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Surface-enhanced Raman scattering in a two-oscillator electromagnetic model

G. S. Agarwal~
Joint Institute ofLaboratory Astrophysics, University of Colorado, Boulder, Colorado 80309

and National Bureau ofStandards, Boulder, Colorado 80309

Sudhanshu S. Jha
Tata Institute ofFundamental Research, Homi Bhabha Road, Bombay 400005, India

(Received 13 May 1982)

A two-oscillator model is considered to investigate the effect of a metal substrate of
dielectric function e(co) on the Raman scattering from a molecule absorbed on the metal

surface. In the presence of the metal and an external electric field, the linear motion of the

electronic and ionic oscillators in the molecule get coupled, in general. For obtaining Ra-
man scattering at the Stokes frequency, a phenomenological nonlinear force term, which is

bilinear in the oscillator amplitudes, is introduced in the equation of motion. The whole

problem is considerably simplified when we use the fact that the ionic mass is much larger
than the electronic mass and the ionic vibration frequency is much smaller than the elec-

tronic and optical frequencies. It is shown that because of different renormalization factors
the frequency dependence of the enhancement factor I', taken to be the ratio of Raman in-

tensity with and without the metal, is quite different from that calculated by using the fam-

iliar polarizability-derivative theory. Applying the well-known fluctuation-dissipation

theorem, the new Raman line shape is also calculated to contrast it with the corresponding
line shape in the absence of the metal.

I. INTRODUCTION

The electromagnetic model involving the
resonant excitation' of substrate surface-plasmon
polaritons (SPP) and electron-hole pairs, together
with the possible renormalization of the molecular
polarizability due to the presence of the substrate, is
known to play an important role in the surface-
enhanced Raman scattering (SERS) from molecules
adsorbed at a metal surface. It is true that the first
one or two monolayers next to the surface may have
additional quantum-mechanical short-range
enhancements due to specific metal-molecule bond-

ing and conduction-electron tunneling. However,
the electromagnetic model can describe quite accu-
rately the classical long-range enhancement for the
molecules away from the surface, and also a sub-
stantial part of the enhancement in many experi-
mental situations involving molecules close to the
surface. It is, therefore, useful to examine the
dependence of the electromagnetic enhancement
factor on the incident and Stokes frequencies cot and
co~, respectively, in as much detail as possible.

Assuming a spatially nondispersive and uniform
substrate dielectric function e(co), a theory for the

electromagnetic enhancement factor for an arbitrary

shape of the surface has been published recently by

Agarwal, Jha, and Tsang. The neglect of spatial

dispersion may not be a severe restriction for the
case of molecules away from the surface. However,

in that paper the Raman polarizability was calcu-

lated as the derivative of the linear electronic polari-

zability at the incident optical frequency cot with

respect to the ionic vibration amplitude Q'(coo)
from the equilibrium. This procedure is being used

in most of the calculations of SERS, but it is quite
well known that such a polarizability theory is

correct only in the limit coI~~+, i.e., in the limit in

which the vibration frequency cop~0. Since in the
electromagnetic model of SERS, one is particularly
concerned with the resonances in the total enhance-

ment factor with respect to coi and cos, it seems

necessary to examine the situation beyond the usual

polarizability-derivative approximation. For exam-

ple, the renormalization of the Raman polarizability
(dynamic image effect) need not depend only5 on
the incident frequency cot [via the renormalization
of the linear polarizability a(cot)], but on both tot

and co+. In order to investigate the nature of the
frequency dependence of the Raman polarizability,
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we consider here an exactly solvable simple two-
oscillator model for SERS in which the electronic
oscillator amplitude (x) is assumed to be coupled
to the ionic oscillator amplitude (Q) by a nonlinear
force term which is bilinear in these amplitudes.

In Sec. II we introduce our two-oscillator model
and discuss how, through the use of the
fluctuation-dissipation theorem, one usually obtains
the power spectrum of the Stokes radiation in terms
of the frequency spectrum of the fluctuation

&
~ Q ~

&„ in the vibration amplitude. In the pres-
ence of the metal with an arbitrary shape of the sur-

face and internal dielectric function e(co}, we then
show the final results can be obtained by solving the
coupled-oscillator equation in the presence of the
local electric field E' '(cot) at the molecular site, to-
gether with relevant Maxwell's equations for the
electromagnetic fields. Because of the coupling of
the oscillators due to the general bilinear force term
and because of the presence of the metal substrate,
the general solution is quite complicated. However,
in Sec. III we show that the results may be simpli-

fied considerably since the ionic mass M is much

greater than the electronic mass m, and since

coo «cot,co, . We then find that the renormalization

factor indeed involves both cot and co&, and depend-

ing upon the value of the distance d of the molecule

from the metal surface, the frequency dependence

of the total enhancement factor may be quite dif-

ferent from that calculated using the polarizability-

derivative theory. As expected, the detailed shape

of the Raman line is shown explicitly to be affected

by the presence of the metal. To compare with ear-

lier calculations, we briefly discuss our results in

Sec. IV for the special case of a molecule adsorbed

on a small metallic sphere.

II. THE TWO-OSCILLATOR MODEL
AND MATHEMATICAL FORMULATION

FOR SERS

In the absence of any explicit coupling to the
electronic motion, in the harmonic approximation
we can describe the ionic motion by its normal
modes. For a single mode, with an effective mass

M and effective charge Z, the normal-model ampli-

tude Q satisfies the equation of motion

M(@+cooQ+yQ) =ZE' '(t) (1)

in the presence of a "local" field E' '(t) at the
molecular site. Here, coo and y are the experimen-

tally observed "physical" resonance frequency and

n(co) = exp —1
k~T

(3)

and the response function matrix (defined always as
the displacement of coordinate i due to a unit exter-
nal force of frequency co acting on the coordinate j)
is given by

ZE'"'(co) M(coo co —i coy)—

The mean-square value of the fluctuating variable

Q; is given by

&Q (t}&'=I dco& IQ I'&' (5)

As already hinted at, in the presence of the metal
substrate the local field E' ' is not the incident field
E'"', and we will have to recalculate the modified
fluctuation spectrum of Q later in the paper.

The independent electronic motion in our model
is described by an anisotropic harmonic oscillator of
mass m and charge e. The Cartesian components of
the electronic amplitude x satisfy the equation of
motion

m (x;+co,d J.xj.+ I,&x~ ) =eE '(t) (6)

in the presence of the local field E . Here, and in(M)

what follows, unless explicitly stated otherwise, the
summation over repeated indices is always implied.

Again, electronic frequencies and damping are

physical quantities observed in isolated molecule,

and therefore, Ej
' is not the total field. Further,

we assume g,.d;; =3.
The total induced dipole moment in the molecule

involving both kinds of oscillators is given by

p=ex+ZQ .

Since harmonic forces are already taken into ac-

count in writing Eqs. (1) and (6}, the explicit non-

damping of the mode under consideration in an iso-
lated molecule, i.e., it includes the effect of the
self-field on the corresponding "bare" quantities. In
the absence of the metal, the local field E' '(t) can
be identified immediately with the incident field
E'"', and the frequency spectra of fluctuations in

Cartesian amplitudes Q; are obtained from the gen-
eralized quantum-mechanical Nyquist formula7

&Q;*Q, &.'=&Q, Q,*&'.

=—[n(co)+ 1]lm[T~J '(co)] .

Here, n(co) is the thermal factor
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+Ctjk xtxjQk +Dy, xtxjxk (8)

In terms of a six-dimensional generalized displace-
ment vector defined by

Xi Qi
x= xg, Q= Q2 (9a)

X3 Qs

i.e.,

el xi e2 x2 e3 x3

44=Qi Ps=Q2. 46=Qs
(9b)

the potential function can be rewritten in the form

I'"'(4)=
s l)»pA'»it'I 4. . (10)

As a convention we will use Greek indices running
from one to six for the six-dimensional vector, and
Latin indices for individual three-dimensional dis-
placement vectors.

The nonhnear force term for the equation of
inotion for the amplitude P» can be obtained from
Eq. (10) as

f» = — = —(}»„A„4.

Although the above expression is more general, for
the Raman scattering calculation only the term
with the coefficient Cjk in Eq. (8) is the most
relevant one in the weak-coupling theory. In addi-
tion, for M»m and top((cp Ni only the corre-
sponding force term in the electronic motion will be
important. Thus in the simplified calculation to be
described in the next section the coupling will be
represented by the additional force on the electronic
motion

linear coupling between the two oscillators can be
obtained from the lowest-order trilinear potential
function

I'"'(»Q) =~ "kQ.Q Q»+& jkQ Q.xk

al, and the total field E anywhere in the presence of
both the metal and the molecule, which includes the
self-field. For our pupose, the metal having an ar-
bitrary surface shape is represented by the dielectric
function

e(co) inside the metal
e(r, oi) = .

p outside the metal . (13)

inside as well as outside the metal, and by matching
the tangential coinponents of the electric and mag-
netic fields at the surface in the presence of the in-

cident field E'"'(r,tot). Let us assume that this
problem is solved, and that it leads to the Fresnel-

type factors L j (which will depend on the explicit
shape of the surface, etc.}defined by

E '(ro, pit)=L;j(ro, orat)Ej" (ro cpi) (15)

for the solution outside the metal.
In the presence of the molecule the local field

E' ' is not the external local field E' ' acting at the
molecular site. The relationship between these two
can, however, be obtained' by first introducing the
total field E(r,cot} that satisfies Maxwell's equations

2
NI—V + V V —e(r, co&) E(r,oui)
c2

4 2
KNI

p(cot )5( r —ro}, (16)
c2

where p(coi} is the induced dipole moment in the
molecule. In terms of the well-known free-space
Green's function Gp defined by

In the absence of the molecule the external field
E' '(rp, tot} at the molecular site (r = ro) can be ob-

tained by solving Maxwell's equations

—V»+VV —e(r, cpi} E' '(r, a)t}=0
C2

(14)

Ft ———2C~jkxj Qk
NL (12)

on the right-hand side of Eq. (6), with no additional
force for the ionic motion.

Before proceeding further, we must find an expli-
cit relation between the local field E' ' acting at the
molecular site and the incident field E'"'(cot) of fre-
quency cot, in the presence of both the metal and the
molecule. For this we will introduce the field E' ',

defined as the external field anywhere in the ab
sence of the molecule but in the presence of the met-

2
NI—V +VV.—

2 Go(r, ro, vi)}
c

=4m 5( r —ro)I, (17)

and the full Green's function G defined by

—V + V V e(r, pic) —
2

G(r, rp, cpi)
c

=4m5( r —ro)I, (18)
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where I is a unit dyadic, one has

E(r,co!)=E' '(r, co!)
2

G ( r, r O, co!).p (co!),
C

E(™(r,~, )=E("(r,~, )

+ 2
G"(r, ro, co!) p(co!),

C

(19)

(20)

ZeQ
A,j~(Q) =Ay(Q) = — G "(Q),lJ

App(Q) =M( n—+coo i n—y)5,J.

ZQ" G'"(n)ij

where we have used the convention

G"(ro, ra, n) =G "(Q)

(26)

(27)

(28)

where the additional Green's function due to the
metal surface is defined by

G~~~=G —G, . (21)

eE"'(Q)F'"'"'= ZE('(Q)

E(0)(P Q)

E('!(Q)= E',"(r„n)
E(,"(r„n)

(23)

and f (Q) is the Fourier transform of the non-
linear force term (11). Here, the 6X 6 matrix A can
be written in terms of four 3 X 3 matrices as

A (n) A ~(n)
A~X(n) A~(n)

A,z (Q)=m( —Q
&
5+cdo,z ini;J)—

(24)

Note that the induced dipole inoment p(co! ) is relat-
ed to e x(co!)+ZQ(co! ) via Eq. (7), and that once the
geometry of the metal surface is known, we can as-
sume E' ' and G, and hence E' ' and G"', to be
known in principle. In other words, the unknown
local field E' ' in Eqs. (1) and (6) can be eliminated
in terms of x and Q, and in terms of known func-
tions E' ' and G".

Now we are in a position to solve the two-
oscillator problem in the presence of the metal.
Eliminating E' ' from the equations of motions (1)
and (6) in favor of E' ' or E'"' via Eqs. (20) and (7),
and by adding the bilinear force term (11), it is
straightforward to rewrite these equations of
motion. In the six-dimensional space of the gen-
eralized displacement vector it!, the Fourier
transform of the combined equations of motion,
written in the matrix notation, has the form

A(Q)1((Q) =F"'(Q)+fNL(Q) . (22)

Here, F' '(Q) is the six-dimensional force vector

at the molecular site.
It must be noted that due to the presence of the

metal two types of oscillators become coupled, even
in the absence of the nonlinear force term. Also,
the resonance conditions are changed due to the
presence of the term proportional to G" in Eqs.
(25) and (27). In the absence of the metal, G" of
course vanishes identically, by definition.

First, let us consider the linear problem in the ab-
sence of the nonlinear force term in (22). For an in-
cident field E'"'(coi) varying with the frequency coi,
Eq. (22) then iminediately leads to the solution for
induced (linear) displacements

x(co!)

P(co!)= g( )
A'(co!)F——"'(co!) . (29)

The frequency spectrum of the fiuctuation in gen-
eralizai displacements is obtained by calculating the
response function T&,(co) as the displacement g&(co)
due to a unit external force of frequency co at the
molecular site acting on the index v, and then using
the Nyquist formula. We find

(leo.&.= (y„y'. &.

=—[n(co)+1]Im[A '(co)]z, . (30)

ALS(cos )t('s(~s ) 2~!(pA'p(co! ) (t' (co )

In the linear problem the displacement induced
by the incident field, and hence the induced dipole
moment p, vary with the frequency co! of the in-
cident field. To obtain a dipole moment at a fre-
quency other than col, which would give rise to Ra-
man scattering, we must include the nonlinear force
term f ~, defined by Eq. (11), in the equation of
motion (22). Since there is no external field at the
Stokes frequency, co, =co!—co and F(0'(cos)=0 in
(22). In the weak-coupling theory the Fourier
transform of (22) at cos can then be written as

e Q G"'(Q)
2 lJ (25)

~s ——~I —~,
(31)
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where it„(coi) is the linear displacement obtained in

Eq. (29) and where P„(co) is the fluctuating field
whose correlations are given by Eq. (30). The above
equation can be solved in the form

Ps(s) =—2[~ '(~s)]sk()ki A', (~i V'.(~) (32)

to obtain the Cartesian components (i = 1,2, 3) of
the Raman dipole moment

p. (cos)= —2te[A '(cos}l k+Z[A '(cos)] +i,

klan}ki

A'i (coi5'(co)

—=S;„„(cos)[A '(coi)]„sFs '(coi)P"„(co) .

(33)

(34)

In the presence of the metal the above Raman dipole moment (when inserted in Maxwell's equations) gives
the Stokes radiation field in the form

2
COSE{cos)=,G(r ~ rocos)'p(co ) .
C

(3S)

This determines the frequency spectrum of the scattered radiation in the form

4

I
E(cos)

I

'= Gcj(r~ ~, rp cos)Gik(r~ao rp cos)~ji (cos)Ski v(cos)[A '(coi )]i s[A '(coi)]„'s
C4

XI's '(coi)I's '(coi)(f*„gy}„ (36)

Here S;&„ is defined via Eqs. (33), (34), and (23),
F' '(coi) is related to the incident field via Eqs. {23)
and (15), and the quantum fluctuation correlation
function (f„g„}~is obtained from Eq. (30}. The
enhancement factor for SERS at a given frequency
cos is obtained from Eq. (36) by comparing it to the
corresponding expression in the absence of the met-
al, i.e., with 6"—+0 and E' '—+E'"'. We will dis-
cuss a simplified version of the above general result
in the next section.

2

ZQ(0) = ( 0+—cop i Qy)—'E'"'(0),
M

(38)

in the matrix notation. These two expressions de-

fine the electronic and ionic physical polarizabili-
ties, respectively, of an isolated molecule. In the
matrix notation, it has the form

2

a(0)=—( 0 I+co,d—i 01 )—
Ptl

(39)

III. ENHANCEMENT FACTOR
FOR HEAVY IONIC MASS Z2

a;,„(0)= ( 0+cop i—Qy) 'I, —
M

(40)

Until now, we have not assumed anything about
the nature of the mass ratio M/m or about the fre-
quency ratio cop/co&. We will consider this impor-
tant point in this section.

In the absence of the metal, E' ~E'"', and the
linear equations of motions (1} and (6) are uncou-
pled. In such a case, the induced electronic and ion-
ic dipole moments induced by E'"'(0) have the

in our model. In fact, in terms of the inverse ma-
trices

a —'(Q) =—( 0'I+co,d —i QI ), —
e

(41)

(42)a „(0)= ( —0 +cop iQy)L, —M

2

e x(Q) =- [( 0 I+co,d- —
P7l

—iQr)-'] E'"'(0), (37)

which may be more readily available, the general
matrix A(0) of Eq. (24) can be rewritten in the
more convenient form
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A(Q)=

e 0e'a '(-Q)—,G(')(Q)
C

0—Ze G"(Q )
C

0—Ze G"(Q )

Z0Za(o~(Q)G(Q)
C

(43)

Here, each term, of course, represents a 3)&3 matrix.
Now, let us consider the physical fact that M »m, and that the ionic resonance frequency co() «co„co(,co„

the optical frequencies. Since Z and e are of the same order, it is clear from Eqs. {37)and (38) that the in-

duced ionic displacement can be neglected in comparison to the induced electronic displacement if Q »coo.
In other words, the optical fields directly couple only to the electrons. For Q -co„co„only x;(Q ) can be kept
in the equations of motion; Q {Q } is important only at low frequencies Q -coo.

Because of the great simplification discussed above, we can neglect terms proportional to Q(co(} and Q(co, )

everywhere. The solution for the linear displacements given by Eq. (29) then simplifies immediately to

1
x(NI) =—a '(~l) —-2 G(')(N! )

e C

.E(0)(~ ) (44)

Q(co!)=0 (45)

in the tensor notation. Again, as explained in Sec. II, if we keep only the nonlinear force term (12) in the
electronic equation of motion, at Stokes frequency we find

s
x(cos)= ——

2
a '(cog) — G "(cos)

e c
C:x(co!)Q'(co), (46)

Q(~s}=0, (47)

in place of the more general expression (32). This leads to the Raman dipole moment

p(cos)= N{cos—}'—a(co ) C:N {co!}'a(co!)E' '(co!)Q'(co)
e

(48)

where N is the renormalization tensor (matrix}

0
N( Q ) =— I 2a (Q ).6"—(Q )

C
(49)

Note that the expression (48) contains the renormalization denominators both at co! and cos. The above ex-

pression for the Raman dipole moment can be compared with the Raman polarizability for an isolated mole-

cule (in the same model)

p
' '(cos) = —

2 a(cos) C:a(co!) E'"'(co!)Q' "(co) .
e

(50)

In our simple model, for co «co(,cos, the frequen-
cy spectra of the correlations ( Q; QJ. ) are the only
ones to be considered. In the absence of the cross
terms in (43) this may be obtained directly from the
equation of motion

Z N
M( co +coo icoy)I — 2G—(')(co) .—Q(co)

C

=ZE(0)(~). (5l)
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This leads to

X Im M( co—+cop i c—oy)I

Z2 2
6(s)(~)

C
(52)

Note that the correlations will remain diagonal if
6'"(co) is diagonal. Also, if (Z co /c )6"(co) is
small in comparison, the nondiagonal part may be
negligible. However, it must be emphasized here
that because of the presence of the metal, the Ra-
man line shape determined primarily by Eq. (52) is

changed from the case of the isolated molecule.
The real part of G "(co ) is responsible for a possible
frequency change, whereas the imaginary part
determines the change in shape and width.

Since in the radiation zone the Stokes field is

given by

2
COg

E(cps)=
2

G(r —&oo, ro cps)'p(cps)
C

(53)

the enhancement factor for the Raman scattering in

the presence of the metal is given by

I
6(r Go, r(),cps) p(cps)

F(cps )=
I
G o( r ~ oo rp cps ) '

p (cps )
I

(54)

XE)"'(li)Qk ' (co) . (55)

In the polarizability derivative approach, one has
the connection

(p) ()aij (coi )
R Jk

—+ (O),
~Qk

(56)

In our model, for a diagonal, we have

Rijk(cps co() Cijkaii(cps)ajj(co( )(0)
2 (57)

with no summations, in terms of which the Raman
dipole moment (48) can be written as

where p and po are obtained in our model in Eqs.
(48) and (50). The above expression involves the
fluctuation correlations given by (52), with and
without G "(co ), in the numerator and denominator,
respectively.

Instead of considering the expression (54) for ar-
bitrary a and G", it is very interesting to study the
special case in which we may have a coordinate sys-
tem in which a and G" are diagonal tensors. In
such a case, it is possible to eliminate the unknown

coupling tensor C in favor of the experimentally ob-
served Raman polarizability tensor R' ' of an isolat-
ed molecule, defined by

Pi(~s) Rijk(~s&colj (col)Qk(co) ~

(o)
Rljk (~si~l )

Ri,k(~s, ~i) =
[I—«s/c )ace(cos)Go (cps)][l (coilc )ajj—(co()Gij'(co()]

(58)

(59)

with no summations Because of this simplification, the enhancement factor can now be obtained completely
in te~s of the experimentally available parameters for the 1solat~ molecule. Note that Eq. (59) represents
the renormalization of the Raman polarizability from R'o' to R, due to the presence of the metal. The renor-
malization factor is symmetrical between coi and cps.

The net enhancement factor (54! now has the reduc(xl form

F(cps) = I
6(r ~, ro, ~s) R(~s,~i):E' '(coi)Q (co) '

I
Go(r ~, ro, ~s) R "'(~s,co():E'"'(~i)Q( ' (co)

I

' (60)

Because of the metal, the incident field is changed
from E'"'(co() to E' '(coi) at the molecular site, the
Raman polarizability is renormalized from R' ' to
R [see Eq. (59)], the scattering propagator for the
outgoing field is changed from Gp to 6=G p+6"
and the frequency spectrum of the fluctuation in Q

is modified. Depending on the nature of the sub-

strate and the frequencies involved, each of the first

three of these changes may contain surface-

plasmon —polariton resonances, discussed in Ref. 5.
In order to get a better idea about our final ex-

pression, let us apply our formula to the simple case
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ro=roz = (a +d)z, d & 0 . (61)

For this position the local external field at the
molecular site is related to the incident field by

a 3
E' '(ro, cot) E;„,(ro,co()+ i g(cot, a)

ro

of a molecule adsorbed on a small metallic sphere
of radius a «c/cot. If the origin of the coordinate
system is taken to be the center of the sphere, we
can define the molecular position by

(a «)(). For
I

e
I

' a-A. , one must take care of
higher-order terms, including the effect of radiation
damping, properly. Even for very small spheres,
the imaginary part e2(Q) is, of course, different
than that for the bulk metal. This must be kept in
mind while obtaining numerical values. In the non-
retardation limit, at the molecular site

Q G(g)(Q) ~ 1 [a(Q)—1] a +'
c t ol+1+le(Q) rzJ+4

r

X (i+I)'zz
2

X [3z(z.E;„,)—E;„,]

(62)

l(l +1)+ (64)

g(Q, a)= E(Q) 1—
E(Q)+2+ —,(Q /c )a

(63)

The above expression is valid only for small spheres

For diagonal a and the incident and scattered ra-
diation polarized along ro ——z, it can be shown that
the enhacement factor F(cos) given by (60) reduces
to

I
1+2««0)'g(~s, a)

I

'
I
1+2(a/ro) g (co),a)

I

'
F (cos) f(co )

I
& (cos,a, ro)N (co(,a, r()) I

where the renormalization denominator

(65)

a~ l(i+1) (e. 1) a +

I +1+le(Q) r"+' (66)

and the ratio of the vibrational line-shape functions is given by

Q I

R")'
I
'('QkQk &

R(o)
I

2(g'g &0
(co)=

k

g I

R'
k I

Im[M( co +coo —icoy) (Z—co /c —)Gk'k'(co)]
k

g I
R~~'

I
Im[M( co +co—o icoy)]-

k

(67)

We will discuss and compare our results with the
earlier calculations in the next section.

IV. DISCUSSION

If we compare our explicit results for the case of
the small sphere with the earlier calculation in Ref.
5, it is clear that these two differ in the renormali-
zation factors for the Raman polarizability, apart
from the line-shape modification function f (co).
Whereas both the results contain the l = 1 SPP reso-
nance factors at co( and cos, which occur due to the

enhancement of the external field and the scattering
propagator, respectively, the renormalization factor
is symmetrical as a function of the frequencies mz
and co~ in the present case. The two renormaliza-
tion factors are the same only in the limit co(icos.
In case there is a resonance involved in the renor-

0
malization factor, with d &20 A or so, this differ-
ence is important to determine the frequency depen-
dence accurately Similarly, .the modification in the
line shape also becomes important at short distances.
Compared to many other available calculations' '

for the case of a small sphere, our expression seems
to be the most complete. However, note that for
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spheres with a
~

Ve
~

-A, , we must include radia-
tion damping for obtaining E' '(cot).

Although we have presented the calculation of
the electromagnetic enhancement factor in the two-
oscillator model, we believe that most of our con-
clusions should be correct qualitatively, even in the
more general case. In fact, in the coordinate system
in which Lr and G"(rn, rn, co) are diagonal, we be-

lieve that the formulas (58)—(60) for the enhance-
ment factor should also be exact in the more general
case. This is because in such a case the final formu-
la can be rewritten in terms of the physical polari-
zabilities of the isolated molecule, without involving

any unknown parameters of our model.

Because of the ease with which the two-oscillator
model can be handled in the presence of the metal,
it is possible to study other linear as well as non-

linear processes occurring in the molecule using this
model. Some of these molecular processes will be
discussed in a planned future publication to investi-

gate the effect of a metal or an insulator with an ar-

bitrary shape of the surface.
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