Identification of the high-temperature superconducting phase in the Y-Ba-Cu-O system as the perovskite $YBa_2Cu_3O_{7\pm\delta}$

P GANGULY, R A MOHAN RAM, K SREEDHAR and C N R RAO*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

Abstract. The oxide responsible for high-temperature superconductivity (onset ~ 100 K, zero resistance above liquid N_2 temperature) is found to be $YBa_2Cu_3O_{7\pm\delta}$.

Keywords. High-temperature superconductivity; YBa₂Cu₃O₇

PACS No. 74.70

The discovery of superconducting oxides of the Y-Ba-Cu-O system, exhibiting zero resistance above the liquid nitrogen temperature (Wu et al 1987; Ganguly et al 1987), has received worldwide attention. The oxide compositions which have shown this behaviour seem to be complex and biphasic. The Y_{1.2}Ba_{0.8}CuO₄ composition of Wu et al (1987), based on the analogy with La_{2-x}Ba_xCuO₄ possessing the K₂NiF₄ structure (Chu et al 1987; Rao and Ganguly 1987), consisted of a green and a black oxide. We suspect that the green oxide was Y₂BaCuO₅ which is an insulator. We did not prepare Y-Ba-Cu oxides with compositions related to those of K₂NiF₄ structure since Y₂CuO₄ itself is not formed in this structure. Instead, we made Y-Ba-Cu oxides analogous to La₃Ba₃Cu₆O₁₄ (Er-Rakho et al 1981) which is an oxygen-deficient perovskite possessing a

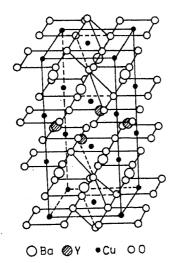


Figure 1. Proposed structure of $Y_2Ba_4Cu_6O_{14\pm\delta}$ analogous to $La_3Ba_3Cu_6O_{14}$ (following Er-Rakho *et al* 1981). A_1 and A_2 sites are shown. Y occupies A_2 sites preferentially.

Contribution No. 432 from the Solid State and Structural Chemistry Unit *To whom all correspondence should be addressed

tetragonal structure with $a=a_p2^{1/2}$ and $c=3a_p$; the oxygen vacancies are ordered with three different copper sites. This as well as the analogous yttrium oxides are black and the a_p parameter decreases with the introduction of the smaller Y ion. Along the c-axis, the sequence is $|\operatorname{Cu_2O_4} - \operatorname{A_2O} - \operatorname{Cu_2O_4} - \operatorname{A_2O_1} - \operatorname{Cu_2O_4} - \operatorname{Cu_2O_4} - \operatorname{A_2O_1} - \operatorname{Cu_2O_4} - \operatorname{A_2O_1} - \operatorname{Cu_2O_4} - \operatorname{A_2O_1} - \operatorname{Cu_2O_4} - \operatorname{A_2O_1} - \operatorname{Cu_2O_4} - \operatorname{Cu_2O_4} - \operatorname{A_2O_1} - \operatorname{Cu_2O_4} - \operatorname{A_2O_1} - \operatorname{Cu_2O_4} - \operatorname$

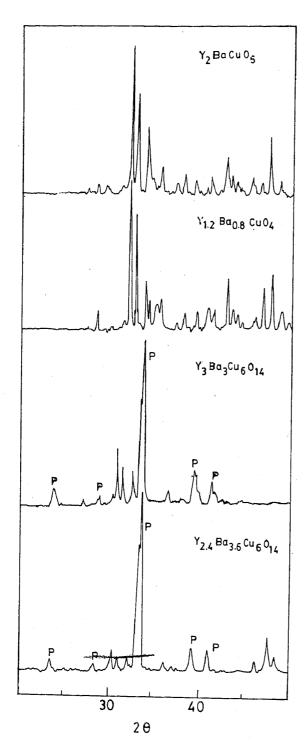


Figure 2. X-ray powder patterns of $Y_{3-x}Ba_{3+x}Cu_6O_{14}$, Y_2BaCuO_5 and $Y_{1\cdot2}Ba_{0\cdot8}CuO_4$.

interact along the c-axis over long distances. If Y occupies only A_2 sites, the composition will be $Y_2Ba_4Cu_6O_{14}$ (figure 1).

We have examined superconductivity of several oxides of the general formula Y_{3-x}Ba_{3+x}Cu₆O₁₄ and find some of them to be superconducting well above the liquid nitrogen temperature (Ganguly et al 1987; also unpublished results from this laboratory). Almost all the compositions are however biphasic. We have carried out an x-ray study of these oxides to establish the identity of the oxide phase responsible for high-temperature superconductivity. In figure 2, we show typical x-ray powder patterns of these oxides along with those of Y₂BaCuO₅ (green insulator) and Y_{1.2}Ba_{0.8}CuO₅ (composition of Wu et al 1987). We readily see that the last oxide has predominant features of Y₂BaCuO₅ and some weaker features of the perovskite; Y_{3-x}Ba_{3+x}Cu₆O₁₄ compositions, however, show the perovskite features (see intense peak marked P in figure 2). Prominently, features of Y₂BaCuO₅ are much weaker here. Based on this x-ray study, we find that the composition of the "pure" perovskite phase is likely to be close to Y2Ba4Cu6O14 or YBa₂Cu₃O₇. We have prepared this oxide composition by heating the component oxides in air at 1170 K and find it to be a monophasic perovskite. The perovskite phase in $Y_{3-x}Ba_{3+x}Cu_6O_{14}$ seems to be slightly less distorted compared to the pure YBa₂Cu₃O₇ phase; this probably arises from changes in oxygen stoichiometry. The exact composition of the high T_c oxide phase may therefore be written as YBa₂Cu₃O_{7 $\pm\delta$}. This oxide heated in oxygen does indeed exhibit high-temperature superconductivity with zero resistance above liquid N₂ temperature.

The authors thank the University Grants Commission and the Department of Science and Technology for support of this research.

References

Chu C W, Hor P H, Meng R L, Gao L, Huang Z J and Wang Y Q 1987 Phys. Rev. Lett. 58 405 Er-Rakho L, Michel C, Provost J and Raveau B 1981 J. Solid State Chem. 37 151 Ganguly P, Raychaudhuri A K, Sreedhar K and Rao C N R 1987 Pramana-J. Phys. 28 229 Rao C N R and Ganguly P 1987 Curr. Sci. 56 47 Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908