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GENERATION OF SPECTRUM COMPATIBLE ACCELEROGRAMS 
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Department of Civil Engineering, Indian Institute of Science, Bangalore, India 

SUMMARY 
In this paper a new method is presented for generating earthquake accelerograms which have pre-established 
response spectra. The non-stationary random nature and other salient features of the accelerograms can be taken 
care of by the procedure developed. The method leads to a sample spectrum which lies above the given spectrum. 
The generation of records to suit several spectra simultaneously can also be handled by this approach. The method 
is detailed first. This is followed by several numerical examples. 

INTRODUCTION 

Random process models for ground acceleration are widely used in earthquake engineering problems. A 
variety of stationary and non-stationary Gaussian random processes have been suggested by various 
investigators14 for this purpose. Generally, these processes incorporate some trends and typical characteristics 
of the earthquake motion to various levels of accuracy. As a justification of the proposed model, invariably, 
the response spectra for several samples are constructed to demonstrate that the spectral characteristics 
are very similar to those of real earthquakes. In recent years, interest is growing in the problem of generating 
an accelerogram to fit, as precisely as possible, a pre-established response spectrum. This is particularly 
important in the seismic analysis of nuclear power  station^.^. Several research workers have looked into this 
problem from various angles. Tsai' selects an existing real accelerogram whose spectrum matches closely with 
the smooth design response spectrum (SDRS). The record is then passed successively through suitable 
filters to reduce the spectrum ordinates wherever necessary. Similarly, to increase the spectrum as required, 
sinusoidal motions are superposed over the selected record. Rizzo et a18 use a very similar technique. They 
find it convenient to work in the frequency domain rather than with the accelerogram in the time domain. 
Scanlan and Sachs9 use a Fourier series representation with a random phase distribution for the time history 
to be generated. The Fourier coefficients are found by successive iteration and adjustment such that the time 
history generated response spectrum (THRS) and the SDRS compare well. To start the iteration, the well- 
known fact that the response spectrum for zero damping closely resembles the Fourier spectrum is used. 
Levy and WilkinsonlO also use a Fourier representation, but without phase shifts. They consider the 
generation of dual time histories having the same THRS which could represent the two horizontal components 
to a structure. They have suggested methods to make the two time histories uncorrelated. Shaw et all1 
have proposed several guidelines which will be useful in generating spectrum compatible earthquakes. In 
particular they have brought out the importance of including the basic characteristics and site properties 
such as peak ground acceleration, duration and non-stationarity. King and Chen12 in a recent publication 
have used the power spectral density function for generating spectrum compatible motions. They claim that 
this technique can help in generating a single sample which is compatible with the spectra for several damping 
values. 
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In the present paper a new method is developed which, retaining the Fourier series representation, ensures 
that the THRS is always above the SDRS at any stage of the computation process. Further, the procedure 
developed seems to converge numerically to the target spectrum. Also the technique can be used for the 
simultaneous satisfaction of several spectra. 

THEORY 
It is well known that earthquake accelerograms can be represented as non-stationary random processes in 
the form1*2 

X(t)  = u(t)  S(t)  (1) 
Here, u(t )  is a deterministic modulating function and S(t)  is a stationary random process which can be 
represented in a finite interval (0, T )  as13 

N 

i=l 
S(t)  = C ci sin (ai t - +i) 

In this expression the c i s  are deterministic constants which control the power spectral density function of 
S( t ) ;  the $i’s are mutually independent random phase angles uniformly distributed in (- T,  n). The lowest 
frequency present in S(t)  is 24T, and hence 

sZi = 2.rri/T 

N = f , T  
(3) 

where .f, is the highest frequency present in S( t ) .  For the modulating function u(t), of the several functional 
forms in herein the one used by Shinozuka and Sato3 has been selected. This is 

u(t)  = (e-&- e-89 (4) 
The simple exponential form of this expression makes response integrations easier. The parameters 01 and 

control the build up, decay and duration of the accelerogram. In terms of the time to the peak and total 
duration, 01 and 

It remains to find ci and +i such that the supremum of the absolute value of the response of a single degree- 
of-freedom system, with frequency wi and damping r] ,  is equal to the given target spectrum G(wJ for 
O<wi<2nf,. The relative displacement and velocity of a linear oscillator to the input of equation (1) is 

can be estimated reasonably well beforehand. 

where 

Substitution of equations (2) and (4) in equation (6) leads to the following expression 
N 

5=1 
Zi(t) = 2 cj(Zij cos + Jij sin I#~) 

where 
Iij(t) = (e-& A ,  + e-pt Bij) cos sZj t + (e-& Ci5 + e-bl Dij) sin sZj t + e-urt 

x [(Ei5 + Gij) cos Gi t + (F$, + 4) sin Bi t ]  
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= Si G(wi) 

is satisfied, for some t in (0, T ) ,  then for such a response the condition 

will hold good. Herein this property is extensively used. 

SINGLE VELOCITY SPECTRUM 

The accelerogram is defined in terms of the 2N unknowns ci and Equation (22) with the equality sign 
leads to N conditions only. To overcome this difficulty we proceed as follows. di is selected as a random 
variable uniformly distributed in (- T, T )  to start with. ti is also selected as a random variable uniformly 
distributed in a small interval after the modulating function u(r )  has reached its peak value. With these 
quantities determined, the equation 

&(ti)=SiG(wi) ( i =  1,2,...,N) (23) 
is solved simultaneously to arrive at the cj’s. With the new c, and previous +,, the accelerogram and the 
corresponding THRS are computed along with proper ti and Si. The spectrum generated will definitely be 
above the SDRS. However, the discrepancy may be too large calling for further modification in cj and 4,. 
If this is necessary the cj’s are scaled down linearly as 

Ej = cj(SDRS/THRS) (24) 
With this set of cj’s a new set of 4;s is calculated as follows. Equation (2) can be expressed in the form 

N 

j = l  
S(t) = (aj sin Qj t + bj cos s2, t )  

a, = cj cos +,, bj = - cj sin 4j 

(25) 

(26) 

where 

Using the modified cj and the previous c$~, aj is found from the above equation. At this stage equation (23) 
is solved with the new values of aj, ti, Si to determine bj. The accelerogram generated with this uj and b, 
will again lead to an upper bound for the SDRS. A further improvement is quickly obtained by using the 
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x x x  

current phase angles 
dj = tar1(  - bg/aj) 

400- 

as a new set of starting values to find the improved cj. These steps can be repeated till satisfactory convergence 
is obtained. 

: x  - 
- x 
- I 

x x x  
I 

Numerical example 
To illustrate the application of the above method, the smooth velocity spectrum used by Scanlan and 

Sachso at 2 per cent damping is taken as the target spectrum. Two earthquake accelerograms of 10 s duration 
are needed. The parameters for the modulating function can be taken as E = 0.5 and /3 = 1.0. Since the 
lowest frequency is 0.1 Hz, and the cutoff frequency is 10 Hz, the total number of terms to be included in the 
series representation will be 100. Consideration of 100 unknowns makes the computation somewhat expensive. 
With this in view only 25 terms are considered here in the numerical work. However, there will be no difficulty 
in including a larger number of terms at higher computer costs. The target spectrum and the frequencies 
used in shaping the spectrum are shown in Figure 1. In every cycle of iteration, as pointed out already, two 
upper bound spectra (one with q$ and cg and another with ag and b3) can be obtained. Spectra for four 
iterations and the resulting final version of the sample accelerogram are shown in Figures 1 and 2. Figure 3 
shows the spectral convergence for a different starting dj. The corresponding accelerogram is presented in 
Figure 4. 
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Figure 1. Convergence of THRS to SDRS; sample I 
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Figure 2. Spectrum compatible accelerogram; sample I 
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Figure 3. Convergence of THRS to SDRS; sample I1 
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Figure 4. Spectrum compatible accelerogram; sample I1 

SHAPING OF MULTIPLE SPECTRA 

It may be observed from the Fourier representation of equation (25) that 2N unknowns are to be determined 
to prescribe the accelerogram. However, only N =f,T divisions of the spectrum are sufficient to include all 
the relevant frequencies. This fact may be exploited to shape two spectra simultaneously. In doing this, 
iteration with respect to newer ti and Si and the constraint that the variance of S(t) should be unity would 
be necessary. Even though such a procedure looks highly plausible, a large amount of computer time will 
be needed to obtain meaningful answers. Hence, here an approximate method is used which shapes the 
SDRS at only a limited number of points. The smooth velocity spectra for two values of damping, namely 
2 per cent and 5 per cent shown in Figures 5 and 6 ,  are considered as the targets. In all, 24 frequencies are 

49 
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Figure 5. Shaping of multiple velocity spectra, 2 per cent damping 
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Figure 6.  Shaping of multiple velocity spectra, 5 per cent damping 

used in the accelerogram representation. The details of the numerical work are the same as with a single 
spectrum except that now 12 non-overlapping points are selected for each value of damping. The system of 
equations given by equation (22) is split equally between the two values of damping. The convergence of the 
THRS to the SDRS and the resulting accelerogram are shown in Figures 5-7. 

0 2 4 6 8 10 
TIME IN SECONDS 

Figure 7. Accelerogram to match simultaneously spectra at two levels of damping 

On similar lines, velocity and acceleration spectra can be simultaneously matched. The results of such an 
exercise are shown in Figures 8-10. Again 24 frequencies have been used in shaping the spectra of Figures 
8 and 9. 

In Figures 5, 6 ,  8 and 9, all the frequencies used in the accelerogram are considered in the final version of 
the spectra. It is observed that at frequencies not included in the shaping process, the THRS sometimes 
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goes below the SDRS. However this discrepancy is not very large. Also, this can be overcome by including 
more frequencies in the iteration procedure. However, there is a possibility that a large number of frequency 
points may make the convergence erratic. Further investigation on this point is necessary. 

.2q 

I 

2 4 6 8 1 
-.2Q: 

TIME IN SECONDS 

Figure 10. Accelerogram to match simultaneously velocity and acceleration spectra 

DISCUSSION AND CONCLUSION 

The generation of spectrum compatible earthquake accelerograms has been attempted in the present study 
from the point of view of a random process without appealing to the power spectral density function. This 
approach with random phases, amplitudes and signs ensures that the generated spectra will be at  least 
greater than, if not precisely equal to, the target. It is found that inclusion of the random nature of time to 
the highest response helps the convergence of the results. Generally the results show quicker convergence in 
the high frequency regions. The random variables ti are initially selected in a suitable interval after the 
modulating function v ( t )  reaches its maximum value. In the examples considered above, the length of this 
interval has been taken as 1 s. Even though high frequency systems attain their maximum response quickly 
after the input reaches its peak value, low frequency systems generally need considerable build up time. With 
this in view it would be better to select ti in a longer interval for low frequency systems. This may be the 
reason for the poor convergence of the results presented in the low frequency region. As mentioned previously 
the Si’s in equation (23) are selected as 1 or - 1 with equal probability. On a computer this is easily done 
by generating a sequence of uniformly distributed random numbers ui in (0,l) and taking Si = - 1 if 
ui < 0.5 and Si = 1 if ui > 0-5. 

In the shaping process, the SDRS has been taken as the controlling quantity and no consideration has been 
given to the maximum value of the accelerogram. If several records are generated from the same SDRS 
there is bound to be some variation in the peak acceleration values obtained. Once a sample record is 
generated, a rough estimate of the mean and variance of the peak acceleration can be obtained easily. As an 

18 
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example, let the record shown in Figure 2 be considered. If this is treated as a sample of a stationary random 
process, it is found that approximateIy the mean is zero and the standard deviation us = 0-04 g. Further, by 
direct counting the average rate of upward zero crossing is found to be No = 3 per second. Now, following 
Cartwright and L~nguet-Higgins,~~ we have for the mean me and standard deviation ue of the extreme 
value of a stationary random process the expressions : 

me/., = (2 In No T)* + 0.5772/(2 In No T)* 
a,/u, = n-/( 12 In No T)* 

This leads to me = 0.1 1 g and a, = 0.02 g .  These values seem reasonable as far as the records of Figures 2 
and 4 are concerned. This reasoning is no doubt crude and approximate, but it still leads to a useful estimate 
of the mean and variance of the peak value. 

In the simulation of a single spectrum, the duration and the cutoff frequency determine the number of 
terms in the series representation. In simulating multiple spectra, this procedure generally will not be 
convenient, since for every spectrum one may like to specify a certain number of matching points. If a 
number of spectra have to be simulated, each with ni sample points, one will have to select N = mni =f,T 
unknown amplitudes in the Fourier series. This leaves eitherf, or T a n  open variable, which cannot be fixed 
beforehand. Invariablyf, will be known from the spectra and also the frequency step size will be smaller 
than 0-1 Hz. This would make the duration T, longer than 10 s. However, there is no loss of generality in 
such a situation since this duration is a mathematical requirement in the series representation for S(t) .  The 
duration of an earthquake itself, from the engineering point of view, depends on the rate of decay which is 
controlled by the modulating function v(t)  which is known beforehand. 

The limited results presented above lead to the conclusion that the method developed in the present study 
is a powerful technique for generating a family of accelerograms which is compatible with specified smooth 
design response spectra. 

ACKNOWLEDGEMENTS 

The award of a Senior Research Fellowship to P. Narasimha Rao by the Council of Scientific and Industrial 
Research, New Delhi (1974-76), and by the University Grants Commission, New Delhi, is gratefully 
acknowledged. 

APPENDIX 

Fourier coefficients 
constants 
cutoff frequency 
acceleration due to gravity 
smoothed design response spectra 
stationary random process 
random variable with value 5 1 
time 
duration of earthquake in seconds 
modulating function 
ground acceleration 
relative displacement 
smooth design response spectra 
time history generated response spectra 
parameters in v ( t )  
viscous damping ratio 
natural frequency 
damped natural frequency 
frequency of the j t h  Fourier component 
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