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The question whether the human cardiac system is chaotic or not has been an open one. Recent
results in chaos theory have shown that the usual methods, such as saturation of correlation
dimensionD2 or the existence of positive Lyapunov exponent, alone do not provide sufficient
evidence to confirm the presence of deterministic chaos in an experimental system. The results of
surrogate data analysis together with the short-term prediction analysis can be used to check whether
a given time series is consistent with the hypothesis of deterministic chaos. In this work nonlinear
dynamical tools such as surrogate data analysis, short-term prediction, saturation ofD2 and positive
Lyapunov exponent have been applied to measured ECG data for several normal and pathological
cases. The pathology presently studied are PVC~Premature Ventricular Contraction!, VTA
~Ventricular Tachy Arrhythmia!, AV ~Atrio-Ventricular! block and VF~Ventricular Fibrillation!.
While these results do not prove that ECG time series is definitely chaotic, they are found to be
consistent with the hypothesis of chaotic dynamics. ©1998 American Institute of Physics.
@S1054-1500~98!00202-X#
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It is often difficult to decide whether the dynamics of a
biological system is chaotic or not. An experimental sig-
nal from such a system must therefore be put through
several stringent tests to detect the signature of chaos. In
this article we apply several recently developed tests to
the human electrocardiogram signal. It is suggested that
while no conclusive proof for chaos in an experimental
system is possible, the hypothesis of chaos cannot b
ruled out in the human cardiac system.

I. INTRODUCTION

Nonlinear system theory has been widely used in rec
years to characterize the behavior of a dynamical sys
from a single experimental time series especially in
analysis of electrocardiogram~ECG! and electroencephalo
gram ~EEG! signals.1–8 The purpose of such studies is
determine whether dynamical indices such as correlation
mension, Lyapunov exponent and entropy can serve as c
cally useful parameters.

However, the reliability of these indices has be
questioned.9,10 The basic difficulty is in ascertaining whethe
the experimental time series is generated by a chaotic
linear stochastic process. It has now been realized that
usual measures like saturation of correlation dimension
existence of positive Lyapunov exponent cannot by the
selves establish the chaotic behavior of the system.11

Errors associated with the acquisition of data like ina
propriate sampling frequency, noise filtering and digitizati
error can lead to uncertainties in the value of correlat
dimension,D2 . Even for uncorrelated random data, the c
relation dimension converges at a value ofD2,max

5(22 log N)/ log e, whereN is the number of points ande
is the length scale at which the slope of the correlation in
4951054-1500/98/8(2)/495/8/$15.00
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gral is calculated.12 Therefore, we cannot confidently tak
the system behavior as chaotic based solely on the con
gence ofD2 .

For a time series without noise the largest Lyapun
exponentlmax gives the exponential rate of divergence
two neighboring trajectories in the phase space. Howe
the existence of positivelmax is true of stochastic dynamica
systems also. Therefore, this broader sense definition oflmax

cannot be used to brand a system as chaotic or random s
both the chaotic and stochastic systems can have a pos
lmax.

11

There are two possible approaches for calculation of
Lyapunov exponent, namely the Jacobian method13,14 and
the direct method.15,16 In the Jacobian method, Lyapuno
exponents are computed by multiplying Jacobian matri
along the trajectory, with the matrices computed by lo
linear fit and applying QR decomposition to maintain o
thogonality. In the direct methodlmax is calculated directly
from the divergence of pairs of trajectory segments. The
merical estimation of even the largest Lyapunov expon
can be problematic in the presence of noise.17 Even for the
linear stochastic process, there can be local expansion
sheer chance resulting in a positive exponent.11

Previous nonlinear dynamical studies of the ECG tim
series by Casseleggioet al.18 and Babloyantzet al.19 sug-
gested that the cardiac system is chaotic based on the
ration of D2 and the positive value obtained for the large
Lyapunov exponent. Values ofD2 ranging from 2.1 to 5.2
were reported. The study ofD2 and short-term predictability
of interbeat intervals has also supported the hypothesi
chaos in the cardiac system.20

Recent work based on surrogate data sets11,21 together
with the short-term prediction22,23 of the time series has
shown that these methods can be valuable in ruling out lin
stochastic processes in a time series.
© 1998 American Institute of Physics
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In this work, we report detailed results of surroga
analysis of ECG time series withD2 as discriminating metric
and also the short-term predictability test on the ECG
several normal and pathological cases. We also report
estimation ofD2 andlmax for these cases.

Our results on the evidence of presence of nonlinea
from surrogate analysis together with the results of sh
term prediction withD2 and positivelmax are consistent with
the hypothesis of chaos in all normal and pathological c
diac systems. It must, however, be emphasized that th
tests are only suggestive and probably there is no foolp
method of conclusively establishing that a given biologi
or experimental signal arises from a low dimensional cha
process.

II. SUBJECTS

The first step in the study is the acquisition of ECG tim
series of normal and pathological subjects. We recorded
lead II of the ECG for normal subjects at a sampling f
quency of 360 Hz using volunteers. The ECG of pathologi
subjects such as premature ventricular contraction~PVC!,
ventricular tachyarrhythmia~VTA !, atrio-ventricular ~AV !
block and ventricular fibrillation~VF! were taken from the
MIT-BIH Arrhythmia Database.24 The PVC and AV block
time series are sampled at 360 Hz and VTA and VF at 2
Hz. We filtered the ECG between 0.5 to 45 Hz and do
sampled the normal, PVC and AV block to 90 Hz and t
rest of them to 125 Hz.

Before applying the nonlinear dynamical tools to ch
acterize the ECG signals, we checked for the stationarity
the time series in all cases studied here by calculating
autocorrelation function and the rms deviation for every o
fifth of the time series. For example, for a normal subject,
values obtained are 70.061.3 and 0.03 s for rms deviatio
and correlation time, respectively, for every one-fifth of t
time series. Similar results obtained for all the cases sh
the stationarity of the time series.

III. CORRELATION DIMENSION AND LYAPUNOV
EXPONENT

The ECG signal was processed in three steps. Firs
reconstructing their phase portraits, second by estimatingD2

and finally by calculating the largest Lyapunov expone
lmax. The phase portrait of each experimental data se
$xi : i 51, . . . ,N% was obtained by the time-delay technique25

using delay vectors:$Xi
n%5$xi ,xi 1t , . . . ,xi 1(n21)t%, where

n is the embedding dimension andt is the delay time.26 The
next step is the estimation ofD2 which gives the minimum
number of variables necessary to describe the state of
system at any time. We followed the method proposed
Grassberger–Procaccia27 according to which saturation valu
of D2 gives the attractor dimension.lmax is calculated by
following the method of Wolfet al.15 in which the largest
Lyapunov exponent is computed from the growth of leng
elements and when the length of the vector between
points becomes large, a new point is chosen near the re
ence trajectory, minimizing both the replacement length a
the orientation change.
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We obtained the saturation ofD2 ~see Fig. 1! for all the
subjects around the embedding dimension of 15. We h
also obtained positivelmax for all the subjects we analyze
by reconstructing the attractor at optimum embedding
mension obtained from the results of correlation dimens
analysis. The optimum embedding dimension is given by
integer value ofD2 ~see Table I! plus one. In all the cases w
have used 10,000 data points of the down sampled ECG
series. TheD2 values for normal, PVC, VTA and AV block
subjects saturates around 2–4~Fig. 1! indicating low dimen-
sional deterministic process. However, for the case of V
D2 saturates at a higher value of around 6 which shows
the dynamics underlying VF spans significantly higher
mensions@refer to Fig. 1~b!# than other pathological case
The lmax values for various cases are given in Table I.

The entries Nor1 and Nor2 in the column data of Table
represents the data files recorded by ourselves and the re
the data were taken from MIT-BIH Database.24 There is no
significant difference in the values oflmax for normal and
pathological conditions except in a few cases of VTA a
AV block where the values are low as for cu03 and mit2
in Table I.

To verify whether the number of data points are su
cient for the D2 calculation, we have carried out theD2

estimation for a normal and pathological subject VF as a

TABLE I. Values of correlation dimension and largest Lyapunov expon
for various subjects. Ten thousand data points were used in all the cal
tions.

Subject Data

Correlation
dimension

(D2)

Largest
Lyapunov
exponent

lmax bits s21

Normal Nor1 1.9160.05 1.4560.24
Nor2 2.2360.20 1.2760.25

PVC mit107 2.5760.10 1.7060.13
mit200 3.5060.10 1.6360.11

AV block mit207 1.6560.11 0.9260.07
mit231 2.7660.18 0.6960.15

VTA Cu02 2.1760.08 1.1260.03
Cu03 1.7360.05 0.5660.07

VF Cu05 5.9060.10 1.6960.16
Cu10 5.0160.10 1.5860.14

FIG. 1. Variation of correlation dimensionD2 with embedding dimension
for typical subjects.~a! Normal and VTA indicated by ‘‘•’’ and ‘‘* ’’ ~b! VF,
PVC and AV block indicated by ‘‘s,’’ ‘‘ 3,’’ and ‘‘ 1’’, respectively.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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case, as a function of number of data points, with a h
embedding dimension of 16. This study showed no sign
cant change in theD2 values as we increase the number
data points beyond 6,000 indicating that the 10 000 d
points used are sufficient for theD2 calculation~Fig. 2!.

We cannot confirm the presence of chaos from the s
ration of D2 and the existence of positive Lyapunov exp
nent alone for the reasons mentioned earlier. We now p
ceed to surrogate data and predictability analysis in
following sections to test the null hypothesis that the EC
time series is generated by a linear stochastic process.

IV. SURROGATE DATA ANALYSIS

The method of surrogate data analysis was develope
Theiler et al.21 to detect any nonlinearity present in the tim
series. Since nonlinearity is the essential criteria for cha
dynamics, the technique is widely applied28–34 to rule out
linear stochastic processes in an observed time series. S
linear correlations create many of the spurious results,
method compares the original time series with artificia
generated random series, the so-called ‘‘surrogate data’’
can mimic the linear properties of the original signal.

In this study, random phase surrogate sets and Gaus
scaled random phase surrogate sets are generated and u
test the null hypothesis that the ECG time series is gener
by a linear stochastic process.

The random phase surrogate addresses to a hypot
that the original time series is linearly correlated Gauss
noise.32 This type of surrogates are generated by first cal
lating the power and phase spectrum of the original ti
series and then randomizing the phase information wh
destroys the nonlinear structure, if any, and then Fou
transforming back into the time domain. The surrogate a
original time series will have the same power spectrum
therefore the same autocorrelation function.

The Gaussian scaled random phase surrogate addr
to a hypothesis that the original time series is linearly cor
lated noise that has been transformed by a static, mono
nonlinearity.32 These types of surrogates are prepared by
generating a Gaussian distributed set of random numb
followed by the reordering of the rank structure of the Gau
ian data set in such a way that ranks of the Gaussian set
ranks of the original time series agree. After that, the ph
randomization procedure is applied to the Gaussian data

FIG. 2. Variation of correlation dimensionD2 as a function of number of
data points.~a! For a normal subject.~b! For a pathological subject VF.
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Finally, the original time series is reordered so that ra
structure of the original time series agrees with the ra
structure of the phase randomized Gaussian data set.
Gaussian scaled random phase surrogate is given by th
ordered original time series. This surrogate will have t
same empirical distribution as the original data and theref
the same first-order statistics like average and variance a
preserves the autocorrelation function approximately.33

While constructing the surrogate data sets the lin
trend is subtracted out before calculating the spectrum.
trend is restored to the surrogate before computing any
criminating statistic. This is to avoid any small errors in t
calculation of spectrum that can have a statistically sign
cant deleterious effect on the surrogates.

We choose to useD2 as the discriminating metric. All
spurious effects in the calculation ofD2 due to spectral fil-
tering, linear correlation or limited number of data poin
affect both the original time series and the surrogate data
to the same extent. If the original and its surrogate beh
significantly differently, for a chosen discriminating statist
then we can conclude to a good degree of confidence,
the system under study has a nonlinear structure. Howe
this does not mean that the underlying dynamics is neces
ily chaotic. The method of surrogate data can be used
exclude certain classes of stochastic dynamics but a defi
positive conclusion of chaos in the experimental data can
be inferred.

The significance of the difference between original tim
series and surrogate data can be measured by32 S
5(^M surr&2Morg)/s, whereM surr andMorg are the discrimi-
nating metric measure of surrogate and original time ser
respectively.̂ M surr& is the mean ofM surr ands is the stan-
dard deviation ofM surr.

Before applying the surrogate data analysis to ECG
test for the software used to generate surrogate was
formed on the lines suggested by Rapp.35 The artificial data
~i.e., the set of uniformly distributed random numbers on
unit interval which is filtered using the procedure given
Ref. 35! is subjected to surrogate analysis and the numbe
surrogates were increased until the saturation ofS with D2 as
the discriminating metric is observed~Fig. 3!.

The saturation value ofS is nearly 1.160.1 for both
random phase and Gaussian scaled surrogates which i

FIG. 3. Variation of the significanceS for filtered noise usingD2 as dis-
criminating metric with the number of surrogates.~a! Random phase surro
gates.~b! Gaussian scaled surrogates.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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significant.35 Hence we fail to reject the null hypothesis. Fu
ther, according to the Barnard-Hope criterion32 also, we fail
to reject the null hypothesis addressed by both types of
rogates since in the case of random phase surrogates, o
236 surrogates, for 204 cases we haveDorig.Dsurr and in the
case of Gaussian scaled surrogates out of 300 surrogate
255 casesDorig.Dsurr. The Monte Carlo probabilityPM de-
fined as

PM5
~number of casesD<Dorig!

~number of cases!
,

which gives the probability that a value ofDsurr will be less
than that ofDorig, is 0.86 for random phase and 0.85 f
Gaussian scaled surrogates. By this criterion also we fa
reject the hypothesis addressed by both types of surrog
This failure to reject the hypothesis shows that the softw
used to generate the surrogate sets is reliable.

After the check for the reliability of the software, th
ECG time series of normal and pathological conditions w
subjected to random phase surrogate analysis. The orig
ECG data along with their phase randomized and Gaus
scaled surrogates for a duration of 22 s out of;100 s of data
points are shown in Figs. 4, 5 and 6 for a typical norm
PVC and VF subjects, respectively.D2 for both the original
and their surrogate sets were calculated for normal
pathological subjects using 10,000 data points. The varia

FIG. 4. Portion of signal for a typical normal subject along with its sur
gates.~a! Original time series.~b! Phase randomized surrogate.~c! Gaussian
scaled surrogate. Amplitude is in arbitrary units.

FIG. 5. Portion of signal for a typical PVC subject along with its surrogat
~a! Original time series.~b! Phase randomized surrogate.~c! Gaussian scaled
surrogate. Amplitude is in arbitrary units.
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of D2 as a function of embedding dimension for vario
subjects with one of their typical surrogates are shown
Figs. 7~a!–7~e!.

In all the cases, the number of random phase surrog
were increased until a stable value ofS was reached~Fig. 8!.
The significanceS for a normal, PVC, VTA, AV block and

.

FIG. 6. Portion of signal for a typical VF subject along with its surrogat
~a! Original time series.~b! Phase randomized surrogate.~c! Gaussian scaled
surrogate. Amplitude is in arbitrary units.

FIG. 7. The comparison of correlation dimensionD2 of different typical
subjects~a! Normal. ~b! PVC. ~c! VTA. ~d! AV block. ~e! VF with their
surrogates as a function of embedding dimension. Random phase, Gau
scaled and original signal are represented by* , 3, ands, respectively. Only
one typical plot out of 200 surrogates from each type is shown.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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VF are 65.160.2, 181.161.8, 52.760.1, 100.160.3, and 5.2
60.1, respectively, and can be taken to be significant.

In all the cases, theDsurr values are greater thanDorig

giving PM;0 and the value of confidence levelp less than
0.005 in the nonparametric Barnard–Hope criterion which
defined byp51/(Nsurr11), whereNsurr is the number of
surrogates. Hence we can confidently reject the hypoth
that the ECG is linearly correlated Gaussian noise.

Since there is a possibility that in some data where
random phase null hypothesis is rejected while the Gaus
scaled null hypothesis is not rejected,32 it is necessary to
examine the Gaussian scaled surrogates.

The ECG time series of normal and pathological con
tion were further subjected to Gaussian scaled surrogate
in the case of random phase surrogates. The valuesS
observed for normal, PVC, VTA, AV block and VF are 33
60.2, 24.460.1, 19.160.1, 25.260.1, and 5.7660.1, re-
spectively ~Fig. 9!, which are once again significant eve
though there is a decrease inS compared to random phas
surrogates. Similar to the random phase surrogates, fo
the cases, allDsurr values are greater thanDorig which leads
us to confidently reject the hypothesis that the ECG ti
series is linearly correlated noise that has been transfor
by a static, monotonic nonlinear function. The value ofp is
less than 0.005 in the nonparametric Barnard–Hope c
rion.

The above results obtained from surrogate data ana
clearly indicate the presence of nonlinear structure in

FIG. 8. Variation of significanceS with number of random phase surrogat
for various typical subjects.~a! PVC. ~b! AV block. ~c! Normal. ~d! VTA.
~e! VF.

FIG. 9. Variation of significanceS with number of gaussian scaled surr
gates for various typical subjects.~a! Normal. ~b! AV block. ~c! PVC. ~d!
VTA. ~e! VF.
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ECG time series of all the normal and pathological con
tions considered here.

V. PREDICTION ANALYSIS

A characteristic feature of a dynamical system exhibiti
deterministic chaos is that it is possible to predict the beh
ior of the system with some degree of confidence in
short-term even though long-term prediction is impossib
On the other hand, if the variations are nearly random, e
the short-term prediction would be impossible. Many pred
tion methods have been suggested22,23,36,37and in this study,
we have followed the method proposed by Lefebvreet al.20

which is a modification of the Sugihara and May method22

We used the first difference of the ECG signals as the t
series to make predictions.

The time series is divided into equal halves of which t
first half is used as the library pattern to make predictio
about the behavior of the second half. We choose
n-dimensional vectorXt from the second half of the time
series for which the prediction has to be made, called
predictee. Then11 nearest vectors are obtained from t
library patterns so that the predictee is contained in
smallest simplex formed by then11 neighbors. The predic
tion is obtained by following where the points in the simpl
end up afterp time steps.

To obtain the predicted value, we calculate where
predictee has evolved afterp time steps giving weight to
original distances from the corresponding neighbors. T
loss of predictive power can be measured by linear corr
tion coefficientr between the original time series and th
corresponding predicted values. The attractor is constru
in an embedding dimension for whichr is maximum for a
given delay time and prediction time.

First, the above method has been applied as test cas
the time series generated from a functionxt5sin(0.5t) and
the van der Pol oscillatorẍ2e(12x2) ẋ1x50, where e
52. Both these cases are limit cycles. The correlation co
ficient r was found to be constant and very close to unity
the prediction time (Tp) is increased for both these nonch
otic deterministic time series~Fig. 10!. This is indeed what
we expect for these two cases of limit cycles. Second
these time series, 50% Gaussian white noise is added

FIG. 10. Variations of correlation coefficient (r) with prediction time (Tp)
in time units for~a! sin(0.5t), ~b! van der Pol oscillator.r for original time
series is denoted by solid line and time series with 50% Gaussian noi
denoted by dotted line.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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subjected to the prediction analysis.r does not decrease wit
increasingTp as would be the case for a chaotic system a
remains around 0.8~Fig. 10! showing that predictions with
additive noise seem to have a fixed amount of error, reg
less of how far or close, one tries to predict, whereas
predictions with deterministic chaos is expected to dete
rate asTp is increased. This has been demonstrated by L
bvreet al.20 and Sugihara and May.22 Thus it appears that we
can distinguish a noisy limit cycle from a chaotic syste
from the wayr changes withTp .

The predictability analysis was done on the ECG tim
series of normal and pathological conditions. In all cases,
observed a sharp decrease in ther with increasingTp which
is a characteristic feature of chaotic systems20,22 ~Fig. 11!.

Clearly, there is short-term predictability for the norm
subject of the order of 0.2 to 0.3 s within which timer
decays to near zero. We denote this value ofTp asTp

0 . For
PVC and VTA,Tp

0 is around 0.1 to 0.2 s and is 0.17 to 0.2
s in the cases of AV block. For VF, the predictability fal
off quickly near 0.05 s and large oscillations are observed

FIG. 11. The variation of correlation coefficient (r) with prediction time
(Tp) for ~a! normal,~b! PVC, ~c! VTA, ~d! AV block, and~e! VF. In each
case three different subjects are shown except for AV block where only
cases are shown.
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theTp is increased beyondTp
0 . This may be due to the lowe

periodicity of the VF time series.
We have also performed predictability test for the sur

gate data sets~both random phase and Gaussian scaled! of
the normal and pathological conditions usingTp

0 as the dis-
criminant. For all the 300 surrogates, the correlation coe
cientr goes to near zero within 0.05 s itself. The number
surrogates was increased until the saturation for the sig
canceS is observed~see Fig. 12!. For a normal subject, the
value ofS is typically 1560.5 and it is significant.

Figure 12~a! compares the distinction in the fall ofr
versusTp for a typical normal subject with its surrogate an
also variation ofS with the number of random phase an
Gaussian scaled surrogates@Fig. 12~b!#. These results on the
short-term predictability of the various ECG signals ena
us to reject the null hypothesis addressed by both the typ
surrogates.

The sharp fall ofr with Tp in the case of all ECG time
series strongly indicates that it is not a noisy limit cycle.

VI. UNSTABLE PERIODIC ORBITS „UPO… ANALYSIS

Another indication for deterministic chaos is the pos
bility of describing the attractor in terms of a limited numb
of unstable periodic orbits UPOs.38 Our analysis~see Refs.
39 and 40 for details! of UPOs, has shown that a norm
healthy cardiac attractor is characterized generally by th
or four UPOs. A typical UPO distribution for a normal sub
ject and a pathological PVC case is shown in Fig. 13. For
cases displayed in this figure, there are three dominant U
of periodicity of 0.99, 1.98 and 2.97 s for normal and five f
PVC with the periodicity of around 0.83, 1.74, 2.6, 4.28 a
5.1 s.

The positive Lyapunov exponents for these three UP
of normal are 3.9, 1.7 and 1.2 bits s21 and for five UPOs of
PVC are 3.4, 1.8, 1.2, 0.8 and 0.6 bits s21. This is another
indication of deterministic chaos in the ECG. Details of t
UPO analysis of the human cardiac system for normal
several pathological subjects showing that the UPOs offe
signature of the cardiac condition will be publishe
elsewhere.40

o

FIG. 12. ~a! Decay of correlation coefficient (r) versus prediction time (Tp)
for a typical normal subject. Original time series, random phase and Ga
ian scaled are indicated by solid, broken and dotted lines, respectively~b!
The variation of significanceS using Tp

0 as discriminant with number of
random phase and Gaussian scaled surrogates represented by broke
dotted lines, respectively.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp



ig
d
su

d

e
u

e
o
ia
h
p

th
o
dy
tp

iv
ti

ou
w

a
o

a
tiv

d
. A

an

ar

er

n

o

es,’’

m-

,’’

ing
a D

y-

rom

g

lized
otic

for
a D

om

lla-

e-

r

in-

he

e

p,
lgo-

ange

tic

p

ion

e,
n-

z-
ifica-

i-

g in

d

501Chaos, Vol. 8, No. 2, 1998 Govindan, Narayanan, and Gopinathan

D

VII. CONCLUSION

In this article, several normal and pathological ECG s
nals have been subjected to a variety of tests designe
detect nonlinear dynamics in the cardiac system. The u
tests such as correlation dimensionD2 , largest Lyapunov
exponentlmax, combined with extensive predictability an
surrogate analysis using correlation dimensionD2 and pre-
diction time Tp

0 as discriminants strongly indicate that th
dynamics underlying the cardiac signals is nonlinear. F
ther, the sharp fall in the correlation coefficientr with in-
creasing prediction timeTp and UPO analysis indicate th
possibility of deterministic chaos. These results do not
course constitute a definite proof of chaos in human card
dynamics but only show that they are consistent with suc
process. Further, it may be emphasized that we do not im
that the dynamics of the ECG signal is governed by
cardiac system alone, but could as well be the result of c
pling with the control mechanisms of the body. In this stu
we have been concerned with the nature of the cardiac ou
signal and not with its physiological origin.
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