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Abstract

The paper raises a question about the optimal critical nonlinearity
for the Sobolev space in two dimensions, connected to loss of compact-
ness, and discusses the pertinent concentration compactness frame-
work. We study properties of the improved version of the Trudinger-
Moser inequality on the open unit disk B ⊂ R

2, recently proved by
G. Mancini and K. Sandeep [13]. Unlike the original Trudinger-Moser
inequality, this inequality is invariant with respect to Möbius auto-
morphisms of the unit disk, and as such is a closer analogy of the
critical nonlinearity

∫

|u|2∗ in the higher dimension than the original
Trudinger-Moser nonlinearity.
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1 Introduction

In this paper we study an inequality that improves the classical (Pohozhaev)-
Trudinger-Moser inequality ([10], [17], [9]) on a unit disk B in R

2:

sup
u∈H1

0 (B),‖∇u‖2≤1

∫

B

e4πu2

dx < ∞. (1.1)

The result below has been recently proved by Mancini and Sandeep [13] (for
the invariant formulation in terms of hyperbolic space H

2 see Theorem 2.3
below.)

Theorem 1.1. Let B be an open unit disk in R
2. The following relation

holds true:

sup
u∈H1

0 (B),‖∇u‖2≤1

∫

B

e4πu2 − 1

(1 − |x|2)2
dx < ∞. (1.2)

We give a different proof to this inequality, based on coverings defined by
Möbius transformations, rather than on rearrangements on the hyperbolic
space like in [13], which provides insights for further results. An elementary
corollary of this inequality is the Trudinger-Moser inequality in the exterior of
the unit disk which immediately follows from (1.2) by the change of variable
x 7→ x/|x|2.

Corollary 1.2. Let B be an open unit disk in R
2. The following relation

holds true:

sup
u∈D1,2

0 (R2\B),‖∇u‖2≤1

∫

R2\B

e4πu2 − 1

(|x|2 − 1)2
dx < ∞. (1.3)

For the Sobolev space H1 in two dimensions, the (Pohozhaev)-Trudinger-
Moser functional

∫

e4πu2
dx is widely accepted as a standard nonlinearity of

critical growth, that is, as a counterpart of
∫

RN |u| 2N
N−2 dx in the case N > 2.

This view is justified by the following analogy. When N > 2, the functional
∫

RN |u|pdx is continuous in H1(RN) when p ∈ (2, 2∗], 2∗
def
= 2N

N−2
, and it is

unbounded on any bounded subset of H1(RN) when p > 2∗. In the case
N = 2, the functional

∫

R2 epu2
dx on the set {u ∈ H1(R2), ‖u‖H1 ≤ 1} is

bounded if and only if p ≤ 4π (see [12]). The analogy extends also to weak
continuity properties. For obvious reason of translation invariance, there is
no weak continuity if the domain of integration is the whole R

N . If, however,

2



Ω ⊂ R
N , N > 2, is a bounded domain, then the functional

∫

Ω
|u|pdx is

weakly continuous on H1
0 (Ω) whenever p < 2∗, and, similarly, if, N = 2,

the functional
∫

Ω
epu2

dx is weakly continuous on {u ∈ H1
0 (Ω), ‖u‖H1

0
≤ 1}

whenever p < 4π.
This analogy, however, does not extend to the critical nonlinearities,

p = 2∗ resp. p = 4π. When N > 2, the functional
∫

Ω
|u|2∗dx is not weakly

continuous at any point, but if N = 2, the functional
∫

Ω
e4πu2

dx is sequen-
tially weakly continuous at every point of {u ∈ H1

0 (Ω), ‖∇u‖2 ≤ 1}\{0} (see
[7]).

Lack of compactness for the critical nonlinearity in the case N > 2 can
be traced to the following symmetries of the space D1,2(RN) (defined as the
completion of C∞

0 with respect to the gradient norm ‖∇ · ‖2):

DN = {gs,yu(x) = 2
N−2

2
su(2s(x − y)), s ∈ R, y ∈ R

N},

that is, to actions of translations and dilations. These operators are linear
isometries on both D1,2(RN ) and L2∗(RN), so that for every u ∈ D1,2(RN ),

uk
def
= gsk,yk

u ⇀ 0 whenever |sk| + |yk| → ∞, while the respective norms of
uk coincide with that of u. A similar counterexample suitable for a bounded
domain is given by yk = 0, sk → +∞ and u supported on a convex compact
subset. Lack of compactness in the imbedding of D1,2(RN) ⊂ L2∗(RN) can be,
in some sense attributed entirely to the group DN , namely, the compactness
is restored if one “factors out” the action of the group (see e.g. Lemma 5.3,
[16]):

∀sk ∈ R, yk ∈ R
N , gsk,yk

uk ⇀ 0 in D1,2(RN) ⇒ uk → 0 in L2∗(RN).

Weak continuity properties of the critical nonlinearity in the case N = 2
indicate that there is no known non-compact group, other than Euclidean
shifts, that preserves both the Sobolev norm and the Trudinger-Moser non-
linearity

∫

R2 e4πu2
dx. The matter is further complicated by the fact that in

this case there is no dilation-invariant functional space D1,2: the completion
of C∞

0 (R2) with respect to the gradient norm lacks continuous imbedding
even into the space of distributions. On the other hand, the problem in the
space H1

0 (B) (which we in what follows consider equipped with the equiv-
alent Sobolev norm ‖∇u‖2), admits two groups of linear unitary operators,
defined below, that play a role similar, respectively, to actions of dilations
and of translations.
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The Trudinger-Moser functional
∫

B
e4πu2

dx fails to be invariant with re-
spect to either of these groups. This, however, happens to testify not for
irrelevance of these groups but for an observation that the Trudinger-Moser
functional is not the sharp critical nonlinearity and can be replaced by a
stronger expression. It remains an open problem, however, to find a sharp
critical nonlinearity that is invariant with respect to the product group. The
details are as follows.

1.1 Dilation-invariant nonlinearity

In this paragraph we summarize results of [3]. Let H1
0,r(B) denote the sub-

space of radial functions of H1
0 (B). The transformations

hsu(r)
def
= s−

1
2 u(rs), u ∈ H1

0,r(B) s > 0, (1.4)

preserve the norm ‖∇u‖2 of H1
0,r(B), as well as the 2-dimensional Hardy

functional
∫

B
u2

|x|2(log 1/|x|)2
dx (for the Hardy inequality in dimension 2 see

Adimurthi and Sandeep [2]). Furthermore, these transformation preserve
the norms of a family of weighted Lp-spaces, p = [2,∞], analogous to the
weighted-Lp scale with p ∈ [2, 2∗] produced by Hölder inequality in the case
N > 2, interpolating between the Hardy term

∫

u2

|x|2
dx and the critical non-

linearity
∫

|u|2∗dx. In the case N = 2, the critical exponent is formally
2∗ = +∞ and the dilation-invariant L2∗-norm is

‖u‖∞ = sup
r∈(0,1)

|u(r)|
(log 1

r
)1/2

. (1.5)

The Trudinger-Moser nonlinearity is not, however, dilation-invariant. On
the other hand it is continuous with respect to the norm (1.5), which means
that the L∞- nonlinearity (1.5) gives a sharp, dilation-invariant improvement
of the Trudinger-Moser nonlinearity, even if only for the subspace of radial
functions.

1.2 Möbius transformations

We refer the reader to the Appendix for definitions and basic properties
connected to Möbius transformations and the Poincaré disk. Adopting, for
the sake of convenience, the complex numbers notation z = x1+ix2 for points
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(x1, x2) on the plane, we consider the following subset of automorphisms of
the unit disk, known as Möbius transformations.

ηζ(z) =
z − ζ

1 − ζ̄z
, ζ ∈ B. (1.6)

Since the maps (1.6) are conformal automorphisms of the unit disk, one
has |∇u ◦ ηζ |2 = |∇u|2, which implies that the Möbius shifts u 7→ u ◦ ηζ ,
ζ ∈ B, are unitary operators in H1

0 (B). The gradient norm on the disk is the
coordinate representation of the quadratic form of Laplace-Beltrami operator
on H

2 regarded as the Poincaré disk model, which allows to identify H1
0 (B) as

representation of the space Ḣ1(H2), defined by completion of C∞
0 (H2) with

respect to the gradient norm. Möbius shifts give rise therefore to unitary
operators on Ḣ1(H2).

Furthermore, under the Poincaré disk model, the maps (1.6) define isome-
tries on H

2. Consequently, we have nonlinearities on the unit disk, invariant
with respect to Möbius shifts, of the form (in the manifold notation and in
the terms of Poincaré disk):

∫

H2

F (u)dµ =

∫

B

F (u)
dx

(1 − |x|2)2
.

In particular, once the inequality (1.2) is verified, the functional
∫

B
e4πu2

(1−|x|2)2
dx

possesses both critical growth and invariance with respect to Möbius shifts.

1.3 Main results

In addition to Theorem 1.1, which trivially follows from its hyperbolic space
counterpart, Theorem 2.3 proved in Section 2, we study weak continuity
properties of subcritical (but not weakly continuous) nonlinearities of the
form

∫

B
F (u) dx

(1−|x|2)2
, and existence of maximizers for a related isoperimetric

problem. We prove

Theorem 1.3. Let F ∈ C(R) satisfy, with some C > 0, r > 2 and p < 4π,

|F (s)| ≤ C|s|reps2

. (1.7)

If uk ∈ H1
0 (B), ‖∇uk‖2 = 1, satisfies the condition

For every sequence ζk ∈ B, uk ◦ ηζk
⇀ 0, (1.8)
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then
∫

B

F (uk)dµ → 0. (1.9)

This theorem is required for the following existence result.

Theorem 1.4. Let F ∈ C1(R), sup F > 0, satisfy (1.7) with some C > 0,
r > 2 and p < 4π. If, in addition, for every t ∈ (0, 1) and a, b ∈ R,

F (
√

ta2 + (1 − t)b2) > F (
√

ta) + F (
√

1 − tb), (1.10)

then the maximum in

M1
def
= sup

u∈H1
0 (B),‖∇u‖2=1

∫

B

F (u)dµ (1.11)

is attained and for any minimizing sequence uk for (1.11) there exists a se-

quence ζk ∈ B such that uk ◦ ηζk
⇀ u 6= 0. converges in H1

0 (B) to the point

of maximum.

In Section 3 we prove Theorem 1.3, Theorem 1.4, and a statement on
the general structure of bounded sequences in H1

0 (B), Theorem 3.2, similar
to Struwe’s global compactness in [15]) and to a related statement of P.-L.
Lions in [8] (note also that Möbius shifts are also involved in existence proof
for the Plateau problem, [14]). In Section 4, the Appendix, we summarize
relevant facts about the Poincaré disk.

2 Proof of the invariant Trudinger-Moser in-

equality

W ⋐ B We start with the following elementary lemma.

Lemma 2.1. Let W ⊂ R
2 be an open disk of radius 1

2
and let

‖u‖2
W

def
=

∫

W

(

|∇u|2 + λu2
)

dx, λ > 0. (2.1)

There exists a number q > 0 such that

sup
u∈H1(W ),‖u‖W ≤1

∫

W

equ2

dx < ∞. (2.2)
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Proof. Let T be an extension operator from H1(W ) into H1
0 (B). Then (2.2)

follows from

sup
u∈H1

0 (B),‖∇u‖2≤T‖

∫

B

equ2

dx < ∞, (2.3)

which follows from the Trudinger-Moser inequality whenever q ≤ 4π/‖T‖2

Lemma 2.2. Let W ⊂ R
2 be an open disk of radius 1

2
> 0 and let

‖u‖2
W

def
=

∫

W

(

|∇u|2 + λu2
)2

dx, λ > 0. (2.4)

Let q be as in Lemma 2.1. Then there is a positive constant C = C(λ) such

that for all u ∈ H1(W ) satisfying ‖u‖W < 1,

∫

W

(equ2 − 1)dx ≤ C
‖u‖2

W

1 − ‖u‖2
W

. (2.5)

Proof. Form (2.2) we have

(q)n

n!

∫

W

(u/‖u‖W )2ndx ≤ C, u ∈ H1(W ) \ {0}n ∈ N, (2.6)

and thus
(q)n

n!

∫

W

u2ndx ≤ C‖u‖2n
W , n ∈ N. (2.7)

Adding the inequalities (2.7) over n ∈ N and taking into account the as-
sumption ‖u‖W < 1, we obtain (2.5).

Theorem 2.3. The following relation holds true:

sup
u∈Ḣ1(H2),‖u‖≤1

∫

H2

(e4πu2 − 1)dµ < ∞. (2.8)

Proof. Consider H
2 as the Poincaré disk B. Let W ⊂ B be an open disk or

radius 1
2

and set the following equivalent Sobolev norm on W

‖u‖2
W

def
= =

∫

W

(

|∇u|2 +
u2

(1 − |x|2)2

)

dx. (2.9)
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By Corollary 4.2 there is a countable set Z ⊂ B and the number M ∈ N be
such that the sets ηζ(W ), ζ ∈ Z, cover B with multiplicity not exceeding M .
Let us fix a function u ∈ Ḣ1(H2) such that ‖u‖Ḣ1 ≤ 1 and define

Zu
def
= {ζ ∈ Z : ‖u ◦ ηζ‖2

W ≥ q

8π
}, (2.10)

where q is as in Lemma 2.1. It is easy to see that Zu contains at most
40πM/q elements. Indeed, since the multiplicity of the covering of B by
ηζW , ζ ∈ Z, is not greater than M , taking into account that the Ḣ1(H2)-
norm in the Poincaré disk model is realized by ‖∇u‖2, and applying the
Hardy’s inequality (4.1), we have

q

8π
(#Zu) ≤

∑

ζ∈Zu

‖u ◦ ηζ‖2
W ≤ M

(

‖u‖|2
Ḣ1 +

∫

B

u2dµ

)

≤ 5M‖u‖|2
Ḣ1 ≤ 5M.

From Lemma 2.2, applied to
√

4π
q
u we have, for every ζ ∈ Z \ Zu,

∫

ηζW

(e4πu2 − 1)dµ ≤ C
‖u ◦ ηζ‖2

W
q
4π

− ‖u ◦ ηζ‖2
W

≤ 8π

q
C‖u ◦ ηζ‖2

W . (2.11)

Adding the inequalities over ζ ∈ Z \ Zu we obtain, using again the Hardy’s
inequality,

∫

S

ζ∈Zu
ηζW

(e4πu2 − 1)dµ ≤ C

∫

B

|∇u|2dx + C

∫

B

u2dµ ≤ C‖u‖|2
Ḣ1 ≤ C.

(2.12)
On the other hand, from the usual Trudinger-Moser inequality for u ◦ ηζ ,
with any ζ ∈ Zu, we have
∫

ηζW

(e4πu2−1)dµ =

∫

W

e4π(u◦ηζ )2dµ ≤ C

∫

W

e4π(u◦ηζ )2dx ≤
∫

B

e4π(u◦ηζ )2dx ≤ C.

(2.13)
Adding (at most 40πM/q+1) inequalities (2.12) and (2.13), we obtain (2.8).

Proof of Theorem 1.2. Rewrite (2.8) in coordinate form for the Poincaré
disk. �

Remark 2.4. The constant 4π in (2.8) as well as in (1.2) cannot be replaced

by any number p > 4π. Indeed, the integrals in both relations are bounded

from below by
∫

B
epu2

dx, from the Trudinger-Moser inequality, for which the

parameter 4π is optimal.
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3 Existence of minimizers

We begin with the proof of the first statement of Subsection 1.3.
Proof Theorem 1.3. Let us fix p < 4π. Let uk ∈ H1

0 (B), ‖∇uk‖2 = 1,
and assume that uk ◦ ηζk

⇀ 0 for every sequence ζk ∈ B. By (2.8), there is a
constant C > 0 such that for all n = 0, 1, . . . ,

pn

n!

∫

B

u2n
k dµ ≤ C

( p

4π

)n

. (3.1)

Then, for every m ∈ N and for all k ∈ N,

∑

n≥m

pn

n!

∫

B

u2n
k dµ ≤ C

( p

4π

)m

. (3.2)

Furthermore, it is easy to see that there exists λ ∈ (p/4π, 1) such that

∑

n≥m

pn

n!

∫

B

u2n+r
k dµ ≤ Cλm. (3.3)

By Lemma 9.4 of [16], for every n = 0, . . . , m − 1,

pn

n!

∫

B

u2n+r
k dµ → 0. (3.4)

Combining (3.4) with (3.3), we obtain

lim sup
k→∞

∫

B

F (uk)dµ ≤ C lim sup
k→∞

∫

B

|uk|repu2
kdµ ≤ ǫ, (3.5)

and since ǫ is an arbitrary positive number, (1.9) follows. �

We will need the following version of Brezis-Lieb lemma in presence of a
H1

0 -bound on a sequence.

Lemma 3.1. Let F ∈ C1(R) satisfy |F (s)| ≤ Cs2eps2
with some C > 0 and

p < 4π, and assume that uk ∈ H1
0 (B), uk ⇀ u, ‖∇uk‖2 ≤ 1. Then

∫

B

(F (uk) − F (uk − u) − F (u))dµ → 0. (3.6)
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Proof. The notation of norm in this proof refers to the gradient norm ‖∇u‖2

on B. Note that uk → u almost everywhere in B and that lim sup ‖uk−u‖2 =
lim sup ‖uk‖2 − ‖u‖2 ≤ 1. Let M > 0 and define

FM(s)
def
=

{

F (s) for |s| > M,
0 for |s| ≤ M.

Set GM = F − FM . Then GM is a bounded function and therefore, by
Lebesgue convergence theorem,

∫

B

(GM(uk) − GM(uk − u) − GM(u))dµ → 0. (3.7)

Fix two numbers q, r such that p < q < r < 4π and note that |FM(s)| ≤
s2eqs2

e−(q−p)M2 ≤ C(ers2 − 1)e−(q−p)M2
. Then

∣

∣

∣

∣

∫

FM(uk)dµ

∣

∣

∣

∣

≤ Ce−(q−p)M2

∫

B

(eru2
k − 1)dµ ≤ Ce−(q−p)M2

(3.8)

by (1.2), with analogous estimates when uk is replaced by u, resp. u − uk.
In the latter case (1.2) is applied to u − uk if uk → u in norm, and to
(u − uk)/‖u − uk‖ otherwise. From here and (3.7) we conclude that

lim sup

∣

∣

∣

∣

∫

B

(F (uk) − F (uk − u) − F (u))dµ

∣

∣

∣

∣

≤ Ce−(q−p)M2

.

Since the number M is arbitrary, (3.6) follows.

Proof of Theorem 1.4. For the length of this proof the notation of norm,
unless otherwise specified, refers to the gradient norm ‖∇·‖2. Let uk ∈ H1

0 (B)
be such that ‖uk‖ → 1 and

∫

B
F (u)dµ → M1. Consider the following family

of problems that extends (1.11):

Mt
def
= sup

u∈H1
0 (B),‖u‖2=t

∫

B

F (u)dµ, t ∈ [0, 1]. (3.9)

If uk is a maximizing sequence then so is uk ◦ ηζk
for any sequence ζk ∈ B. If

uk◦ηζk
⇀ 0 for any sequence ζk, then by Theorem 1.3 we have

∫

B
F (uk)dµ →

0, a contradiction since sup F > 0 implies M1 > 0. Thus we choose a sequence
ζk ∈ B such that uk ◦ ηζk

⇀ u 6= 0.
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By the standard scalar product calculations we have

‖u‖2 + ‖uk − u‖2 = 1, (3.10)

while by Lemma 3.1,
∫

B

F (u)dµ +

∫

B

F (uk − u)dµ → M1. (3.11)

Let t = ‖u‖. Then from (3.11) follows

Mt + M1−t ≥ M1. (3.12)

An elementary argument using the well-known property of the gradient norm,

‖v0‖ ≤ 1, ‖v1‖ ≤ 1, vt =
√

tv2
1 + (1 − t)v2

0 ⇒ ‖vt‖ ≤ 1, t ∈ (0, 1),

shows that (3.12) contradicts (1.10) unless t = 1 or t = 0. The latter case
has been, however, ruled out. Consequently, ‖u‖ = 1,

∫

B
F (u)dµ = M , and

uk → u in H1
0 (B). The theorem is proved. �

The notation
D
⇀ 0 in the theorem below is a shorthand for the convergence

in the sense of (1.8), which by Theorem 1.3 implies convergence in the sense
of (1.9) and, in particular, convergence in Lp(B, dµ) for any p ∈ [1,∞).

Theorem 3.2. Let uk ∈ H1
0 (B) be a bounded sequence. Then there exists

w(n) ∈ H, ζ
(n)
k ∈ B, k, n ∈ N, such that for a renumbered subsequence

ζ
(1)
k = 0, η

ζ
(n)
k

(ζ
(m)
k ) → ∂B for n 6= m, (3.13)

w(n) = weak-lim uk ◦ η−1

ζ
(n)
k

(3.14)
∑

n∈N

‖∇w(n)‖2
2 ≤ lim sup ‖∇uk‖2

2 (3.15)

uk −
∑

n∈N

w(n) ◦ η
ζ
(n)
k

D
⇀ 0. (3.16)

Proof. This theorem is an application of Theorem 3.1 in [16] to sequences in
Ḣ1(H2) equipped with the Möbius shifts. Conditions of that theorem have
been verified for the case of actions of isometries on cocompact (or grid-
periodic) manifolds, which includes hyperbolic spaces, in Lemma 2.9, [4].
Relation (3.13) is based on Remark 9.1 (a) of [16]
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4 Appendix

We summarize here some known definitions and facts concerning the Poincaré
disk model of hyperbolic space. For reference see [5] and [11]. Poincaré disk
is a coordinate representation of the hyperbolic space H

2, consisting of the
unit disk B ⊂ R

2 equipped with the metric gi,j = 1
(1−|x|2)2

δi,j, i, j = 1, 2.

The Riemannian measure µ on H
2 is given in the Poincaré disk model by

dµ = dx
(1−|x|2)2

. The quadratic form of Laplace-Beltrami operator on H
2 in

the Poincaré disk model evaluates as
∫

B
|∇u|2dx. The maps ηζ : B → B,

ηζ(z) = z−ζ
1−ζ̄z

, ζ ∈ B, are conformal isomorphisms of B as well as isometries

of the Poincaré disk. Consequently,
∫

B
|∇u|2dx and

∫

F (u)dµ are preserved
under transformations u 7→ u◦ηζ. The following version of Hardy’s inequality
holds true for all u ∈ H1

0 (B), or, in invariant notations, u ∈ Ḣ1(H2) (see [1]
or [6]):

∫

B

|∇u|2dx =

∫

H2

|∇H2u|2dµ ≥ 1

4

∫

H2

u2dµ =

∫

B

u2 dx

(1 − |x|2)2
. (4.1)

The following lemma is well known (for example, it is a trivial modi-
fication of Lemma 2.3 from [4]). We give the proof of it for the sake of
completeness.

Lemma 4.1. Let U ⋐ B be an open set, let

V :=
⋃

ζ∈B:ηζU∩U 6=∅

ηζU. (4.2)

and let W ⋐ B be any open set, relatively compact in B, that contains V .

There exist a number M ∈ N, and a countable set Z ⊂ B such that the sets

{ηζW}ζ∈Z, cover B with multiplicity not exceeding M and the sets {ηζU}ζ∈Z

are mutually disjoint.

Proof. We show first that if Z ⊂ B is a set such that the sets {ηζU}ζ∈Z are
mutually disjoint, and the sets {ηζW}ζ∈Z cover B, then the latter collection
has a uniformly finite multiplicity. Let Vr(x) denote a geodesic ball of radius
r > 0 centered at x ∈ B, and note that µ(Vr(x)) is independent of x ∈ B.
Let R > 0 and x0 ∈ B be such that W ⊂ VR(x0). If ηζW intersects Vr(x),
then ηζW ⊂ Vr+2R(x); but since the sts ηζU , ζ ∈ Z, are disjoint, and ηζW ⊃
ηζV ⊃ ηζU , ζ ∈ Z, that can be true for at most µr+2R

µ(U)
values of ζ ∈ Z.
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Therefore the number of ζ ∈ Z such that the set ηζW contains the point x
does not exceed µr+2R

µ(U)
.

Now let us construct the set Z.
Since every Riemannian manifold is paracompact, and once we observe

that ηζ({0}) = −ζ , so that
⋃

ζ∈B ηζ(0) = B, there exists a subset Z0 ⊂ B,
such that {ηζV }ζ∈B is a locally finite cover of B. Indeed, we find first of all
a locally finite refinement of the cover {ηζV }ζ∈B, which via the refinement
map determines a subcover, which also is locally finite due to the fact that
all covering sets ηζV have the same finite geodesic diameter.

By induction we define subsets Zk = Ak ∪Bk ⊂ B such that the number
of elements in Ak equals k and

B =
⋃

ζ∈Ak

ηζV ∪
⋃

ζ∈Bk

ηζU ,

and ηζ1U ∩ ηζ2U = ∅ for any ζ1 ∈ Ak, ζ2 ∈ Zk, ζ1 6= ζ2. Furthermore Ak ⊂
Ak+1 for all k, while Bk ⊃ Bk+1 with ∩∞

k=0Bk = ∅. Since the cover {ηζU}ζ∈Z0

was locally finite, the latter implies that any compact set K ⋐ B is contained
in

⋃

ζ∈Ak
ηζV for sufficiently large k. Finally take Z :=

⋃∞
k=0 Ak. Begin with

A0 := ∅, B0 := Z0. Let {ζj}j∈N be an enumeration of Z0. Assuming that
Ak, Bk have already been constructed, let us construct Ak+1, Bk+1. Let
jk = min{j : ζj ∈ Bk}. Set Ak+1 := Ak ∪ {ζjk

} and let Bk+1 := {ζ ∈
Bk; ηζU ∩ ηζjk

U = ∅}.
Corollary 4.2. Let W ⋐ B be an open set. There exist a number M ∈
N, and a countable set Z ⊂ B such that the sets {ηζW}ζ∈Z cover B with

multiplicity not exceeding M .

Proof. Let ǫ > 0 and x ∈ W be such that the geodesic ball V3ǫ(x) ⋐ W . The
corollary is immediate from Lemma 4.1 with U = Vǫ(x) once we note that the
set (4.2) is contained in V3ǫ(x). Indeed, let y ∈ V . Then there exist ζ ∈ Z and
z ∈ Vǫ(x) ∩ Vǫ(ηζx) such that y ∈ ηζVǫ(x). Then, by the triangle inequality
for the geodesic distance, d(x, y) ≤ d(x, z) + d(z, ηζx) + d(ηζx, y) < 3ǫ.
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