test and fixation is greater than that expected by

chance. Typically, a randomly generated set of locations is used to sample either the

strength of the feature or the probability of selecting locations that fall within the regions

predicted as likely to be fixated on the basis of the feature. The extent to which the
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control locations and the fixated locations correspond with the feature under test can then

be used to assess whether any association between the feature and fixation is greater than

would be expected by chance. A powerful and commonly used approach for making this

judgment is to use the signal detection theoretic measure of the area under the

receiver-operating-characteristics curve (see Green & Swets, 1966). The manner in which

the random locations used as the baseline for such assessments are generated has

important implications for the manner in which findings can be interpreted and indeed

can significantly impact on the results (Henderson, Brockmole, & Castelhano, 2007;

Tatler, Baddeley, & Gilchrist, 2005).

One approach is to use a uniform distribution for selecting control locations (e.g.,

Einhäuser et al., 2008; Parkhurst, Law, & Niebur, 2002; Reinagel & Zador, 1999). Using

such an approach means that any association between fixation and the feature under test

that is beyond that found in the baseline comparison can be interpreted as suggesting that

the feature is selected more than would be expected if the eyes were directed randomly

around a scene.

However, the existence of behavioural biases in how we view scenes (Tatler, 2007;

Tatler & Vincent, 2009) suggests that a uniform random baseline may misrepresent

selection with respect to features. That is, if the baseline comparison uses a uniform

random distribution for generating control locations, any association found between

fixation and features that extends beyond that in the baseline condition is likely to reflect

a combination of selection based on image properties and image-independent biases in

fixation behaviour. A more appropriate baseline for evaluating the association between an

image feature and fixation placement is to select control locations from a distribution that

reflects any image-independent biases in viewing behaviour. The most prominent and

well-characterised image-independent bias in scene viewing is the central fixation bias:

humans preferentially fixate the centre of the scene in a manner that is almost
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independent of the scene displayed to observers (Tatler, 2007; Tseng, Carmi, Cameron,

Munoz, & Itti, 2009). As a result, control fixations can be drawn from distributions that

reflect this central bias (see Tatler et al., 2005; Tatler, 2007, for discussion of this issue).

There exist a number of ways that are typically used to construct a

centrally-weighted distribution used in the baseline condition. One approach is to use a

centred Gaussian to approximate the central bias and this may be fitted to the overall

distribution of fixation locations in a dataset (Zhao & Koch, 2011), or scaled to the aspect

ratio of the images presented (Judd, Durand, & Torralba, 2012). Alternatively, these

control distributions may be generated in ways that are aimed to maximise the chance of

capturing any individual viewing biases that participants display when viewing scenes.

There exist two main ways of attempting to capture individual viewing biases in baseline

samples of features. First, the (x,y) locations of fixations on the test image can be used to

sample features at the same locations in another (randomly selected) image (Parkhurst &

Niebur, 2003). Second, (x,y) locations of fixations made by the same participant but when

viewing different images can be used to sample features on the test image (e.g., Tatler et

al., 2005; Tatler & Vincent, 2009).

At present, it is unclear whether and how these different approaches to creating a

baseline distribution vary in their suitability. The present study compares distributions of

fixations across multiple existing datasets of eye movements in order to consider whether a

single common distribution might be an appropriate baseline across studies and individuals

or whether it is necessary to tailor the baseline distribution to each study and individual.

Being able to capture the statistics of the baseline condition appropriately is

necessary for three reasons. First, if we wish to consider the relative importance of any

feature in decisions about where to look, it is desirable to be able to quantify the unique

variance associated with the particular feature after removal of variance associated with

other factors that may contribute to decisions about where to look. In this way, any
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assessment of the importance of visual information (low- or high-level) to fixation selection

should partial out variance that is associated with any image-independent biases in

looking behaviour. Thus, if we compare the feature of interest to an appropriate baseline

that accounts for image-independent biases, then we are better able to characterise

associations between that feature and fixation behaviour. This principle extends beyond

simply evaluating low-level salience models to any domain in which it is desirable to be

able to characterise the contribution of a particular source of information to inspection

behaviour. For example, in visual search paradigms, it is also useful to be able to remove

any component of the behaviour that is driven by looking biases that are unrelated to the

stimuli displayed.

Second, we can use this baseline as a benchmark for evaluating models of eye

movement behaviour in scene viewing, as employed by Judd et al. (2012). Models should

at least be able to outperform a baseline model based on image-independent biases such as

looking at the centre of the screen. In their extensive comparison of a range of different

salience models, Judd et al. (2012) found that only two models managed to outperform an

image independent central bias baseline constructed using an aspect ratio-scaled Gaussian

distribution. As there appears to be no empirical basis for this exact baseline, this may in

fact underestimate the amount of variance that can be explained, and hence

over-estimates the performance of the salience models.

Third, we can treat any image-independent bias as a factor in eye movement control

itself. Thus, if we can computationally model these biases and derive appropriate

characterisations of these biases we can use these as a component of models of fixation

selection. That is, we can produce models with modules for low-level information,

high-level information and image-independent biases. Given the strength of the central

bias and its ability to predict human fixations, it is surprising that it is not more

commonly incorporated into computational models. Indeed in their review, Judd et al.
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(2012) found only three studies that explicitly included a central bias in their model:

Parkhurst et al. (2003) use the “shuffle” method; Zhao and Koch (2011) fitted Gaussians

to their data, but restricted their baseline to an isotropic central bias, i.e., they fitted a

covariance matrix with equal horizontal and vertical variance; and Judd et al. (2009) used

an isotropic Gaussian fall-off that was stretched to match the aspect ratio of the image.

Other examples in the literature include Clarke et al. (2013) who used Euclidean distance

from the centre of the image, and Spain and Perona (2011) who used a wide range of

distance functions based on the Euclidean metric. Appropriate characterisation of

image-independent biases therefore will allow appropriate and effective additions to

existing models of fixation selection.

In the present study we evaluated different approaches to characterising baselines

for understanding fixation behaviour when viewing scenes. Using ten eye movements

datasets, we compared four ways of characterising image-independent biases in fixation

selection: (1) fitting an isotropic Gaussian to the data (as in Zhao & Koch, 2011), (2)

fitting a Gaussian scaled to the aspect ratio of the images (as in Judd et al., 2012), (3)

anisotropic Gaussians where the vertical and horizontal variances were fitted to each

dataset, (4) anisotropic Gaussians where the vertical and horizontal variances were fitted

to each participant within each dataset. The final two approaches attempt to capture any

experiment-specific (approach 3) or subject-specific (approach 4) differences in

image-independent biases and as such conform to the recommendations made in previous

discussions of this issue (Borji, Sihite, & Itti, 2013b, 2013a; Tatler et al., 2005). By

comparing across these four approaches we were able to consider the relative ability of

each approach for describing the data effectively and also the impact that each approach

has upon our ability to classify fixated and control locations using each approach. One

potential problem with the subject-level fitting (approach 4) is that this is likely to be

sensitive to the sample size of eye movements used to construct the baseline distributions.
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This is a particular issue in studies with small numbers of trials or short presentations

times (hence few fixations per image). As a result we considered how these approaches for

describing the baseline are influenced by small n. In all of these approaches an empirical

fit of the data is required to produce the baseline. We considered whether this is really

necessary or whether a general purpose function can be employed that can be used

irrespective of the subject or experiment under investigation. Here we used the average

vertical and horizontal scaling parameters from our dataset-fitting approach (approach 3)

as a general purpose baseline. We evaluated the ability of this baseline to explain the

observed data and to classify fixated vs. control locations. From these comparisons we are

able to make a recommendation for best practice when evaluating feature selection and

model performance or when constructing models of fixation selection in scene viewing.

Method

Datasets

In the present study, we considered a collection of ten datasets collected over the

previous decade. A number of different tasks are represented, including free-viewing,

visual search, memory and scene description. Table 1 provides a summary of the number

of subjects and images in each dataset together with the task and display durations. Table

2 shows details of the experimental setups in each of the 10 datasets analysed in the

present study.

The images in seven of the ten datasets had an aspect ratio of 4:3. The images used

by Yun et al. (2013) covered a range of aspect ratios but 4:3 was by far the most common

and so we restricted our analysis to these images. The only other aspect ratio represented

was 5:4 (Asher, Tolhurst, Troscianko, & Gilchrist, 2013). The photographs used by

Einhäuser et al. (2008) are of mixed aspect ratio, but the images have had large black

borders added which bring their aspect ratio up to 4:3.
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For our analyses we excluded any fixations that fell outside the borders of the

images. The very first fixation in each trial was excluded because it began prior to scene

onset and its location was determined by the location of the pre-trial fixation target rather

than any content of the scene that followed. For all remaining fixations, the x and y

coordinates were normalised by half of the width of the image. i.e., the centre of the image

corresponded to (0, 0) and fixations were points in the space [−1, 1] × [−a, a], where a is

the aspect ratio used in the dataset (typically, a = 0.75). An example of the distribution

of fixations in a dataset is shown in Figure 1.

Modelling

Fitting empirical data. Previous implementations of the central bias are generally

based on either the Euclidean distance-to-centre (Clarke et al., 2013) or a multivariate

Gaussian probability density function. This Gaussian is sometimes isotropic (Zhao &

Koch, 2011), and sometimes set so that the ratio of horizontal to vertical variance is set to

the aspect ratio of the image (Judd et al., 2012). From the form of the distribution in

Figure 1 it would appear that both Euclidean and Gaussian fall-offs are likely to provide a

good fit with the data. However, we favour using a Gaussian as it has the desirable

characteristic of assigning a positive, non-zero probability of fixation to all image

locations. More specifically, we use a two-dimensional Gaussian pdf with zero mean and

covariance matrix given by:  σ2 0

0 νσ2

 (1)

where σ2 is the horizontal variance of the fixations. We then calculate the likelihood of the

data for distributions with various ν.

We evaluate five different methods for producing a centrally-weighted Gaussian

baseline:

• isotropic: σ2 is fitted to data, ν = 1.
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• aspect ratio: σ2 is fitted to data, ν = 0.75 (=0.8 for Asher et al. (2013)).

• experiment-fitted : σ2 and ν fitted to whole dataset for each experiment

• subject-fitted : σ2 and ν fitted to each participant’s data

• proposed baseline: σ2 and ν fixed across subjects and datasets, set to average

values from the experiment-fitted fits.

In the first four cases fits were optimised to explain the observed fixation

distributions (maximising likelihood). For the proposed baseline parameters were set to

the average σ2 and ν derived from the experiment-fitted parameter estimates.

Classification performance of baseline models. In order to demonstrate that setting

ν < 1 leads to a significant improved description of the data, we evaluated the ability of

each of the five baseline models to classify the empirical data from an equal number of

uniformly distributed samples. We did this by training a logistic classifier and reporting

the area under the ROC curve (AUC). AUC values are reported as the mean of

1000-bootstrapped samples with range and interquartile range shown in box-and-whisker

plots of the data in order to assess the relative classification abilities of the five methods.

Sensitivity of models to varying n. A key issue in evaluating the suitability of our

various baseline models is how robust these approaches are to variation in the amount of

data over which baseline fits are fitted. Our fourth proposed approach - subject-fitting - is

particularly at risk of requiring fits over small numbers of fixation locations. Small sample

sizes may result from small numbers of trials nt or from short presentation times

(therefore small numbers of fixations per trial, nf ). In the present study, we explored the

effect of sample size on the subject-fitted baseline as this is both the most commonly used

approach and is the one most at risk from small sample sizes. We considered the effect of

varying number of trials, for two datasets with large numbers of trials (Clarke et al., 2013;

Judd et al., 2012) per participant by randomly selecting subsets of trials varying in size
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from 1:nt. For this analysis we used 10-fold cross validation to calculate performance of

fits based upon different sized (varying nt) subsets from 90% of the data for classifying the

remaining 10% of the data. The plotted AUC values are means across 10 bootstrapped

samples in each of the 10 folds.

Having a small number of fixations per trial is a common problem but realistically

only arises as a result of short presentation times. In such situations, the distributions of

fixations and hence the baseline estimates will be influenced not only by the limited

availability of fixations, but also by the known variation in image-independent biases over

the first few fixations after scene onset. In particular the image-independent bias to look

near the centre of scenes is known to vary in strength as viewing progresses, with a more

pronounced bias soon after scene onset than later in viewing (Tatler, 2007). We therefore

took a second approach to modelling the influence of small numbers of fixations per trial

by considering the suitability of our proposed baseline as a function of the number of

fixations in a trial by fitting σ2 and ν to only the first n fixations in each dataset. We also

fitted functions to describe how σ2 and ν vary with the number of fixations collected.

While fitting the first nf fixations gives a realistic impression of the suitability of our

proposed baseline and the reliability of subject-fitted baselines for datasets comprising

trials of varying duration, it does not allow us to describe the ability to fit

image-independent biases at any given moment in viewing. In order to consider this issue

we fit data for the nth fixation in each dataset. Taken together our fits of the first nf

fixations and the nth fixation in viewing allow us to characterise not only how well

different baseline approaches described the data for varying trial durations, but also how

the baseline fits varied over the course of viewing. Any change in σ2 and ν reflect how the

distribution of fixations changed over fixation number, with larger σ2 indicating greater

spread and larger ν indicating a greater horizontal to vertical ratio.
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Results

Fitting empirical data. In the evaluated datasets the means of the fixation locations

were indeed at the centre of the image (Figure 2). This suggests that there were no large

systematic biases towards fixating one region over any other. For example, a bias towards

fixating the lower half of the image would not have been surprising as, generally, there is

more informative image content below the mid-line horizon than above: the upper half of

images is more likely to contain sky (outdoor scenes) or walls / ceilings (indoor scenes)

and as such is less likely to contain informative scene content. However, like Tatler (2007)

we found no such vertical shift, with all distributions centred around the vertical and

horizontal centre of the scene. Therefore, in the analyses that follow we used a Gaussian

centred at the scene centre.

For the isotropic and aspect ratio baseline models we fitted a diagonal covariance

matrix to each dataset, allowing σ2 to vary, but setting ν to 1 in the case of the isotropic

model and 0.75 (or 0.8 for the Asher et al. (2013) dataset) for the aspect ratio model. For

the experiment-fitted and subject -fitted baseline models we fitted a diagonal covariance

matrix to each dataset, allowing both σ2 and ν to vary.

The distributions of σ2 and ν for the experiment-fitted baseline model are given in

Figure 3. For all of the evaluated datasets ν, the ratio of vertical to horizontal variance,

was not only less than 1 (i.e., vertical variance was less than horizontal variance), but was

also less than would be expected from the aspect ratio of the images (typically 0.75). The

mean value, ν=0.45 suggests that that the vertical variance is less than half the horizontal

variance.

For the proposed baseline model we used the mean σ2 and ν across datasets

calculated using the experiment-fitted baseline fits. As such, in our proposed baseline

model σ2=0.22 and ν=0.45.

Figure 4 shows how varying ν affected the likelihood of the fixations from each
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dataset. The results consistently showed that the horizontal variation is larger than the

vertical variation, and furthermore, that setting ν to the aspect ratio of the image does

not capture all of this effect. We also found that the difference between fitting each

dataset individually, and just using σ2=0.22, ν=0.45 was comparatively minor.

Interestingly the Ehinger et al. (2009) dataset appears to be an outlier. Presumably this is

due to the nature of the images: when searching for pedestrians in photographs of street

scenes, it is unsurprising there there are more fixations located along a horizontal band

and less variance in the vertical direction, and indeed the authors use a horizontal band as

a contextual prior in their study.

Classification performance of baseline models. We assessed the ability of each of our

five baseline models to distinguish the empirical fixations from a set of uniformly

distributed points using logistic regression. The results are shown in Table 3 and Figure 5.

For all ten datasets, the isotropic baseline performed the worst. The differences between

our proposed baseline and both the experiment-fitted and subject-fitted baseline models

were relatively minor.

Sensitivity of models to varying n. If we estimate the central bias from small sample

sizes, the estimate is likely to be a poorer fit and thus less well able to explain empirical

fixation distributions. Small sample size for estimates of baselines is a particular problem

for subject-fitted baselines, especially if either the number of trials is small or the

presentations times for images are short. We simulated the problem of small numbers of

trials on the estimates of the central fixation bias by randomly sampling nt trials (Figure

6) for two datasets and considering how well baselines fitted to these limited samples

explained data on other (test) data from the same subject. For reference the performance

of our proposed baseline is also plotted alongside these fits. It is clear that when the size of

the dataset is limited by having few trials, subject-fitted Gaussians were poor estimates of



Central Baselines 14

the underlying central bias in fixation behaviour. As such, subject-specific fits based on

small n will be a less reliable baseline than a baseline with our proposed fixed vertical and

horizontal scaling (Figure 6).

Figure 7 shows how σ2 and ν varied when fitting only the nth fixation in each trial

or the first n fixations of each trial in each dataset. The patterns are similar for σ2 and ν

for the nth or first n fixations in each trial: with lower σ2 and - to a lesser extent - higher

ν early in the trial than later in the trial. These changing values show that the first few

fixations after scene onset were distributed differently from later fixations, with less

horizontal spread and greater vertical spread. We fitted functions to describe the change

in mean σ2 and ν over the first n fixations in a trial as follows: σ2 = 0.23 − 0.29/n (fit

r2 = 0.99), ν = 0.43 − 0.09/en (fit r2 = 0.97) where n = the number of fixations collected

per trial. It should be noted that ν asymptotes very early in viewing, at around 3-4

fixations. As such, no modification of our proposed baseline ν of 0.45 is necessary provided

presentations times allow at least 3-4 fixations per trial in any experiment. For σ2, some

modification of our proposed baseline σ2 of 0.22 is necessary for experiments where fewer

than 10 fixations are collected per trial, and for this we recommend using the function

above.

Discussion

Characterising image-independent biases in eye movements, such as the tendency to

look at the centre of a scene, is important for understanding eye guidance in scene viewing

for at least three reasons. First, image-independent biases are an appropriate and

necessary baseline for quantifying the association between visual features in scenes and

fixation selection (e.g., see Tatler et al., 2005) . Second, the overall performance of models

of fixation selection is often measured by comparing the model’s performance to that from

a reference model based on image-independent biases such as the central fixation tendency
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(e.g., Judd et al., 2012). Therefore, an appropriate description of the image-independent

biases in scene viewing is essential for making such evaluations. Third, we can incorporate

the description of image-independent biases into models of fixation selection in order to

improve the ability of models to generate human-like fixation behaviour (see Clarke et al.,

2013; Judd et al., 2009; Parkhurst & Niebur, 2003; Spain & Perona, 2011; Zhao & Koch,

2011, for examples of incorporating central tendencies into models).

Previous authors have argued for the need to compare feature content at fixated

locations to that at control locations, with control locations drawn from a distribution

that reflects any image-independent biases in inspection behaviour (e.g., Borji & Itti,

2013; Judd et al., 2012; Tatler et al., 2005). However, different conventions exist for

constructing the distribution for this baseline comparison dataset (Borji et al., 2013b,

2013a). Some authors have used a uniform distribution for generating baseline locations

(e.g., Einhäuser et al., 2008). However, other authors have preferred measures that

sample non-uniformly for their baseline samples in order to capture aspects of the typical,

non-uniform inspection behaviour that is ubiquitous in scene viewing. A popular approach

for constructing a baseline distribution is to use the fixation locations of the same

individual on other images (e.g., Tatler et al., 2005). Using uniform random sampling or

sampling that reflects image-independent biases can produce very different findings, and it

has been argued that uniform sampling for baseline comparisons can mis-represent the

association between low-level features and fixation placement (Henderson et al., 2007;

Tatler et al., 2005).

Using baselines that capture viewing biases such as the tendency to look at the

centre of the screen allows evaluations to essentially account for between- or

within-individual image independent biases in inspection behaviour. However, creating a

baseline in this way is problematic if (1) the number of images in a study is small or (2)

presentation times are short. In both cases, the number of samples that are used to create
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the baseline set of locations will be small and thus estimates of any effect may be noisy. It

is also not clear from previous studies that have recommended such approaches whether

this degree of description is necessary to provide an appropriate baseline: that is, is it

necessary to construct baseline samples that reflect individual- and experiment-specific

biases, or can a function that describes image-independent biases across individuals and

tasks be employed? Such a function would remove the issues associated with small

datasets sizes when gathering baseline samples.

In the present study we found that fitting an anisotropic Gaussian to each dataset

(thus to each experiment) produced a better description of viewing behaviour than an

isotropic Gaussian fitted to each dataset. Thus, a baseline distribution that reflects a

greater spread of fixations horizontally than vertically provides a better description of

fixation behaviour than an isotropic distribution. If the anisotropy was scaled to the

aspect ratio of the image, the baseline model both described the empirical observations

better and classified fixation data more reliably than the isotropic baseline model.

Descriptive power and classification accuracy were better still if the horizontal and vertical

scaling of the Gaussian was fitted to each dataset (experiment-fitted baseline). In this case

we found that for all datasets the best vertical scaling was less than that of the aspect

ratio - that is, vertical spread was less than would be expected from the aspect ratio of the

images alone. Fitting the Gaussian separately to each individual (subject-fitted baseline)

produced a baseline that was comparable to the experiment-fitted baseline in nine of the

ten datasets we explored: only for the Judd et al. (2009) dataset was the subject-fitted

baseline noticeably better than the experiment-fitted baseline model for classifying

fixations. This interestingly suggests that there may be little statistical advantage to

constructing baselines separately for each participant in an experiment and that fitting

across participants at the experiment level provides a baseline that is equally appropriate

for meaningful statistical comparisons.



Central Baselines 17

One issue with creating a baseline by fitting to individual subjects or experimental

datasets is that the estimate of the underlying biases will become noisy for smaller dataset

sizes. In an attempt to circumvent this potential issue we evaluated a baseline model

constructed by taking the average vertical and horizontal scaling from the

experiment-fitted Gaussians. The rationale is that it would be of benefit to be able to use

a fixed Gaussian function for any dataset of fixations gathered during scene viewing

experiments. We found that the mean classification performance of our proposed baseline

model was surprisingly close to that for the experiment-fitted and subject-fitted baseline

models. Indeed in nine of the ten datasets the interquartile ranges for these three baseline

models overlapped considerably. Only for the Ehinger et al. (2009) dataset was our

proposed baseline model noticeably inferior to the experiment-fitted and subject-fitted

baseline models. It may be that the combination of task (find people) and image set

(street scenes) resulted in a distribution of fixation behaviour that was unlike that found

in the other datasets we evaluated. Indeed, we found that the effect of varying the vertical

scaling for the fitted Gaussians was very different for this dataset than for the other nine

datasets. The authors themselves found that a horizontal band across the extent of a

scene offered a good explanation of the data (providing a contextual prior for searching for

people in street scenes). Because removing any influence of image-independent biases such

as the central fixation bias from evaluations of other factors in models of scene viewing is

advantageous, we would argue that it is advantageous to include our proposed baseline

model even in datasets like that collected by Ehinger et al. where our proposed baseline

offers a poor overall fit to the observed data. In doing so we isolate any fraction of

inspection behaviour that is attributable to these biases and so obtain a potentially better

and fairer estimate of the contribution of other factors to eye guidance.

The good performance of our proposed baseline model across a variety of

experimental tasks and subjects suggests that there is no need to fit experiment-level or
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subject-level differences in inspection biases. We therefore propose from the datasets

examined in the present report that an appropriate baseline distribution for experiments

using images with aspect ratios around 4:3 is a Gaussian probability density function with

zero mean and covariance matrix [σ2, 0; 0; νσ2] where σ2 = 0.23 and ν = 0.45. This

recommended baseline avoids the risk of failing to estimate the influence of

image-independent biases when fits are based on small numbers of observations: we found

that the subject-fitted baseline offered poor descriptions of fixation distributions for small

numbers of trials. Indeed, the subject-fitted baseline and was poorer than our proposed

baseline if the number of trials in the experiment was less than around 15. Given that the

strength of the central bias in scene viewing is higher early in viewing than later on

(Tatler, 2007), we considered the influence of small numbers of fixations by modelling how

σ2 and ν = in our proposed baseline change depending upon either (1) whether we

modelled only the nth fixation in a trial or (2) how many fixations are collected after

scene onset (thus modelling only the first n fixations per trial). We found ν to be

relatively unaffected by the number of collected fixations, with little change over fixations

if only modelling the nth fixation and only a small increase when modelling fewer than the

first 3-4 fixations per trial. We therefore suggest that ν of 0.45 is likely to be appropriate

irrespective of presentation time in an experiment, especially if trial durations allow at

least 3-4 fixations to be collected. For σ2, it may be necessary to change the value used for

trials in which fewer than 10 fixations are collected per trial (although little change is seen

beyond the first five fixations), or if modelling any individual fixation up to around the

5th-7th in viewing. When modelling data collected with trial durations that result in

fewer than 10 fixations per trial we therefore recommend using a σ2 = 0.23 − 0.29/nf .

There now exists a number of models of salience in scenes. These models use

feature-level descriptions of scenes, typically describing the extent to which particular

pixels or groups of pixels differ from their immediate surroundings or the scene as a whole
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(see Borji & Itti, 2013; Judd et al., 2012). These feature-level descriptions are then

compared to human fixation behaviour in order to evaluate whether they offer good

descriptions of how scenes are viewed. Recently, Judd et al. (2012) suggested that an

appropriate benchmark for testing the performance of salience models is to compare their

ability to account for human fixation locations to the ability of a centre-bias baseline

model to account for the same fixation locations. In their evaluation, only two models

outperformed their central bias baseline model: GBVS (Harel, Koch, & Perona, 2006) and

the authors’ proposed model. Moreover, the difference in AUC between these two models

and the baseline was small: 0.018 for GVBS and 0.028 for the authors’ proposed model.

For their baseline model, Judd et al. used a Gaussian that reflected the aspect ratio of the

viewed scenes. We found that fitting the Gaussians to the individual datasets, individual

subjects or using our proposed baseline settings provided a better description of the centre

bias than our aspect ratio model and that this resulted in an increase in AUC of 0.014,

0.015 and 0.010 respectively over the aspect ratio model. Thus, using any of these

descriptions of the image-independent biases narrows the gap further between the best

performing models of salience and a simple image-independent centre bias model. It is

therefore vital that any evaluation of the performance of a computational model of

salience should employ the most appropriate description of image-independent biases as a

baseline condition. It remains to be seen whether existing models of salience can

outperform more appropriate descriptions of the centre bias in scene viewing.

If the goal of modelling viewing behaviour is to produce a model that generates and

predicts fixation behaviour rather than describes it, then factors that contribute to

fixation selection processes should be accurately described and incorporated into models.

As a result, such models increasingly include a component engineered to reflect

image-independent biases to fixate the centre of the scene (Clarke et al., 2013; Judd et al.,

2009; Parkhurst & Niebur, 2003; Spain & Perona, 2011; Zhao & Koch, 2011). Our
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proposed baseline offers a parameter-free component that can be incorporated into models

of fixation behaviour, which describes centre biases across databases robustly, consistently

outperforming baselines based on an isotropic central bias, or scaling by the aspect ratio.

This baseline offers impressive explanatory power for describing human fixation

distributions, with high performance for classifying fixations in the 10 datasets analysed

here and therefore offers an important component of any model of eye movement

behaviour. Incorporating this module in models of scene viewing should produce models

that generate fixation behaviour that is more like that generated by human observers.

It should be noted that while our recommended baseline is tested across ten

datasets, drawn from a number of different tasks including free viewing, search,

memorisation and scene description, it is important to validate this baseline against a

wider variety of datasets in the future. There was some variation between the

experimental setups across the 10 datasets, with differences in viewing distance, screen

size, image resolution, image viewing angle and the use of chin/forehead stabilisation. It is

not clear whether these factors may themselves influence the nature of the

image-independent biases. While there is variation between our datasets there is not

sufficient variation to permit an exploration of this issue, but our proposed baseline offers

a description of image-independent biases that works well over the range of setups

analysed here. We expect that images with aspect ratios substantially different from 4:3

will require a different covariance matrix, as will images with non-canonical views of

scenes. Indeed, viewing behaviour differs for 4:3 aspect ratio images presented with

content shown at different orientations (Foulsham, Kingstone, & Underwood, 2008) and

placing natural scenes within a circular aperture reduces the prevalence of horizontal eye

movements and increases the prevalence of vertical eye movements (Foulsham &

Kingstone, 2010). Similarly, using dynamic scenes may reduce the influence of the screen

centre on viewing (Cristino & Baddeley, 2009; Hart et al., 2009) and centre biases may
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not be a feature of viewing real world scenes (Hart et al., 2009; Tatler, Hayhoe, Land, &

Ballard, 2011). However, it was not our goal to describe a baseline suitable to all

experimental situations, but instead one that is suitable for the experimental setups most

commonly used in the field: where images are displayed on computer monitors, with

relatively small variations in angular extent, often in 4:3 aspect ratio or similar and most

commonly using free viewing or search tasks. In the present work we have shown that in

such situations a baseline that is not tailored to individual datasets (this different sets of

images and different tasks) or individual subjects performs as well as baselines that are

fitted to each dataset or subject. This suggests that our recommended baseline is unlikely

to be parochial to any particular image sets, individuals or tasks and so is likely to

generalise to new datasets, and can serve as a suitable and easy to implement baseline for

many experimental scene viewing datasets.
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Observers Images Task Display duration

(Clarke et al., 2013) 24 100 object naming 5000 ms

(Yun et al., 2013) - SUN 8 104 image description 5000 ms

(Tatler et al., 2005) 14 48 memory variable

(Einhäuser et al., 2008) 8 93 object naming 3000 ms

(Tatler, 2007) - free 22 120 free viewing 5000 ms

(Judd et al., 2009) 15 1003 free viewing 3000 ms

(Yun et al., 2013) - PASCAL 3 1000 free viewing 3000 ms

(Ehinger et al., 2009) 14 912 visual search variable

(Tatler, 2007) - search 30 120 visual search 5000 ms

(Asher et al., 2013) 25 120 visual search variable

Table 1

Summary of the 10 datasets used throughout this study.
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Eye tracker Viewing

distance

Screen

size

Image

size

Viewing

angle

Chin /

head rest

(Clarke et al., 2013) EyeLink II 50 cm 21” 800 x 600 31 x 25◦ no

(Yun et al., 2013) - SUN EyeLink 1000 ? ? ? ? ?

(Tatler et al., 2005) EyeLink I 60 cm 17” 800 x 600 30 x 22◦ no

(Einhäuser et al., 2008) EyeLink 1000 80 cm 20” 1024 x 768 29 x 22◦ yes

(Tatler, 2007) - free EyeLink II 60 cm 21” 1600 x 1200 40 x 30◦ no

(Judd et al., 2009) ? 2 feet 19” 1024 x 768* ? yes

(Yun et al., 2013) - PASCAL EyeLink 1000 ? ? ? ? ?

(Ehinger et al., 2009) ISCAN RK-464 75 cm 21” 800 x 600 23.5 x 17.7◦ yes

(Tatler, 2007) - search EyeLink II 60 cm 21” 1600 x 1200 40 x 30◦ no

(Asher et al., 2013) EyeLink 1000 55 cm ? 1024 x 1280 37.6 x 30.5◦ yes

Table 2

Details of the experimental setups in each of the 10 datasets analysed in the present study.

We provide only information reported in the original articles. Question marks indicate

information not reported in the original article. *For the Judd et al. dataset images varied

in pixel dimensions but the majority were at 1024 x 768.



Central Baselines 28

Isotropic Aspect

ratio

Experiment

fitted

Subject

fitted

Proposed

baseline

(Clarke et al., 2013) 0.728 0.736 0.742 0.741 0.742

(Yun et al., 2013) - SUN 0.738 0.733 0.734 0.731 0.74

(Tatler et al., 2005) 0.631 0.642 0.66 0.661 0.658

(Einhäuser et al., 2008) 0.751 0.759 0.767 0.766 0.769

(Tatler, 2007) - free 0.714 0.72 0.724 0.724 0.724

(Judd et al., 2009) 0.780 0.788 0.795 0.799 0.795

(Yun et al., 2013) - PASCAL 0.796 0.807 0.823 0.824 0.820

(Ehinger et al., 2009) 0.646 0.668 0.729 0.732 0.703

(Tatler, 2007) - search 0.619 0.624 0.628 0.630 0.628

(Asher et al., 2013) 0.590 0.594 0.597 0.601 0.597

improvement over isotropic - 0.010 0.024 0.025 0.020

Table 3

Area under ROC for each of the five baseline models evaluated for each of the 10 datasets.
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Figure Captions

Figure 1. Distribution of fixations from the Judd et al. (2009) dataset for each of the x

and y dimensions alone, together with a contour plot of the xy joint distribution. In the

contour plot, lines delineate deciles in the dataset.

Figure 2. Mean fixation positions for the seven non-search datasets. Each × shows the

mean fixation location over all fixations (pooled over subjects and trials) in the dataset.

Right, zoomed plot of the central region of the scenes to show dispersion of mean fixation

locations in each dataset around the central point in the screen.

Figure 3. Distribution of σ2 and ν in the 10 datasets considered in the present study. The

solid vertical line shows the mean over datasets, while the dotted vertical line in the plot

of ν indicates 0.75, the aspect ratio of the majority of images the 10 datasets considered in

our study.

Figure 4. The influence of varying ν on the likelihood of the fixations from each dataset.

In each plot, the curve shows the effect of varying ν on the likelihood for Gaussians with

σ2 fitted to each dataset individually. Dashed crosshairs show the value of ν that offers

the best description of the observed data. Dotted crosshairs show the likelihoods for

Gaussians used in two previous approaches for describing baseline distributions: setting ν

to the aspect ratio of the images, ν = 0.75, or using isotropic, ν = 1, Gaussians to describe

central tendencies. The solid black crosshairs show the likelihood for each dataset using

the baseline model proposed in the present study, σ2=0.22 and ν=0.45.

Figure 5. Classification performance for the five baseline models for each of the 10

datasets. Classification performance was assessed by training a logistic classifier and

testing its ability to distinguish fixations from uniformly distributed samples, for which we

report the area under the ROC curve (AUC). In these box-and-whisker plots the
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horizontal line shows the mean AUC from 1000 bootstrapped samples, the filled box

indicates the interquartile range and the whiskers indicate the full range in the data.

Figure 6. Classification performances for baseline estimates based on nt trials for

classifying unseen test data. Performances are based on 10-fold cross validations and plots

are of average AUC values across 10-bootstrapped samples within each of the 10 folds. In

each plot the dotted line shows the classification performance of our recommended baseline

function. Our proposed baseline offers considerably better classification performance than

subject-fitted baselines when datasets are limited by small numbers of trials.

Figure 7. How σ2 and ν vary with the number of fixations collected after scene onset. The

solid black line shows the average across datasets. Each black dotted line shows an

individual dataset.
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