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On the evidence of deterministic chaos in ECG: Surrogate and predictability
analysis
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The question whether the human cardiac system is chaotic or not has been an open one. Recent
results in chaos theory have shown that the usual methods, such as saturation of correlation
dimensionD, or the existence of positive Lyapunov exponent, alone do not provide sufficient
evidence to confirm the presence of deterministic chaos in an experimental system. The results of
surrogate data analysis together with the short-term prediction analysis can be used to check whether
a given time series is consistent with the hypothesis of deterministic chaos. In this work nonlinear
dynamical tools such as surrogate data analysis, short-term prediction, saturddiparal positive
Lyapunov exponent have been applied to measured ECG data for several normal and pathological
cases. The pathology presently studied are P¥Remature Ventricular ContractigpnVTA
(Ventricular Tachy Arrhythmig AV (Atrio-Ventriculan block and VF(Ventricular Fibrillation.

While these results do not prove that ECG time series is definitely chaotic, they are found to be
consistent with the hypothesis of chaotic dynamics. 1898 American Institute of Physics.
[S1054-150(08)00202-X]

It is often difficult to decide whether the dynamics of a  gral is calculated? Therefore, we cannot confidently take
biological system is chaotic or not. An experimental sig- the system behavior as chaotic based solely on the conver-
nal from such a system must therefore be put through gence oD,.

several stringent tests to detect the signature of chaos. In For a time series without noise the largest Lyapunov
this article we apply several recently developed tests to exponent\ . gives the exponential rate of divergence of
the human electrocardiogram signal. It is suggested that two neighboring trajectories in the phase space. However,
while no conclusive proof for chaos in an experimental the existence of positivk,,, is true of stochastic dynamical
system is possible, the hypothesis of chaos cannot be systems also. Therefore, this broader sense definition,gf

ruled out in the human cardiac system. cannot be used to brand a system as chaotic or random since
both the chaotic and stochastic systems can have a positive
)\max-ll

I. INTRODUCTION There are two possible approaches for calculation of the

Lyapunov exponent, namely the Jacobian metfhdtand

Nonlinear system theory has been widely used in recenhe direct method™*® In the Jacobian method, Lyapunov
years to characterize the behavior of a dynamical systeréxponents are computed by multiplying Jacobian matrices
from a single experimental time series especially in theglong the trajectory, with the matrices computed by local
analysis of electrocardiografieCG) and electroencephalo- |inear fit and applying QR decomposition to maintain or-
gram (EEG) signalsi~® The purpose of such studies is to thogonality. In the direct methol,,, is calculated directly
determine whether dynamical indices such as correlation difrom the divergence of pairs of trajectory segments. The nu-
mension, Lyapunov exponent and entropy can serve as clinierical estimation of even the largest Lyapunov exponent
cally useful parameters. can be problematic in the presence of ndis&ven for the

However, the reliability of these indices has beenlinear stochastic process, there can be local expansions by
questioned:° The basic difficulty is in ascertaining whether sheer chance resulting in a positive exportént.
the experimental time series is generated by a chaotic or a Previous nonlinear dynamical studies of the ECG time
linear stochastic process. It has now been realized that thseries by Casseleggiet al'® and Babloyantzet al® sug-
usual measures like saturation of correlation dimension angdested that the cardiac system is chaotic based on the satu-
existence of positive Lyapunov exponent cannot by themration of D, and the positive value obtained for the largest
selves establish the chaotic behavior of the sysfem. Lyapunov exponent. Values @, ranging from 2.1 to 5.2

Errors associated with the acquisition of data like inap-were reported. The study &f, and short-term predictability
propriate sampling frequency, noise filtering and digitizationof interbeat intervals has also supported the hypothesis of
error can lead to uncertainties in the value of correlatiorchaos in the cardiac systefh.
dimension,D, . Even for uncorrelated random data, the cor-  Recent work based on surrogate data '$éfstogether
relation dimension converges at a value & ,.,  with the short-term predictid@?® of the time series has
=(—2log N)/log €, whereN is the number of points anél  shown that these methods can be valuable in ruling out linear
is the length scale at which the slope of the correlation intestochastic processes in a time series.
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In this work, we report detailed results of surrogate
analysis of ECG time series wifb, as discriminating metric
and also the short-term predictability test on the ECG for
several normal and pathological cases. We also report the i T —

L 0 2 4 6 8 101214 16 18 20 22
estimation ofD, and\ ,,, for these cases. Embedding Dimension

Our results on the evidence of presence of nonlinearity
from surrogate analysis together with the results of short-
term prediction withD, and positive\ ,,,,, are consistent with
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the hypothesis of chaos in all normal and pathological car- P S B

diac systems. It must, however, be emphasized that these 0 2 4 6 8 10 12 14 16 18 20 22

t . f Embedding Dimension

ests are only suggestive and probably there is no foolproof

method of conclusively establishing that a given biologicalrg. 1. variation of correlation dimensioR, with embedding dimension

or experimental signal arises from a low dimensional chaotidor typical subjects(a) Normal and VTA indicated by “«” and *” (b) VF,
process. PVC and AV block indicated by ©,” * X,” and “ +”, respectively.

Il. SUBJECTS We obtained the saturation &f, (see Fig. ] for all the
The first step in the study is the acquisition of ECG timeSUbJeCtS around the embedding dimension of 15. We have

series of normal and pathological subjects. We recorded th%ISO obtalrtled tpos'tt'%/am%é fortall ﬂj[e sm:'bjects webaréaélyzeoé.
lead Il of the ECG for normal subjects at a sampling fre- y reconstructing the attractor at optimum embedding di-

quency of 360 Hz using volunteers. The ECG of pathologicafnenSion obtained from the results of correlation dimension
subjects such as premature ventricular contractieWC), analysis. The optimum embedding dimension is given by the

ventricular tachyarrhythmidVTA), atrio-ventricular(AV) |r:1teger va:jluleoo(%é (dsete Tapl::-)l pllclif] or(;e. In all thel c;;egc\;/v ?
block and ventricular fibrillationVF) were taken from the ave use ’ ata points otthe down sampie ime

MIT-BIH Arrhythmia Databasé® The PVC and AV block series. TheD, values for normal, PVC, VTA and AV block

time series are sampled at 360 Hz and VTA and VF at 25(§ubjects saturates around 2¢rg. 1) indicating low dimen-
sional deterministic process. However, for the case of VF,

Hz. We filtered the ECG between 0.5 to 45 Hz and down : :
sampled the normal, PVC and AV block to 90 Hz and theD2 saturates at a higher value of around 6 which shows that
rest of them to 125 I,-Iz the dynamics underlying VF spans significantly higher di-
Before applying the nonlinear dynamical tools to Char_mensions[refer to Fig. _Ib)] than other patho_logical cases.
acterize the ECG signals, we checked for the stationarity oThe%‘r’]“aX ve:ll_Jestor 1V arlguNs cgs_es;hare gllven '(T ;I'abllezrl.bl |
the time series in all cases studied here by calculating the € entries Norl and Norz In the column data ot fablé 1,
autocorrelation function and the rms deviation for every one! epresents the data files recorded by ourselves and .the rest of
fifth of the time series. For example, for a normal subject, thethe ‘?‘f”‘ta were taken from MIT-BIH DatabaSeThere is no
values obtained are 70tQL.3 and 0.03 s for rms deviation S|gn|f|cant d|fferen9e in the Vall.JeS @fmay fOr normal and
and correlation time, respectively, for every one-fifth of thepathologmal conditions except in a few cases of VTA and

time series. Similar results obtained for all the cases shovﬁ‘v block where the values are low as for cu03 and mit231

; - ; : Table I.
the stationarity of the time series. n . . .
y To verify whether the number of data points are suffi-

cient for theD, calculation, we have carried out thHe,

IIl. CORRELATION DIMENSION AND LYAPUNOV estimation for a normal and pathological subject VF as a test

EXPONENT

The ECfG S|gqal was proces;ed in three Step?- F_'rSt b¥ABLE I. Values of correlation dimension and largest Lyapunov exponent
reconstructing their phase portraits, second by estim&ing  for various subjects. Ten thousand data points were used in all the calcula-
and finally by calculating the largest Lyapunov exponenttions.

Amax- The phase portrait of each experimental data series

- ; A ; Largest
{XI..I =1,... N} was' ork?tamed by the time-delay technifue Correlation Lyapunov
using delay vectorsiXi't ={Xi Xi+r, - - - Xi+(n-1)-}, where dimension exponent
n is the embedding dimension ards the delay timé&® The Subject Data (D,) Mmax bits s
next step is th_e estimation &f, which gives the minimum Normal Norl 1950.05 1.450.24
number of variables necessary to describe the state of the Nor2 2.930.20 1270.25
system at any time. We folloyved the method pr_oposed by PVC mit107 2 52-0.10 170-0.13
Grassberger—Procactfaccording to which saturation value mit200 3.50-0.10 163-0.11
of D2_g|ves the attractor dlmens?gt_max is. calculated by AV block mit207 165-0.11 0.92-0.07
following the method of Wolfet al. in which the largest mit231 2 76:0.18 0.69-0.15
Lyapunov exponent is computed from the growth of length VTA Cuo2 2 17:0.08 112:0.03
elements and when the length of the vector between two Cuo3 1.73-0.05 0.56-0.07
points becomes large, a new point is chosen near the refer- CUoS 5.96:0.10 169-0.16
ence trajectory, minimizing both the replacement length and culo 501010 158014

the orientation change.
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FIG. 2. Variation of correlation dimensioR, as a function of number of  F|G. 3. Variation of the significancg for filtered noise using, as dis-
data points(a) For a normal subjectb) For a pathological subject VF. criminating metric with the number of surrogatés). Random phase surro-
gates.(b) Gaussian scaled surrogates.

case, as a function of number of data points, with a high

embedding dimension of 16. This study showed no signifi-_ o i o

cant change in th®, values as we increase the number of Finally, the original time series is reordered so that rank

data points beyond 6,000 indicating that the 10 000 datstructure of the original time series agrees with the rank

points used are sufficient for tH2, calculation(Fig. 2). structu_re of the phase randomized Gauss_lan _data set. The
We cannot confirm the presence of chaos from the sar/Saussian scaled random phase surrogate is given by the re-

ration of D, and the existence of positive Lyapunov expo- ordered or_|g_|nal _tlm_e series. This ;u_rrogate will have the

nent alone for the reasons mentioned earlier. We now proS@Me eémpirical distribution as the original data and therefore

ceed to surrogate data and predictability analysis in thdhe same first-order statlstlps like average and.varlance and it

following sections to test the null hypothesis that the ECGPreserves the autocorrelation function approximately.

time series is generated by a linear stochastic process. While constructing the surrogate data sets the linear
trend is subtracted out before calculating the spectrum. The

trend is restored to the surrogate before computing any dis-
criminating statistic. This is to avoid any small errors in the
The method of surrogate data analysis was developed bgalculation of spectrum that can have a statistically signifi-
Theileret al?! to detect any nonlinearity present in the time cant deleterious effect on the surrogates.
series. Since nonlinearity is the essential criteria for chaotic ~ We choose to us®, as the discriminating metric. All
dynamics, the technique is widely appf&c®*to rule out  spurious effects in the calculation B, due to spectral fil-
linear stochastic processes in an observed time series. Sintaxing, linear correlation or limited number of data points
linear correlations create many of the spurious results, thaffect both the original time series and the surrogate data sets
method compares the original time series with artificiallyto the same extent. If the original and its surrogate behave
generated random series, the so-called “surrogate data” thaignificantly differently, for a chosen discriminating statistic,
can mimic the linear properties of the original signal. then we can conclude to a good degree of confidence, that
In this study, random phase surrogate sets and Gaussidime system under study has a nonlinear structure. However,
scaled random phase surrogate sets are generated and usethts does not mean that the underlying dynamics is necessar-
test the null hypothesis that the ECG time series is generatdaty chaotic. The method of surrogate data can be used to
by a linear stochastic process. exclude certain classes of stochastic dynamics but a definite
The random phase surrogate addresses to a hypothegissitive conclusion of chaos in the experimental data cannot
that the original time series is linearly correlated Gaussiarbe inferred.
noise®2 This type of surrogates are generated by first calcu-  The significance of the difference between original time
lating the power and phase spectrum of the original timeseries and surrogate data can be measured? IS/
series and then randomizing the phase information which=((Mg,» — M)/ o, whereMg,,andM are the discrimi-
destroys the nonlinear structure, if any, and then Fourienating metric measure of surrogate and original time series,
transforming back into the time domain. The surrogate andespectively{Mg,,) is the mean oM, and o is the stan-
original time series will have the same power spectrum andlard deviation oM.
therefore the same autocorrelation function. Before applying the surrogate data analysis to ECG, a
The Gaussian scaled random phase surrogate addressest for the software used to generate surrogate was per-
to a hypothesis that the original time series is linearly correformed on the lines suggested by Rapf@he artificial data
lated noise that has been transformed by a static, monotorige., the set of uniformly distributed random numbers on the
nonlinearity®? These types of surrogates are prepared by firstnit interval which is filtered using the procedure given in
generating a Gaussian distributed set of random numberfef. 39 is subjected to surrogate analysis and the number of
followed by the reordering of the rank structure of the Gausssurrogates were increased until the saturatios with D, as
ian data set in such a way that ranks of the Gaussian set atide discriminating metric is observe#ig. 3.
ranks of the original time series agree. After that, the phase The saturation value 0% is nearly 1.2-0.1 for both
randomization procedure is applied to the Gaussian data seandom phase and Gaussian scaled surrogates which is not

IV. SURROGATE DATA ANALYSIS
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FIG. 4. Portion of signal for a typical normal subject along with its surro- FIG. 6. Portion of signal for a typical VF subject along with its surrogates.
gates(a) Original time series(b) Phase randomized surrogate. Gaussian (a) Original time series(b) Phase randomized surrogafe). Gaussian scaled
scaled surrogate. Amplitude is in arbitrary units. surrogate. Amplitude is in arbitrary units.

of D, as a function of embedding dimension for various
significant®® Hence we fail to reject the null hypothesis. Fur- subjects with one of their typical surrogates are shown in
ther, according to the Barnard-Hope critefibalso, we fail  Figs. 1a)—7(e).
to reject the null hypothesis addressed by both types of sur- In all the cases, the number of random phase surrogates
rogates since in the case of random phase surrogates, outwere increased until a stable value¥as reachedFig. 8).
236 surrogates, for 204 cases we hiyg,>Dg,,and inthe  The significances for a normal, PVC, VTA, AV block and
case of Gaussian scaled surrogates out of 300 surrogates, for
255 cased yig>Dgyy- The Monte Carlo probability?, de-
fined as
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which gives the probability that a value B, will be less
than that ofD4, is 0.86 for random phase and 0.85 for
Gaussian scaled surrogates. By this criterion also we fail to ~
reject the hypothesis addressed by both types of surrogates.
This failure to reject the hypothesis shows that the software o é": 6 8 10 12 12 16 18 20 22
used to generate the surrogate sets is reliable. Embedding Dimension

After the check for the reliability of the software, the
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ECG time series of normal and pathological conditions were 8t ©
subjected to rando'm phqse surrogate anglysis. The origipal g 3: */*ﬁ§:*_x*:§:*=x=,_*
ECG data along with their phase randomized and Gaussian 2t X e 6 o—0—0—0—0—0
scaled surrogates for a duration of 22 s out-df00 s of data 0 2 4 6 810121416 18 20 22
. . . . Embedding Dimension
points are shown in Figs. 4, 5 and 6 for a typical normal,
PVC and VF subjects, respectivel, for both the original or @
and their surrogate sets were calculated for normal and & 6r P
pathological subjects using 10,000 data points. The variation ‘z‘j /:/o . oo oo
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Time (sec) FIG. 7. The comparison of correlation dimensiby of different typical

subjects(a) Normal. (b) PVC. (c) VTA. (d) AV block. (e) VF with their
FIG. 5. Portion of signal for a typical PVC subject along with its surrogates.surrogates as a function of embedding dimension. Random phase, Gaussian
(a) Original time series(b) Phase randomized surrogafe). Gaussian scaled  scaled and original signal are represented by, andO, respectively. Only
surrogate. Amplitude is in arbitrary units. one typical plot out of 200 surrogates from each type is shown.
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FIG. 8._ Variatiqn of sig_nificancs with number of random phase surrogates £ 10. variations of correlation coefficienp) with prediction time T,)
for various typical subjectsa) PVC. (b) AV block. (c) Normal. (d) VTA. in time units for(a) sin(0.8), (b) van der Pol oscillatorp for original time

(&) VF. series is denoted by solid line and time series with 50% Gaussian noise is
denoted by dotted line.

VF are 65.1-0.2, 181.1-1.8, 52.7-0.1, 100.1-0.3, and 5.2
+0.1, respectively, and can be taken to be significant.
In all the cases, th®,, values are greater thabg
giving Py ~0 and the value of confidence levelless than
0.005 in the nonparametric Barnard—Hope criterion which isy. PREDICTION ANALYSIS
defined byp=1/(Ng,,+1), whereN,, is the number of . . _—
surrogates. Hence we can confidently reject the hypothesis A characteristic feature of a dynamical system exhibiting
that the ECG is linearly correlated Gaussian noise. deterministic chaos is that it is possible to predict the behav-
Since there is a possibility that in some data where thd®" ©f the system with some degree of confidence in the
random phase null hypothesis is rejected while the Gaussiag|'°t"te'm even though long-term prediction is impossible.
scaled null hypothesis is not rejecf¥it is necessary to On the other hand, if the variations are nearly random, even
examine the Gaussian scaled surrogates. the short-term prediction would be impossible. Many predic-
The ECG time series of normal and pathological condi-ion methods have been suggested**"and in this study,
tion were further subjected to Gaussian scaled surrogates &ge_ha\_/e fO“OW?‘?' thg method proposed by Lefebstal.
in the case of random phase surrogates. The values of Which is a modification of the Sugihara and May metRod.
observed for normal. PVC. VTA. AV block and VE are 33.5 We used the first difference of the ECG signals as the time
+0.2, 24.4-0.1, 19.1:0.1, 25.2:0.1, and 5.76:0.1, re-  S€ries to make predictions. _
spectively (Fig. 9), which are once again significant even _ The tl_me series is d|V|_ded into equal halves of Whl(_:h_the
though there is a decrease Sncompared to random phase first half is used as the library pattern to make predictions
surrogates. Similar to the random phase surrogates, for ai°Cut the behavior of the second half. We choose an
the cases, alD,, values are greater thay,, which leads n-dimensional vectoixX; from the second half of the time

us to confidently reject the hypothesis that the ECG timeseride_s for WEiCh the prediction has to bebmgde(,j cf:alled rt]he
series is linearly correlated noise that has been transformdy€dictee. Then+1 nearest vectors are obtained from the

ECG time series of all the normal and pathological condi-
tions considered here.

by a static, monotonic nonlinear function. The valuepd library patterns so that the predictge is contained ir) the
less than 0.005 in the nonparametric Barnard—Hope criteSallest simplex formed by tie+ 1 neighbors. The predic-
rion. tion is obtained by following where the points in the simplex

The above results obtained from surrogate data analys&nd UP aftep time steps.

clearly indicate the presence of nonlinear structure in the 1° obtain the predicted value, we calculate where the
predictee has evolved aftgr time steps giving weight to

original distances from the corresponding neighbors. The
loss of predictive power can be measured by linear correla-

:g_ tion coefficientp between the original time series and the
35-M corresponding predicted values. The attractor is constructed
» 30l @ in an embedding dimension for whighis maximum for a
8 25l b given delay time and prediction time.
8 20! (© First, the above method has been applied as test cases to
5 15) (9 the time series generated from a functiqisin(0.8) and
? 10 the van der Pol oscillatok— e(1—x%)x+x=0, where e
5t L (®) =2. Both these cases are limit cycles. The correlation coef-
00 50 100 150 200 250 300 ficient p was found to be constant and very close to unity as
Number of Gaussian Scaled Surrogates the prediction time T,) is increased for both these noncha-

FIG. 9. Variation of significanc& with number of gaussian scaled surro- otic deterministic time Serle@:lg' 10. .TI‘.IIS is indeed what
gates for various typical subject&) Normal. (b) AV block. (c) PVC. (d) we expect for _these two cases of |Im|t Cyc_les._ Second, to
VTA. (e) VF. these time series, 50% Gaussian white noise is added and
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) the T, is increased beyonﬂg. This may be due to the lower
-0.4 periodicity of the VF time series.

00 01 02 03 04 05 06

Prediction Time (sec) We have also performed predictability test for the surro-

gate data setéhoth random phase and Gaussian sgateéd
© the normal and pathological conditions usrﬁﬁ; as the dis-
criminant. For all the 300 surrogates, the correlation coeffi-
cientp goes to near zero within 0.05 s itself. The number of
surrogates was increased until the saturation for the signifi-
canceS is observedsee Fig. 12 For a normal subject, the
value of S is typically 15+ 0.5 and it is significant.

Figure 1Za) compares the distinction in the fall qf
versusT,, for a typical normal subject with its surrogate and
00 01 02 03 04 05 06 also variation ofS with the number of random phase and

Prediction Time (sec) Gaussian scaled surrogaf€sg. 12b)]. These results on the
- . . , o short-term predictability of the various ECG signals enable
FIG. 11. The variation of correlation coefficienp)( with prediction time . .
(T,) for (@ normal, (b) PVC, (¢) VTA, (d) AV block, and(e) VF. In each us to reject the null hypothesis addressed by both the type of
case three different subjects are shown except for AV block where only twdurrogates.
cases are shown. The sharp fall ofp with T, in the case of all ECG time
series strongly indicates that it is not a noisy limit cycle.

. . . ... VI. UNSTABLE PERIODIC ORBITS (UPO) ANALYSIS
subjected to the prediction analysisdoes not decrease with

increasingT, as would be the case for a chaotic system and  Another indication for deterministic chaos is the possi-
remains around 0.8Fig. 10 showing that predictions with bility of describing the attractor in terms of a limited number
additive noise seem to have a fixed amount of error, regardsf unstable periodic orbits UPG8.0Our analysis(see Refs.
less of how far or close, one tries to predict, whereas th&9 and 40 for detailsof UPOs, has shown that a normal
predictions with deterministic chaos is expected to deteriohealthy cardiac attractor is characterized generally by three
rate asT,, is increased. This has been demonstrated by Lefesr four UPOs. A typical UPO distribution for a normal sub-
bvreet al?® and Sugihara and M&.Thus it appears that we ject and a pathological PVC case is shown in Fig. 13. For the
can distinguish a noisy limit cycle from a chaotic systemcases displayed in this figure, there are three dominant UPOs
from the wayp changes withT , . of periodicity of 0.99, 1.98 and 2.97 s for normal and five for
The predictability analysis was done on the ECG timePVC with the periodicity of around 0.83, 1.74, 2.6, 4.28 and
series of normal and pathological conditions. In all cases, wé.1 s.
observed a sharp decrease in gheith increasingT , which The positive Lyapunov exponents for these three UPOs
is a characteristic feature of chaotic systéM8(Fig. 11). of normal are 3.9, 1.7 and 1.2 bits*sand for five UPOs of
Clearly, there is short-term predictability for the normal PVC are 3.4, 1.8, 1.2, 0.8 and 0.6 bits*s This is another
subject of the order of 0.2 to 0.3 s within which time indication of deterministic chaos in the ECG. Details of the
decays to near zero. We denote this value‘l’pfasTg. For  UPO analysis of the human cardiac system for normal and
PVC and VTA,Tg is around 0.1 to 0.2 s and is 0.17 to 0.22 several pathological subjects showing that the UPOs offer a
s in the cases of AV block. For VF, the predictability falls signature of the cardiac condition will be published
off quickly near 0.05 s and large oscillations are observed aslsewheré®
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