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ABSTRACT

The H I surface density maps for a sample of 18 galaxies in the Eridanus group are Fourier

analysed. This analysis gives the radial variation of the lopsidedness in the H I spatial distri-

bution. The lopsidedness is quantified by the Fourier amplitude A1 of the m = 1 component

normalized to the average value. It is also shown that in the radial region where the stellar disc

and H I overlap, their A1 coefficients are comparable. All the galaxies studied show significant

lopsidedness in H I. The mean value of A1 in the inner regions of the galaxies (1.5–2.5 scale-

lengths) is � 0.2. This value of A1 is twice the average value seen in the field galaxies. Also,

the lopsidedness is found to be smaller for late-type galaxies; this is opposite to the trend seen

in the field galaxies. These two results indicate a different physical origin for disc lopsidedness

in galaxies in a group environment compared to the field galaxies. Further, a large fraction

(∼30 per cent) shows a higher degree of lopsidedness (A1 � 0.3). It is also seen that the disc

lopsidedness increases with the radius as demonstrated in earlier studies, but over a radial

range that is two times larger than done in the previous studies. The average lopsidedness of

the halo potential is estimated to be ∼10 per cent, assuming that the lopsidedness in H I disc

is due to its response to the halo asymmetry.
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1 I N T RO D U C T I O N

The presence of non-axisymmetric distribution of atomic hydrogen

gas (H I) in spiral galaxies has been known for many years. In a

pioneering study, Baldwin, Lynden-Bell & Sancisi (1980) pointed

out large-scale spatial asymmetry in the H I gas distribution of four

nearby spiral galaxies M 101, NGC 891, 2841 and IC 342. All these

galaxies show H I gas extending out to larger radii on one side than

on the other.

Since then the non-axisymmetric distribution of H I gas has been

deduced for much larger samples by studying the asymmetry in

the global H I profiles (Richter & Sancisi 1994; Haynes et al. 1998;

Matthews, van Driel & Gallagher 1998). These studies revealed that

the H I profiles on the receding and approaching sides are asymmet-

ric. It was inferred from the samples that at least 50 per cent of

galaxies studied show H I lopsidedness. However, without the anal-

ysis of 2D maps of H I discs, the above studies can only indicate

the result of lopsidedness caused jointly by the spatial and velocity
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distribution. Such a quantitative measurement of H I spatial asym-

metry from 2D maps is still to be carried out.

A large fraction of galaxies show asymmetry. This indicates that

the lopsidedness is sustainable over a long period of time. Yet its

physical origin is not clearly understood. The cause of disc lopsid-

edness has been attributed to a variety of physical processes, such as

the disc response to halo lopsidedness which could arise due to tidal

interactions (Jog 1997), or due to mergers with satellites (Zaritsky &

Rix 1997), or asymmetric gas accretion (Bournaud et al. 2005). The

asymmetry can also be generated due to a disc offset in a spherical

halo (Noordermeer, Sparke & Levine 2001). Thus, a study of H I

asymmetry in the outer parts as done in this paper can give a direct

handle on the halo asymmetry if the disc lopsidedness arises due to

halo asymmetry.

The existence of asymmetry in the velocity domain, i.e. kinemat-

ical lopsidedness, has also been detected in spiral galaxies. These

studies are based on the analysis of asymmetry of the rotation curves

on the approaching and receding sides of a galaxy (Swaters et al.

1999) and also by analysing the H I velocity field of a spiral galaxy

directly (Schoenmakers, Franx & de Zeeuw 1997). It is postulated

that the same perturbation potential that gives rise to spatial lopsid-

edness will also unavoidably give rise to kinematical lopsidedness

(Jog 1997, 2002).
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With the advent of near-infrared (near-IR) observations in recent

years, spatial lopsidedness has also been detected in the distribution

of old stellar population that make up the main mass component

of Galactic discs (Block et al. 1994; Rix & Zaritsky 1995). The

harmonic analysis is used to Fourier analyse the photometric data

on the galaxy images, which gives a quantitative measurement of

spatial lopsidedness as a function of radius. It is found that more

than 30 per cent of galaxies show strong spatial lopsidedness in

near-IR (Rix & Zaritsky 1995; Zaritsky & Rix 1997; Bournaud

et al. 2005); but the increased sky brightness in the near-IR bands

limits the measurement of Fourier components of stellar asymme-

try to radii less than 2.5 exponential disc scalelengths. It is also

not known whether the lopsidedness in H I and near-IR bands are

correlated.

In the present work, we Fourier analyse the H I surface density

distribution for a sample of 18 galaxies in the Eridanus group of

galaxies (Omar & Dwarakanath 2005a). To our knowledge, this

is the first time that an analysis of this kind has been applied for

quantitative measurement of H I spatial asymmetry. The availability

of interferometric 2D maps of galaxies has made this study possible.

Since the H I gas usually extends farther out than the stars, the disc

lopsidedness can be measured up to twice or more the radial distance

than it was possible using stellar light. Since the lopsidedness is

observed to increase with radius (Rix & Zaritsky 1995; Bournaud

et al. 2005), the Fourier amplitude measured at these distances are

expected to provide better constraints on the generating mechanisms

for disc lopsidedness. In addition to this, we have also compared the

lopsidedness in H I with that in the near-IR band, and show these to

be comparable. We show that the main physical mechanism for the

origin of disc lopsidedness for the group galaxies is different than

for the field galaxies.

This paper is organized as follows. In Section 2, the H I data used

for this analysis is described. The harmonic analysis method and the

results derived from H I maps and R-band images are presented in

Section 3. A few general points and the origin of disc lopsidedness

are discussed in Section 4. Section 5 contains a brief summary of

the conclusions from the paper.

Table 1. Type, position, inclination, PA and scalelengths of observed galaxies.

Galaxy Type α (J2000) δ (J2000) cz Inclination (i) PA DH DR25 RJ RK

(h m s) (◦ ′ ′′) (km s−1) (◦) (◦) (kpc) (kpc) (kpc) (kpc)

NGC 1309 SAbc 03 22 06.5 −15 24 00 2135 20 210 24.1 13.4 1.42 1.32

UGCA 068 SABcdm 03 23 47.2 −19 45 15 1838 34 35 16.9 10.3 1.29 1.08

NGC 1325 SAbc 03 24 25.4 −21 32 36 1589 71 232 44 38.5 4.6 4.61

NGC 1345 SBc 03 29 31.7 −17 46 40 1529 34 88 23.9 8.51 0.93 1.15

NGC 1347 SBcd 03 29 41.8 −22 16 45 1759 26 328 12.9 8.51 1.46 1.44

UGCA 077 SBdm 03 32 19.2 −17 43 05 1961 66 149 22.1 12.1 ∗ ∗

IC 1953 SBd 03 33 41.9 −21 28 43 1867 37 129 21.3 24.2 3.78 4.19

NGC 1359 SBcm 03 33 47.7 −19 29 31 1966 53 325 ∗ 17.9 2.67 ∗

NGC 1371 SABa 03 35 02.0 −24 55 59 1471 49 136 61 34.5 3.34 3.37

ESO 548-G 049 S? 03 35 28.1 −21 13 01 1510 71 128 14.9 6.27 1.18 ∗

ESO 482-G 013 Sb 03 36 53.9 −24 54 46 1835 63 65 12.9 7.17 0.65 0.74

NGC 1385 SBcd 03 37 28.3 −24 30 05 1493 40 181 19.8 30.5 3.21 2.98

NGC 1390 SB0/a 03 37 52.2 −19 00 30 1207 60 24 15.2 8.96 0.74 0.87

NGC 1414 SBbc 03 40 57.0 −21 42 47 1681 80 357 19.9 11.2 1.96 1.81

ESO 482-G 035 SBab 03 41 15.0 −23 50 10 1890 49 185 16.4 14.8 1.95 1.96

NGC 1422 SBab 03 41 31.1 −21 40 54 1637 80 65 15.4 18.4 2.44 1.84

MCG-03-10-041 SBdm 03 43 35.5 −16 00 52 1215 57 343 19.2 13.9 3.13 2.36

ESO 549-G 035 Sc 03 55 04.0 −20 23 01 1778 56 30 14.7 ∗ ∗ ∗

2 DATA : T H E E R I DA N U S G RO U P
O F G A L A X I E S

The Eridanus group is a loose group of galaxies at a mean distance

of ∼23 ± 2 Mpc in the southern hemisphere (∼3h � α � 4h 30m, ∼

−10◦ � δ � −30◦). From the redshift values, ∼200 galaxies

are associated with this group with heliocentric velocities in the

range of ∼1000–2200 km s−1. The observed velocity dispersion

is ∼240 km s−1.

Even though there are sub-groups within the system, the overall

population mix of the galaxies in the Eridanus group was found to be

∼30 per cent ellipticals and lenticulars and ∼70 per cent spirals and

irregulars (Omar & Dwarakanath 2005a). Though H I was detected

in 31 galaxies out of the 57 selected for observation by Omar &

Dwarakanath (2005a) using the Giant Meter-wave Radio Telescope,

the spiral galaxies under consideration here form a subset of these.

These spiral galaxies were chosen on the basis of their inclination,

with inclinations in the range of 20◦ and 80◦. This criterion was

adopted so as to get good velocity and surface density maps.

If a galaxy is almost face on, the circular velocity information

derived from the velocity map of the galaxy will be reduced to a great

extent resulting in greater uncertainty in the inclination. Similarly,

if a galaxy is viewed edge-on, the line of sight velocity information

will be of good quality, but the surface density map will not be

suitable for the spatial lopsidedness analysis. With these criteria, an

inclination range of 20◦–80◦ was found suitable.

In addition to this, we eliminated those galaxies where the de-

tection in H I was patchy such as NGC 1415. The positions and

Heliocentric velocities of selected galaxies are given in Table 1.

The H I surface density and velocity maps of the selected galax-

ies used in this analysis were derived out of image cubes which

were convolved to a common resolution of 20 × 20 arcsec2.

A 3σ column density sensitivity of 1020 cm−2 was obtained for

20-arcsec resolution surface density images. The velocity resolu-

tion was ∼13.4 km s−1. A typical H I surface density contour map

and velocity contour map superposed on the Digitized Sky Survey

(DSS) image are shown in Fig. 1.
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Figure 1. Typical H I and velocity map of a galaxy in the Eridanus group. The contours are superposed on DSS grey-scale image. The beam is shown at the

bottom left-hand corner. The surface density map contour levels are separated by 2 × 1020 cm−2. The first contour, shown in white, is at a column density of

1 × 1020 cm−2. The first thick contour begins at 1.2 × 1021 cm−2 and the second one is at 2.2 × 1021 cm−2. The velocity contours for the approaching side

are shown in white while that for the receding side are shown in black. The velocity contours differ from each other by 10 km s−1. The thick dark line near the

centre of the galaxy denotes the systemic velocity (Omar & Dwarakanath 2005a).

With a view to studying the spatial lopsidedness of the stellar

component, the corresponding R-band images of these galaxies

were analysed. The R-band images were obtained from Aryabhatta

Research Institute of Observational Sciences (ARIES) using the

104-cm Sampurnanand telescope. The details of the observa-

tions and data reduction methods are given elsewhere (Omar &

Dwarakanath 2006). The final re-gridded images had a typical res-

olution of 1.0 × 1.0 arcsec2 and a limiting surface brightness of

∼26.0 mag arcsec−2.

3 H A R M O N I C A NA LY S I S

3.1 Spatial lopsidedness of H I images

The H I maps are Fourier analysed to study the spatial asymmetry of

the H I surface density distribution with the help of velocity maps.

The H I surface density is extracted along the concentric annuli each

of width 20 arcsec after correcting for the projection effects. Such an

analysis is prompted by the assumption that, an ideal galaxy can be

assumed to be made up of a set of concentric rings along which the

gas is rotating about the Galactic Centre (Begeman 1989). Though

in general these rings are elliptical, the departure from circular sym-

metry is very small and hence they can be assumed to be circular

rings.

From the geometry of the problem, at each radius (R) in the

velocity map,

V (x, y) = V0 + Vc cos(φ) sin(i)

+Vexp sin(φ) sin(i),
(1)

where

cos(φ) =
−(x − x0) sin(PA) + (y − y0) cos(PA)

R
,

sin(φ) =
−(x − x0) cos(PA) + (y − y0) sin(PA)

R cos(i)
,

R =

√

(x − x0)2 +
(y − y0)2

cos(i)2
. (2)

Here, V(x, y) is the observed radial velocity at the rectangular

sky coordinate (x, y), V0, heliocentric recession velocity and Vc, the

circular velocity. Vexp is the expansion velocity which in this case

was taken to be zero. φ is the azimuthal angle measured in the

anticlockwise direction in the plane of the galaxy and (x0, y0) is the

dynamical centre of the galaxy. In all the calculations the position

angle (PA), was measured in the anticlockwise direction from the

north to the receding half of the galaxy. Using these equations and

the velocity maps, the Groningen Image Processing System (GIPSY)

routine ROTCUR was used by Omar & Dwarakanath (2005a) to

determine the five unknown quantities, (x0, y0), V 0, V c, PA and the

inclination (i) in an iterative manner described by (Begeman 1989).

These values are used here to derive the geometrical parameters

used in H I-map harmonic analysis.

The important step in this procedure was determining the dynam-

ical centre of the galaxy about which the gas in each of the rings is

assumed to be rotating and holding it fixed. If the centre and the sys-

temic velocity were not held fixed for the outer rings, i.e. if they were

allowed to wander about, the resulting second harmonic coefficients

from the velocity map analysis tended to rearrange themselves so as

to minimize the effects of lopsidedness (Schoenmakers et al. 1997).

The centre fixing and calculation of systemic velocity was carried

out as per the technique prescribed by Begeman (1989). The optical

centre and optical velocity were given as the initial guess. PA and

inclination derived from an elliptical fit to the optical isophotes were

held fixed. This fixed the centre. In all the galaxies which were in-

cluded in this study, the dynamic centre was very close to the optical

centre. The systemic velocity was taken to be the mean value for

each of the rings. The PA and inclination were determined as per

the description given in Omar & Dwarakanath (2005a).

To derive the surface density harmonic coefficients as well as the

velocity harmonic coefficients, these values as well as the surface

density and velocity maps were given to the GIPSY task RESWRI,

a task which is an offshoot of ROTCUR based on the harmonic

analysis idea developed by Schoenmakers et al. (1997). The radii of

each of the rings were separated by 10 arcsec and the width of each

ring was 20 arcsec. To avoid beam smearing along the minor axis, a

cone of 10◦ about the minor axis of the galaxy was not included in

the analysis. A uniform weightage was given for each of the points

within one annulus. At each of these rings, with the same values

of PA and inclination derived from the velocity map analysis, the

surface density values were extracted from the surface density map,

which were Fourier expanded. The programme parameters were set

so as to return ten Fourier harmonic coefficients in the velocity and
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spatial domain. The resulting harmonic coefficients were recast so

that the surface density could be modelled as

σ (R, φ) = σ0(R) +
∑

m

am(R) cos[mφ − φm(R)]. (3)

Here, σ 0(R) is the mean surface density at a given radius R. φ is

the azimuthal angle in the plane of the galaxy and φm is the phase of

the mth Fourier coefficient. From this analysis, the harmonic coef-

ficients a1(R) were extracted out and the normalized harmonic co-

efficients A1(R) = a1(R)/σ 0(R) were calculated for various rings.

φ1(R) for various rings were also determined. The errors in each

of these coefficients were determined assuming that the coefficients

a1(R), σ 0(R), φ1(R) to be independent of each other. This procedure

was adopted so as to easily compare the A1, φ1 values with the val-

ues derived from a similar analysis of the near-IR data for stars (Rix

& Zaritsky 1995; Bournaud et al. 2005).

The type of the galaxy, its mean inclination, mean PA, H I diam-

eter, optical diameter and the scalelengths used (K and J bands) are

taken from Omar & Dwarakanath (2006) and are tabulated (Table 1).

The resulting A1 and φ1 versus R are plotted with the radius scaled

in terms of the near-IR scalelengths RK or RJ as shown in Figs 2

and 3, respectively. This scaling was done in order to facilitate a

comparison with the near-IR values of stellar asymmetry over the

same radial range as given in the literature. In the case of some of the

Eridanus group of galaxies, where no scalelengths were available

(denoted by ∗ in the last two columns in Table 1), a mean scale-

length of ∼2 kpc was taken. The mean values for A1 obtained over

the range of 1.5–2.5 stellar exponential disc scalelengths (RK values

are preferred) are given in column 6 in Table 2. The measured values

of lopsidedness are much higher than that in the field galaxies. This

will be discussed in detail in Section 4.

3.2 Spatial lopsidedness of the stellar component

As a result of the H I harmonic analysis described earlier, we are

in a unique position to compare the lopsidedness observed in the

stellar disc with that of the observed H I asymmetry. Even though a

theoretical model for the origin of lopsidedness based on the linear

disc response to a distorted halo predicts similar values for the A1

coefficients from the stellar and gaseous components (Jog 1997),

this point is not yet verified by observations. Here, we analyse the

R-band images of some of the sample galaxies obtained from

ARIES, Nainital, India. Details of the observations and the basic

image processing are dealt with elsewhere (Omar & Dwarakanath

2006).

The reduced images were deprojected using the IRAF
1 task

IMLINTRAN (Buta et al. 1998). The mean inclination and PA de-

rived from the H I velocity field were used in deprojection. Since

our interest was in the outer regions of the galaxies the bulge–disc

decomposition was not performed before the deprojection. In this

region (∼3 kpc from the centre), the effect due to the bulge and the

bar are unimportant.

From the deprojected images, the isophotal intensities along con-

centric annuli of width 1 arcsec were extracted as a function of

azimuthal angle. The ELLIPSE 2 task was used for this purpose. A

1
IRAF is distributed by the National Optical Astronomy Observatories, which

are operated by the Association of Universities for Research in Astronomy,

Inc., under cooperative agreement with the National Science Foundation.
2 ELLIPSE is a product of the Space Telescope Science Institute, which is

operated by AURA for NASA.

χ2 fit on the extracted intensities was carried out by NFIT1D routine

of STSDAS using the function

I (R, φ) = a0(R) +
∑

m

am(R) cos(mφ) + bm(R) sin(mφ). (4)

Here, I(R, φ) is the intensity at the ring radius R and azimuthal

angle φ in the plane of the galaxy. am and bm were the harmonic

coefficients. From the resulting a1, b1 coefficients the normalized

A1 coefficients for various rings were determined.

The values so derived for four galaxies: NGC 1309, 1347, IC 1953

and NGC 1359, are shown in Fig. 4. For easy comparison, we have

also plotted the corresponding A1 coefficients derived from the H I

data. It is seen that A1 coefficients derived from R-band images and

those from H I analysis are comparable in the radial region where

the data overlap, although we caution that the region of overlap is

small. In one case, the stellar asymmetry values are slightly higher

than the H I values while the reverse is true in two cases, and in NGC

1359 they overlap. Thus in general, the A1 values for stars show the

same general trend as do the H I values, and in the outer regions only

H I is available as a tracer.

3.3 Estimation of the halo perturbation

Assuming that the disc lopsidedness arises as a disc response to the

halo perturbation, we can use the above observed A1 coefficients

to determine the halo asymmetry or the perturbation potential (Jog

2000). We assume that the potential ψ(R, φ) at a radius R for a

galaxy to be composed of an unperturbed part ψ 0(R, φ) and a per-

turbed part ψ 1(R, φ). It is known that most spiral galaxies have

flat rotation curves in the outer regions. Choosing ψ 0 ∝ ln(R) as

the unperturbed potential can explain this result. The perturbation

potential is assumed to have a cosine dependence to represent the

lopsidedness.

For computational purpose, ψ 0 and ψ 1 were taken as

ψ0(R, φ) = V 2
c ln(R) (5)

and

ψ1(R, φ) = V 2
c ǫ1 cos(φ). (6)

Here, V c is the rotational velocity, φ is the azimuthal angle in the

plane of the galaxy and ǫ1 is the perturbation parameter which is

assumed to be constant with radius for simplicity.

Simultaneously solving the equations of motion of orbits in this

net potential, the effective surface density (assuming an exponential

disc) and the equation of continuity yields a relation between the

A1 values and the halo perturbation parameter ǫ1 for an exponential

disc (see appendix; Jog 2000). This is applicable for both stars and

gas in the linear perturbation regime as shown by Jog (1997), and

also observed to be true in our sample (Section 3.2).

The typical H I radial surface density profile of the galaxies be-

longing to Eridanus group is far from exponential and was close

to a Gaussian (Omar & Dwarakanath 2005a). This is unlike the

Virgo cluster, where many galaxies have exponentially decreasing

H I surface density in the outer regions (Warmels 1988). Hence we

determined a scalelength, Rw, associated with a Gaussian profile for

the various galaxies in this group. This was done by performing a

χ 2 fit to the radial surface density profile. A face-on radial surface

density profile was obtained for each galaxy after integrating along

concentric annuli. This surface density profile was fitted with a curve

of the form S0 exp[−(R − b)2/2R2
w] using a χ2-fitting technique

with S0, b and Rw as the best-fitting parameters.
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Figure 2. A1 coefficients of galaxies in the Eridanus group as a function of R/RK . For NGC 1359 and ESO 548-G 049, the J-band scalelength is used. For

UGCA 077 and ESO 549-G 035, a scalelength of 2 kpc is used. Here, A1mean is the mean value of A1 over the whole H I disc.
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Figure 3. φ1 coefficients of galaxies in the Eridanus group as a function of R/RK . For NGC 1359 and ESO 548-G 049, the J-band scalelength is used. For

UGCA 077 and ESO 549-G 035, a scalelength of 2 kpc is used.
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Table 2. The m = 1 asymmetry values in the Eridanus sample.

Galaxy Type Inclination (i) PA A1max 〈A1〉K Rw 〈A1〉w 〈ǫ1〉

(◦) (◦) (1.5–2.5 RK ) (kpc) (1–2 Rw) (1–2 Rw)

NGC 1309 SAbc 20 210 0.10 ± 0.01 0.07 4.76 0.09 0.04

UGCA 068 SABcdm 34 35 0.21 ± 0.04 – 3.59 0.11 0.04

NGC 1325 SAbc 71 232 0.38 ± 0.01 0.18 6.18 0.20 0.06

NGC 1345 SBc 34 88 0.48 ± 0.04 0.09 6.95 0.30 0.12

NGC 1347 SBcd 26 328 0.20 ± 2.1 0.04 3.23 0.12 0.04

UGCA 077 SBdm 66 149 0.10 ± 0.03 0.07 4.55 0.06 0.02

IC 1953 SBd 37 129 0.28 ± 0.10 0.19 4.61 0.15 0.05

NGC 1359 SBcm 53 325 0.33 ± 0.02 0.14 11.23 – –

NGC 1371 SABa 49 136 0.19 ± 0.01 – – – –

ESO 548-G 049 S? 71 128 0.80 ± 0.08 0.55 3.91 0.74 0.51

ESO 482-G 013 Sb 63 65 0.19 ± 0.03 0.15 2.95 0.19 0.10

NGC 1385 SBcd 40 181 0.33 ± 0.08 0.33 6.16 0.33 0.26

NGC 1390 SB0/a 60 24 0.40 ± 0.07 0.40 4.07 0.36 0.18

NGC 1414 SBbc 80 357 0.14 ± 0.04 0.12 8.40 – –

ESO 482-G 035 SBab 49 185 0.83 ± 0.06 0.59 3.22 0.71 0.26

NGC 1422 SBab 80 65 0.79 ± 0.10 0.58 20.45 – –

MCG-03-10-041 SBdm 57 343 0.31 ± 0.05 0.17 5.15 0.28 0.12

ESO 549-G 035 Sc 56 30 0.17 ± 0.02 0.09 3.73 0.09 0.05

Notes: the A1 mean value between 1.5 and 2.5 exponential scalelengths is given in column 6. The Gaussian scalelength for H I, Rw and the resulting 〈A1〉w
and ǫ1 over 1–2 Rw are shown in columns 7, 8 and 9, respectively. The mean of 〈A1〉K in the range 1.5–2.5 RK is 0.24 ± 0.19 and the mean of 〈A1〉w
in the 1–2 Rw range is 0.27 ± 0.22. The mean of 〈ǫ1〉 is 0.13 ± 0.13. These results do not change much if the galaxies with i > 70◦ and with Rexp =

2 are eliminated from the sample–in that case the mean of 〈A1〉K = 0.22 ± 0.17 between 1.5 and 2.5 RK and mean of 〈A1〉w = 0.26 ± 0.18 between 1 and 2 Rw .

Repeating the analysis as in Jog (2000), but for a Gaussian surface

density distribution, we obtain the following relation between A1 and

ǫ1, in terms of Rw:

ǫ1 =
A1(R)

2 (R/Rw)2 − 1
. (7)

The values of Rw , the Gaussian scalelength, 〈A1〉w , the mean A1

observed over 1–2 Rw range, and 〈ǫ1〉, the mean perturbation param-

eter for the halo potential over this radial range are given in the last

three columns of Table 2. The typical value of the exponential stellar

disc scalelength is ∼2 kpc (Table 1), while that of the scalelength

for the H I distribution Rw is ∼6 kpc (Table 2). The sixth column

gives an average of 〈A1〉K for H I measured over 1.5–2.5 exponen-

tial disc scalelengths, and can be compared directly with the values

of lopsidedness measured earlier from stellar distribution over the

same range of radii (Rix & Zaritsky 1995; Bournaud et al. 2005).

The last two columns denote asymmetry in the H I surface density

and the mean perturbation parameter, respectively, in the outer parts

of a Galactic disc. The mean value of 〈A1〉K in the inner disc (1.5–

2.5 RK) is 0.24, while that in the outer disc is slightly higher (=0.27)

(Table 2).

4 D I S C U S S I O N

4.1 Distribution of lopsidedness

We have carried out the Fourier harmonic analysis for the H I surface

density of the Eridanus group of galaxies. All the 18 galaxies studied

show significant average lopsidedness with a mean value of 〈A1〉K =

0.24 in the inner regions of <5 kpc, which is more than twice the

average value observed for field galaxies (Zaritsky & Rix 1997;

Bournaud et al. 2005). A large fraction ∼30 per cent show even

higher lopsidedness with a value of 〈A1〉K � 0.3, whereas only

7 per cent of the field galaxies have such high lopsidedness

(Bournaud et al. 2005). In the field galaxies ∼12 per cent of galax-

ies show A1 � 0.2, whereas in the Eridanus sample ∼40 per cent of

the galaxies show this. In the present paper, we have measured the

values in the outer discs (>5 kpc) or outside of 2.5 exponential disc

scalelengths as well, and find that the average value of mean lop-

sidedness measured in the outer regions is slightly higher (=0.27).

4.2 Phases of lopsidedness

From Fig. 3, we see that the values of the phase angle of 15 galaxies in

the Eridanus group remains nearly constant without sudden jumps;

the exceptions being NGC 1309, UGCA 077 and NGC 1371. This

means the surface density contours have egg-shaped rather than

one-armed profiles, and the potential causing the disc lopsidedness

can be taken to have no radial phase dependence. This is similar

to the behaviour seen in the inner regions as traced by the near-IR

studies in Rix & Zaritsky (1995) – see Jog (1997) for a discussion

of this topic. A nearly constant phase implies that these are global

m = 1 modes.

4.3 Origin of disc lopsidedness in group galaxies

We have shown above that the overall average values of A1 in the

Eridanus group galaxies in the inner regions are higher by a factor

of 2 compared to the field galaxies (〈A1〉 = 0.11, Bournaud et al.

2005), and ∼40 per cent of the sample galaxies show such a high

value of lopsidedness. The similar values for lopsidedness measured

in both stars and gas in the inner regions show that this indicates true

lopsidedness. However we caution that, since the number of galaxies

studied in H I and R band is small and the radial range of overlap

for the comparison (see Fig. 4) is small, some of the difference in

the lopsidedness in the group versus the field cases could perhaps

still be attributed to the different tracers used (H I for the group case

and the stars for the field case, respectively). The overall higher

value of A1 measured implies that a group environment is more

effective in generating lopsidedness in discs of galaxies, either via

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 369, 1849–1857



1856 R. A. Angiras et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8  9

A
1

 R(kpc)

A1 Vs R for NGC 1309

A1 from R Band
A1 from HI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8  9  10  11

A
1

 R(kpc)

A1 Vs R for IC 1953

A1 from R Band
A1 from HI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8

A
1

 R(kpc)

A1 Vs R for NGC 1347

A1 from R Band
A1 from HI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8  9

A
1

 R(kpc)

A1 Vs R for NGC 1359

A1 from R Band
A1 from HI

Figure 4. A1 coefficients derived from R-band images of galaxies along with those derived from H I analysis as a function of distance.

tidal interactions that can distort the halo and then affect the disc

(Jog 1997), or via asymmetric gas accretion (Bournaud et al. 2005).

While we cannot give a clear preference for either one of these

mechanisms based on the present work, tidal interactions appear to

be more likely as argued below.

Given the high number density of galaxies in a group, a higher

frequency and strength of tidal interactions are expected. Thus, a

tidal origin can explain the high frequency as well as the higher

strength of lopsidedness observed in the Eridanus group of galaxies

compared to a sample of field galaxies.

Theoretically, one can explain the similar observed values of lop-

sidedness for stars and H I gas (Section 3.2), if the origin of lopsid-

edness is due to a linear disc response to a distorted halo (Jog 1997).

In this case, the likely origin of the halo distortion or lopsidedness

could be due to tidal interactions between galaxies (Weinberg 1995).

It is interesting to note that the galaxies in the Eridanus group

exhibit H I deficiency, which is ascribed to tidal interaction (Omar

& Dwarakanath 2005b). This also might indicate that the higher

average values of lopsidedness which we have observed could be

due to tidal interaction.

We note that in contrast, a typical field sample showed no corre-

lation in the stellar lopsidedness measured in the inner disc regions

with a tidal parameter (Bournaud et al. 2005).

In the field case, the late-type galaxies show a higher lopsided-

ness and are also more likely to be lopsided (see fig. 7, Bournaud

et al. 2005; also see Zaritsky & Rix 1997; Matthews et al. 1998).

To check if this could be a spurious reason for the high A1 mea-

sured in our sample, we plotted A1 versus the galaxy type for our

sample. Interestingly, this shows an opposite trend, namely we get

a weak correlation showing a decrease in A1 for later type galaxies

(Fig. 5). This is in sharp contrast to the strong correlation in A1 with

galaxy type, with A1 increasing for later type galaxies, that is seen

in previous studies which involved field galaxies.

Hence, the high values of A1 measured here cannot be due to the

type of galaxies included in the sample.

These two results, namely, the higher average value of A1 mea-

sured for the Eridanus group galaxies and the weak anticorrelation

of A1 versus galaxy Hubble type clearly indicate that the main phys-

ical mechanism for the origin of the disc lopsidedness in a group

environment is different from that for the field galaxies. Perhaps the

gas accretion, which plays an important role in causing lopsidedness

in the field galaxies (Bournaud et al. 2005), may not be so important

in a group, especially since a group probably does not have much

cold gas.

We note that the earlier work on the measurement of H I asymme-

try in Sculptor group galaxies (Schoenmakers 2000) also showed

kinematical lopsidedness in all the five galaxies studied. However,

this method gives a value for the perturbation parameter for the po-

tential times a term dependent on the inclination angle only. The

average value for this product is ∼0.06 which is much smaller than
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Figure 5. 〈A1〉K in the 1.5–2.5 RK range versus Hubble type. The lopsid-

edness decreases for late-type galaxies. This is opposite to the trend seen in

the field galaxies.

the average value of 〈ǫ1〉 = 0.13 ± 0.13 (Table 2) obtained in the

present paper for the 18 Eridanus group galaxies.

5 C O N C L U S I O N

We have measured A1 the amplitude of the first Fourier component

over the average value for the surface density of H I in a sample of

18 galaxies in the Eridanus group of galaxies, by Fourier analysis of

the interferometric 2D data (Omar & Dwarakanath 2005a) on these

galaxies. This is the first quantitative measurement of the spatial

lopsidedness using H I data. The summary of conclusions from this

paper is as follows.

(1) All the galaxies studied show significant lopsidedness, with

average A1 > 0.2 in the region of 1.5–2.5 disc scalelengths. A

large fraction ∼30 per cent show even higher average lopsidedness

(>0.3). For a few of the galaxies, the stellar R-band data available

in the inner regions were analysed, and the resulting values of lop-

sidedness are shown to be similar to the H I lopsidedness. The same

amplitudes for stars and gas can be naturally explained if both arise

due to a linear response of the disc to a distorted or lopsided halo

(Jog 1997).

(2) The lopsidedness is observed to increase with radius, and

the outer regions have an average A1 value of ∼0.27.

(3) The present work measures A1 in discs up to the edge of

the optical discs or four exponential disc scalelengths, and in a few

cases even beyond that. This is more than twice the distance that

is typically studied in the stellar distribution via near-IR photom-

etry. This can help provide constraints on the origin of lopsided-

ness in discs, especially since lopsidedness is higher at larger radii.

From the observed A1 values, the halo distortion is deduced to be

∼10 per cent.

(4) The overall higher value of lopsidedness A1 measured in

the inner regions in the Eridanus group galaxies compared to the

field galaxies (e.g. Bournaud et al. 2005); and the smaller values of

lopsidedness observed for the later Hubble type galaxies – which

is opposite to the trend seen in field galaxies, together imply that

a different physical mechanism is responsible for the origin of the

disc lopsidedness in a group environment.

The present work highlights the need for a future dynamical study

of the origin and evolution of disc lopsidedness in galaxies in groups.

This can help in understanding the interactions and also the halo

properties for galaxies in groups.
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