
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 4, November 2005, pp. 509–517.
© Printed in India

Large time behaviour of solutions of a system of generalized
Burgers equation

K T JOSEPH

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400 005, India
E-mail: ktj@math.tifr.res.in

MS received 28 October 2004; revised 25 July 2005

Abstract. In this paper we study the asymptotic behaviour of solutions of a system
of N partial differential equations. When N = 1 the equation reduces to the Burgers
equation and was studied by Hopf. We consider both the inviscid and viscous case and
show a new feature in the asymptotic behaviour.
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1. Introduction

We consider the system of generalized Burgers equations for N unknown variables u =
(u1, u2, . . . , uN),

(uj )t + σ(c, u)(uj )x = ν

2
(uj )xx, j = 1, 2, . . . , N, (1.1)

where c = (c1, c2, . . . , cN) is a constant vector in RN and σ(c, u) = ∑N
k=1 ckuk is the

usual inner product in RN . We study the solution of (1.1) with initial conditions

uj (x, 0) = u0j (x), j = 1, 2, . . . , N. (1.2)

When ν > 0, (1.1) is a system of nonlinear parabolic equation describing the interplay
between nonlinearity and diffusion, ν being the viscosity parameter.

When ν = 0, the system (1.1) is hyperbolic with coinciding wave speeds σ(c, u), and
the nonlinearity and the nonconservative form makes the initial value problem complex.
Indeed the system being nonlinear, solution cannot be continued as a smooth solution
even when the initial data is smooth. Further if N > 1, the product σ(c, u) · (uj )x is
nonconservative and does not make sense in the usual distributional sense. The solution
should be understood in a generalized sense.

For the case ν > 0, Joseph [5] used a generalized Hopf–Cole transformation to linearize
the system of equations (1.1) and solve (explicitly) with the conditions (1.2) in terms of a
family of probability measures dµν

(x,t)(y). These measures depend on the initial data (1.2)
in a nonlinear and nonlocal manner and takes the form

dµν
(x,t)(y) = e

− 1
ν

[
I (y)+ (x−y)2

2t

]
dy∫∞

−∞ e
− 1

ν

[
I (y)+ (x−y)2

2t

]
dy

, (1.3)
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where

I (y) =
∫ y

0
σ(c, u0(z))dz. (1.4)

When ν > 0, the solution of (1.1) and (1.2) was shown to be

uν
j (x, t) =

∫
R1

u0j (y)dµν
(x,t)(y), j = 1, 2, 3, . . . , N. (1.5)

Let uν
j (x, t) be the solution of (1.1) and (1.2) given by (1.5). It was shown in [6] that

when u0j is Lipschitz continuous, for each t > 0, except for a countable x the limits

uj (x, t) = lim
ν→0

uν
j (x, t)

exist and is given by the formula

uj (x, t) = u0j (y(x, t)), j = 1, 2, . . . , N (1.6)

where y(x, t) is a minimizer of

min−∞<y<∞(I (y) + (x − y)2/2t) (1.7)

and I (x) is given by (1.4).
Using some ideas from the earlier works of Joseph [4] and LeFloch [8], uj (x, t)j=1,2,...,N

was shown to be a solution of an inviscid case (ν = 0) in (1.1) with initial data from (1.2),
the nonconservative product was justified in the sense of Volpert product [10] (see Dal
Maso, LeFloch and Murat [2] for a generalization of Volpert product). In [5] solution for
general initial data is constructed in the sense of Colombeau [1].

The aim of the present note is to study the asymptotic behaviour of the solution for
the parabolic (viscous) case as well as the hyperbolic (inviscid) case. Study of asymptotic
behaviour of solutions is important, see [9] and the references therein for the parabolic
case and [7] for the inviscid case. When N = 1, this system is the celebrated Burgers
equation and explicit solution and its asymptotic behavior as t tends to infinity and diffusion
parameter ν → 0 was studied by Hopf [3]. We show that Hopf’s analysis give asymptotic
form of the solution for the viscous case. When N = 1 and c1 �= 0, it is well-known
from the work of Lax [7] that for solution of inviscid Burgers equation with initial data

supported in the compact interval [−�, �], � > 0 the solution decays at the rate O(t−
1
2 )

and support spreads at a rate O(t
1
2 ) for large time. From an explicit computation we will

show that the decay rate is not true in general for the present case, but still the support
spread at the same rate. We start with the viscous case.

2. Asymptotic behaviour with viscous term

In this section we study the asymptotic behavior of solution of (1.1) and (1.2) when
ν > 0 and fixed. On the initial conditions u0j (x), j = 1, 2, . . . , N , assume that
limx→∞ I (x) = I (∞), limx→−∞ I (x) = I (−∞), limx→∞ u0j (x) = u0j (∞),
limx→−∞ u0j (x) = u0j (−∞) exists and is finite. With these assumptions, we shall prove
the following result.
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Theorem 2.1. The solution uν(x, t) = (uν
1(x, t), uν

2(x, t), . . . , uν
N(x, t)) of (1.1) and

(1.2) has the following asymptotic behaviour as t tends to infinity:

uν
j (x, t) ≈

u0j (∞)e
−I (∞)

ν

∫ x/
√

(tν)

−∞ e− y2

2 dy + u0j (−∞)e
−I (−∞)

ν

∫∞
x/

√
(tν)

e− y2

2 dy

e
−I (∞)

ν

∫ x/
√

(tν)

−∞ e− y2
2 dy + e

−I (−∞)
ν

∫∞
x/

√
(tν)

e− y2
2 dy

.

(2.1)

Proof. First we note that the solution uν
j (x, t), j = 1, 2, . . . , N of (1.1) and (1.2) is given

by (1.5) where the measure dµν
(x,t)(y) is given by eqs (1.3) and (1.4). Writing explicitly

the formula, we get

uν
j (x, t) =

∫∞
−∞ u0j (y)e− 1

ν

[
I (y)+ (x−y)2

2t

]
dy∫∞

−∞ e
− 1

ν

[
I (y)+ (x−y)2

2t

]
dy

.

Setting ξ = x/
√

νt , and then making a change of variable z =
√

νtξ−y√
νt

and renaming z

as y, we get

uν
j (x, t) =

∫∞
−∞ u0j (

√
νt(ξ − y)e

−
[

I (
√

νt(ξ−y)
ν

+y2/2
]
dy∫∞

−∞ e
−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy

. (2.2)

Now we split the integral in (2.2) in the following manner:∫ ∞

−∞
u0j (

√
νt(ξ − y))e

−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy

=
∫ ξ−δ

−∞
u0j (

√
νt(ξ − y))e

−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy

+
∫ ∞

ξ+δ

u0j (
√

νt(ξ − y))e
−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy

+
∫ ξ+δ

ξ−δ

u0j (
√

νt(ξ − y))e
−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy. (2.3)

Now we fix δ > 0 and study each of these integrals as t tends to infinity. We have under
the assumptions of the theorem on I (x) and u0j (x), as t tends to infinity:

∫ ξ−δ

−∞
u0j (

√
νt(ξ − y))e

−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy ≈ e− I (+∞)

ν u0j (∞)

∫ ξ−δ

−∞
e−y2/2dy.

∫ ∞

ξ+δ

u0j (
√

νt(ξ − y))e
−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy ≈ e− I (−∞)

ν u0j (−∞)

∫ ∞

ξ+δ

e−y2/2dy,

lim sup
t→∞

∣∣∣∣
∫ ξ+δ

ξ−δ

u0j (
√

νt(ξ − y))e
−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy

∣∣∣∣ = O(δ).
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Now let t tend to infinity and then δ tend to 0 in (2.3). We get∫ ∞

−∞
u0j (

√
νt(ξ − y))e−[I (

√
νt(ξ−y))ν+y2/2

]
dy ≈ e− I (+∞)

ν u0j (∞)

∫ ξ

−∞
e−y2/2dy

+ e− I (−∞)
ν u0j (−∞)

∫ ∞

ξ

e−y2/2dy.

(2.4)

Similarly∫ ∞

−∞
e
−
[

I (
√

νt(ξ−y))
ν

+y2/2
]
dy ≈ e

−I (+∞)
ν

∫ ξ

−∞
e−y2/2dy + e

−I (−∞)
ν

∫ ∞

ξ

e−y2/2dy.

(2.5)

We observe that due to our assumption on I (x), this limit in (2.5) is a postive real number
and hence letting t tend to infinity in (2.2) and using (2.4) and (2.5) we get the result (2.1).
The proof of the theorem is complete. �

Remark. An interesting case here is when the initial data u0j , j = 1, 2, . . . , N satisfies
the following conditions. u0j (∞), u0j (−∞) are nonzero and there is a cancellation in
σ(c, u0)(x) = ∑N

1 cku0k(x) so that this quantity is integrable.

3. Asymptotic behaviour of solutions of generalized Hopf equation

In this section we study the asymptotic behaviour of vanishing viscosity solutions of

(uj )t + σ(c, u)(uj )x = 0 (3.1)

with initial data

uj (x, 0) = u0j (x), (3.2)

for j = 1, 2, . . . , N . We recall the definition of σ(c, u) namely σ(c, u) = ∑N
1 ckuk where

c = (c1, c2, . . . , cN) a given constant vector and u = (u1, u2, . . . , uN), the unknown
vector variable.

It is easy to see that uν
j (x, t), j = 1, 2, . . . , N is a solution of (1.1) and (1.2) iff

σν(x, t) := σ(c, uν(x, t)) satisfies the Burgers equation

σt +
(

σ 2

2

)
x

= ν

2
σxx

with initial condition

σ(x, 0) = σ(c, u0)(x).

By Hopf–Cole transformation, the solution can be written in the form

σν(x, t) =
∫

R1
σ(c, u0(y))dµν

(x,t)(y).
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As in [6] it is easy to see that, when u0j is Lipschitz continuous, for each t > 0, except
for a countable number of points of x, the limit

σ(x, t) = lim
ν→0

σν(x, t)

exists and is given by the formula

σ(x, t) = σ(c, u0(y(x, t))) = σ(c, u),

where y(x, t) is a minimizer of

min−∞<y<∞(I (y) + (x − y)2/2t)

and I (x) is given by (1.4). Here we remark that this formula is slightly different from that
of Hopf [3]. Once σ(c, u) is known, (3.1) can be treated as N scalar linear equation with
discontinuous coefficient. For any function a(x, t) on [(x, t): − ∞ < x < ∞, t > 0],
‖a(., t)‖∞ denotes the essential supremum of a(x, t) with respect to the space variable x

keeping the time variable t ≥ 0 fixed. We define the left boundary curve x = s−(t) and
right boundary curve x = s+(t) of the support of a(x, t) where s−(t) = sup[y: a(x, t) = 0
for all x < y] and s+(t) = inf[y: a(x, t) = 0 for all x > y]. It is well-known from [7]
that when the initial data is supported in [−l, l], being solution of the inviscid Burgers
equation, σ(c, u) have the following estimates. There exist constants A > 0 and C > 0
which depend on l and ‖u0‖∞, such that

−l − At
1
2 ≤ s−(t) ≤ s+(t) ≤ l + At

1
2 ,

‖σ(., t)‖∞ ≤ Ct
−1
2 . (3.3)

We shall prove that for uj , j = 1, 2, . . . , N again the same estimate holds for the spread
of support but the decay result is not valid in general. First we have the following theorem.

Theorem 3.1. Let uj (x, t), j = 1, 2, . . . , N be the vanishing viscosity solution of (3.1)
and (3.2) with initial data supported in [−l, l]. Let x = s−

j (t) and x = s+
j (t) are the

support curves for uj (x, t). Then there exists a constant A > 0 which depend on l and
‖u0‖∞, so that the following estimate holds for t 	 1,

−l − At
1
2 ≤ s−

j (t) ≤ s+
j (t) ≤ l + At

1
2 .

Proof. The proof easily follows from the fact that the characteristic speed σ(c, u) = 0

outside the region −l−At
1
2 ≤ x ≤ l+At

1
2 . So in this region the characteristics connecting

the points (x, t) to a base point (y, 0) are parallel to the t-axis and hence is of the form
x = y and since the solution is constant along the characteristics, we have u(x, t) =
u0(y) = u0(x). When (x, t) is outside −l − At

1
2 ≤ x ≤ l + At

1
2 , the x co-ordinate of

the base point of the characteristic, y, lies outside [−l, l] where u0(y) is zero and hence
u(x, t) is zero. The proof of the theorem is complete. �

Next we show that solution does not decay in general, by giving an example. Here we
construct vanishing viscosity solution of (3.1) with initial data of the special form which
is supported in a compact set, namely

uj (x, 0) =




0, if x < −l

u0j , if − l < x < l

0, if x > l

(3.4)
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where u0j is a constant and l is a positive real number. Let uν
j (x, t)j=1,2,...,N be the solution

of (1.1) with the initial data (3.4). We shall prove the following.

Theorem 3.2. Let σ0 = ∑N
k=1 cju0j , then uj (x, t) = limν→0 uν

j (x, t) exists and takes
the following form:

When σ0 = 0,

uj (x, t) =




0, if x < −l

u0j , if − l < x < l

0, if x > l

. (3.5)

When σ0 < 0,

uj (x, t) =




0, if x <
σ0
2 · t − l, t < −4l

σ0

u0j , if σ0
2 t − l < x < σ0t + l, t < −4l

σ0
ujl

σ0
· x−l

t
, if σ0t < x < l, t < −4l

σ0

0, if x < l − (−4lσ0t)
1
2 , t > −4l

σ0

u0j

σ0
· x−l

t
, if l − (−4lσ0t)

1
2 < x < l, t > −4l

σ0

0, if x > l

. (3.6)

When σ0 > 0,

lim
ν→0

uν
j (x, t) =




0, if x >
σ0
2 · t + l, t < 4l

σ0

u0j , if σ0t − l < x <
σ0
2 t + l, t < 4l

σ0
u0j

σ0
· x+l

t
, if − l < x < σ0t − l, t < 4l

σ0

0, if x > l + (4lσ0t)
1
2 , t > 4l

σ0

u0j

σ0
· x+l

t
, if − l < x < l + (4lσ0t)

1
2 , t > 4l

σ0

0, if x < −l

. (3.7)

Proof. To prove (3.5)–(3.7) we use the formula (1.5) to get explicit solution of (1.1) and
(3.4) in the form

uν
j (x, t) = uj0

∫ l

−l
e− 1

ν

[
(x−y)2

2t
+σ0y

]
dy∫ −l

−∞ e− (x−y)2
2tν dy + ∫ l

−l
e− 1

ν

[
(x−y)2

2t
+σ0y

]
dy + ∫∞

l
e− (x−y)2

2tν dy

(3.8)

which can be written in the form

uν
j (x, t) = uj0

∫ l

−l
e− 1

ν

[
(x−y)2

2t
+σ0y

]
dy

(2tπν)
1
2 + ∫ l

−l
e− 1

ν

[
(x−y)2

2t
+σ0y

]
dy + ∫ l

−l
e− (x−y)2

2tν dy

. (3.9)

To study the limit, we rewrite this formula in a convenient form by introducing the functions

Aν
l,σ0

(x, t) = (2tν)
1
2 e

σ2
0 t

2ν
− σ0x

ν erf c

(
tσ0 − x − l

(2tν)
1
2

)
(3.10)
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and

Bν
l,σ0

(x, t) = (2tν)
1
2 e

σ2
0 t

2ν
− σ0x

ν erf c

(
tσ0 − x + l

(2tν)
1
2

)
, (3.11)

where

erf c(y) =
∫ ∞

y

e−y2
dy. (3.12)

We can rewrite (3.9) as

uν
j (x, t) = u0j (A

ν
l,σ0

(x, t) − Bν
l,σ0

(x, t))

(2tπν)
1
2 + Aν

l,σ0
(x, t) − Bν

l,σ0
(x, t) + Aν

l,0(x, t) − Bν
l,0(x, t)

.

(3.13)

Using the asymptotic expansions of the erfc, namely,

erfc(y) =
(

1

2y
− 1

4y3
+ o

(
1

y3

))
e−y2

, y → ∞

and

erfc(−y) = (π)
1
2 −

(
1

2y
− 1

4y3
+ o

(
1

y3

))
e−y2

, y → ∞

in (3.10) and (3.11) we have the following as ν → 0:

Aν
l,σ0

(x, t) ≈




(tν)
−l−x+σ0t

e− x2
2νt , if − l − x + σ0t > 0

(πtν
2 )

1
2 e

σ2
0 t

2ν
− σ0x

ν , if − l − x + σ0t = 0

(2πtν)
1
2 e

σ2
0 t

2ν
− σ0x

ν + (tν)
−l−x+σ0t

e− x2
2νt , if − l − x + σ0t < 0

. (3.14)

Bν
l,σ0

(x, t) ≈




(tν)
l−x+σ0t

e− x2
2νt , if l − x + σ0t > 0

(πtν
2 )

1
2 e

σ2
0 t

2ν
− σ0x

ν , if l − x + σ0t = 0

(2πtν)
1
2 e

σ2
0 t

2ν
− σ0x

ν + (tν)
l−x+σ0t

e− x2
2νt , if l − x + σ0t < 0

. (3.15)

It is straightforward to check the formulas (3.5)–(3.7) using (3.14) and (3.15) in (3.13).
When σ0 = 0, (3.13) becomes

uν
j (x, t) = u0j (A

ν
l,0(x, t) − Bν

l,0(x, t))

(2tπν)
1
2

. (3.16)

Now take the region x < −l. Then −l − x > 0 and l − x > 0, and using (3.14) and (3.15)
in (3.16) we get

uν
j (x, t) ≈ u0j

tν
−l−x

e
−x2
2tν − tν

l−x
e

−x2
2tν

(2πtν)
1
2
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and hence we have

lim
ν→0

uν
j (x, t) = 0, x < −l.

In the region −l < x < l, −l − x < 0, l − x > 0,

uν
j (x, t) ≈ u0j

(2πtν)
1
2 + tν

−l−x
e

−x2
2tν − tν

l−x
e

−x2
2tν

(2πtν)
1
2

.

Thus we get

lim
ν→0

uν
j (x, t) = u0j , −l < x < l.

In the region x > l, we have −l − x < 0, l − x < 0 and

uν
j (x, t) ≈ u0j

(2πtν)
1
2 + tν

−l−x
e

−x2
2tν − (2πtν)

1
2 − tν

l−x
e

−x2
2tν

(2πtν)
1
2

and hence it follows that

lim
ν→0

uν
j (x, t) = 0, x > l.

This completes the proof of the theorem for σ0 = 0. The case σ �= 0 is similar and is
omitted. �

Remark. Thus if we take the initial data (3.4) which has compact support the decay of
the vanishing viscosity solution uj (x, t), j = 1, 2, . . . , N depends on the initial speed
σ0 = ∑N

1 cku0k . If σ0 = 0, the vanishing viscosity solution does not decay. Indeed

sup
x∈R1

|uj (x, t)| = |u0j |.

On the other hand, from the above theorem it follows that for the case σ0 �= 0, the solution
decays, namely

sup
x∈R1

|uj (x, t)| = O
(
t−

1
2

)
.

We conclude with a remark on the solution for (3.1) with the Riemann type initial data

(uj )(x, 0) =
{

ujL, if x < 0

ujR, if x > 0,
(3.17)

where ujL and ujR are constants for j = 1, 2, . . . , n.
Let σL = ∑n

k=1 ckujL and σR = ∑n
k=1 ckukR . Then the vanishing viscosity solution

for the Riemann problem (3.1) and (3.17) takes the following form [5].
When σL < σR ,

uj (x, t) =




ujL, if x ≤ σLt

ujR−ujL

σR−σL
· x

t
+ ujLσR−ujRσL

σR−σL
, if σLt < x < σRt.

ujR, if x ≥ σRt



Asymptotic behaviour of solutions 517

When σL = σR = σ ,

uj (x, t) =
{

ujL, if x < σ · t

ujR, if x > σ · t.

When σL > σR ,

uj (x, t) =




ujL, if x < σL+σR

2 · t

ujL+ujR

2 if x = σL+σR

2 · t

ujR, if x > σL+σR

2 · t

.
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