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Abstract

Interaction among qubits is the basis to many quantum logic operations. We report how such
inter-qubit interactions can lead to new features, in the form of bright and dark periods in the
entanglement dynamics of two qubits subject to environmental perturbations. These features
are seen to be precursors to the well-known phenomenon of sudden death of entanglement (Yu
and Eberly 2004 Phys. Rev. Lett. 93 140404 ) for noninteracting qubits. Further, we find that
the generation of bright and dark periods is generic and occurs for wide varieties of
environment models. We present explicit results for two popular models.

(Some figures in this article are in colour only in the electronic version)

One of the prime requirements for quantum computation
is designing logic gates that can be used to implement
algorithms based on the principles of quantum mechanics [1].
Over the last decade, substantial theoretical understanding
and technological advancement have been acquired in this
respect [2]. In analogy to fundamental gates like XOR in
Boolean logic, it has been shown that the two-qubit logic
gate along with single qubit rotation can perform fundamental
logic operations (C-NOT) for quantum computation [3, 4].
In many cases, coherent qubit—qubit interactions have
been invoked in constructing such quantum logic gate
operations. Moreover, such qubit—qubit interactions have
become especially important in the context of recent advances
in quantum logic gate operations using trapped ions [5, 6]
and semiconductor dots [7-10]. Note that an important
performance factor for a quantum logic gate is its fidelity,
which in turn depends on the entanglement between the two
qubits. Sustained entanglement among the qubits is a must
for optimized gate operation in the practical implementation
of quantum algorithms. Unfortunately, entanglement among
quantum systems is extremely fragile and susceptible to
decoherence [11], an effect which arises due to unavoidable
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interaction of the physical system with its environment. Thus,
the study of decoherence effects on the entanglement dynamics
and ways to suppress it is of utter importance for quantum
information science. As an ongoing effort in this respect,
an important question to study is: how does the inter-qubit
interaction in the presence of environmental perturbations
affect the initial entanglement among the qubits and thus its
operational capability? In this communication, we investigate
this important question for two initially entangled interacting
qubits.

We report that in the presence of environmental
perturbations the qubit—qubit interaction leads to a new feature
in the entanglement dynamics of two qubits. The two initially
entangled interacting qubits get repeatedly disentangled and
entangled as they dynamically evolve, leading to bright and
dark periods in the entanglement. Eventually, for longer
times we observe ‘entanglement sudden death’ (ESD) [12].
Note that even though ESD has been studied extensively
for non-interacting qubits [13—-19] in contact with different
environments, the case of interacting qubits as considered
by us has not been extensively studied. An earlier work
[20] had observed and discussed revivals of entanglement
due to unitary interactions among the entangled sub-systems.

© 2009 IOP Publishing Ltd  Printed in the UK
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Figure 1. Schematic diagram of two qubits modelled as two
two-level atoms coupled to each other by an interaction parameter v.
The qubits A and B independently interact with their respective
environments (baths), which leads to local decoherence as well as
loss of entanglement.

Further, it was shown [21] that in the strong coupling regime of
system-reservoir interaction the deterioration of entanglement
can be controlled. In our work, we find that the bright and
dark periods in the entanglement dynamics are precursors to
ESD. Moreover, we show explicitly that the phenomenon of
generation of bright and dark periods is quite generic and
occurs for different kinds of models of the environment,
such as the pure dephasing environment. Further, we also
find that these bright and dark periods in entanglement can
occur in the case of interacting qubits for states which do
not exhibit ESD in the absence of interaction. Note that
while we concentrate on qubits, Paz and Roncaglia 221"
consider the case of continuous variables, i.e. harmonic
oscillators, and demonstrate, in a certain parameter domain,
such bright and dark periods in entanglement. Our results
along with those of [22] would even lead one to think of
the existence of such features in entanglement in a much
larger class of systems. Further, while we focus on the
effect of qubit—qubit interactions on decoherence, some recent
works have shown how external coherent fields can be used to
control decoherence effects in the entanglement of two qubits
[23-25].

We now discuss our model and show how the interactions
between qubits lead to these bright and dark periods in the
entanglement. Our model consists of two initially entangled
interacting qubits, labelled A and B. Each qubit can be
characterized by a two-level system with an excited state |e)
and a ground state |g). Further, we assume that the qubits
interact independently with their respective environments.
This leads to both local decoherence and loss of entanglement
of the qubits. The decoherence, for instance, can arise due to
spontaneous emission from the excited states. Figure 1 shows
a schematic diagram of our model. The Hamiltonian for our
model is then given by

H :hwo(S/§+S§)+hv(Sj§S§+S§SX), 1)
where v is the interaction between the two qubits and
S7, 85,87 (i = A, B) are the atomic energy, raising and
lowering operators, respectively, which obey angular

momentum algebra. We use the two-qubit product basis given
by

1) =le)a ® le)s, 12) = le)a ® |g)B.
13) = 18)a ® le)s, 14) = 1g)a ® [8)B.

Now as each qubit independently interacts with its respective
environment, the dynamics of this interaction can be treated in

@

! This paper also contains an extensive bibliography on the question of
existence of ESD in continuous variables.

the general framework of master equations. The time evolution
of the density operator p which gives us information about
the dynamics of the system can then be evaluated from the
quantum-Liouville equation of motion,

. i Vi (et om _ _
p=—31H.pl~ > (877 P~ 257 087+ pS]S)),

j=A.B

3

where ya(yg) is the spontaneous decay rate of qubit A (B)
to the environment. To investigate the effect of interaction
between the two qubits on decoherence, we need to study
the dynamics of two-qubit entanglement. The entanglement
for any bipartite system is best identified by examining the
concurrence [26, 27], an entanglement measure that relates to
the density matrix of the system p. The concurrence for two
qubits is defined as

C(1) = max{0, A1 — VA — /a3 — Vs, @

where X are the eigenvalues of the non-Hermitian
matrix p(t)p(¢) arranged in decreasing order of magnitude.
The matrix p(f) is the density matrix for the two qubits and
the matrix p(z) is defined as

pt) = (0" ®0P)p* 1) (o’ @0, ©)
where p* () is the complex conjugation of p(¢) and o, is the
usual Pauli matrix expressed in the basis (2). The concurrence
varies from C = 0 for a separable state to C = 1 for a
maximally entangled state. The density matrix needed to

evaluate the concurrence for our model should in general have
16 elements. However, following [12] we take it as

a 0 0 O
1fo » z O
P = 5 0 Z* c ol (6)
0O 0 0 d
where, unlike [12], we allow the possibility of z = |z| el

to be complex. We have proved from the solution of the
quantum-Liouville equation (3) that the initial density matrix
(6) preserves its form for all t. Finally, for our model the
concurrence is found to be

C(t) = Max{0, C(1)}, )
where C(¢) is given by

C0) =2{lp®)] — v/ p11(D) paa(t) }. )]

Let us now consider a class of mixed states [12] with a single
parameter a satisfying initially a > 0,b = ¢ = |z] = 1 and
d = 1 —a. Then p has the form p = 1/3(alejez){e1ez] +
dlgi182)(g182| + [¥) (¥ ]), where |[¢/) = (le1g2) + e'*[g1e2)).
This has the structure of a Werner state [28]. The entanglement
part of the state depends on y. Using the solution of (3) in (8),
we obtain one of our key results

C) = % e””[(cos2 x +sin? x cos?(2vt))!/?

—Vad —a+2w2+w4a)], 9)

where w = +/1 — e~ 7’. For simplicity, we have assumed equal
decay rates of both the qubits, yo» = yg = y. One can clearly
see the dependence of C(¢) on the interaction v between the
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Figure 2. Concurrence as a function of time for two initially
entangled, interacting qubits with initial conditions

b = ¢ = |z| = 1.0 and different initial phases x. Parts (a) and (b)
are for a = 0.4 and a = 0.2, respectively. The inset in (a) shows the
long-time behaviour of concurrence. The red and black curves in
both figures are for v = 5y.

qubits and the initial phase x. We see from (7) and (9) that
in the absence of the interaction v, the concurrence becomes
independent of the initial phase and yields the well-established
result of Yu and Eberly [12].

Note that C () can become negative if

a(l —a+2w? +w*a) > (1 —sin® x sin>Qur)),  (10)

in which case the concurrence is zero and the qubits get
disentangled. To understand how the interaction would effect
entanglement, we study the analytical result of equation (9) for
different values of parameters a and x. In figure 2, we show
the time dependence of the entanglement for v = 5y and for
different values of the initial phase x. The inset of figure 2(a)
shows the long-time behaviour of entanglement for this case.
In figure 2(a) we show that for a = 0.4, the non-interacting
qubits (v = 0) exhibit sudden death of entanglement (ESD)
(more clearly visible in the inset), whereas when they interact
(v # 0) the concurrence oscillates between zero and non-
zero values with diminishing magnitude and eventually shows
ESD. Thus, the initially entangled qubits in the presence of
interaction v get repeatedly disentangled and entangled before

i v =1/4 '
— y/v=1/10 :
v =1/15

Concurrence

5

L Mﬁfﬁ i

Figure 3. Concurrence as a function of time for different decay
rates of two initially entangled qubits with initial conditions
a=02b=c=lzl=1,x =n/2.

finally becoming completely disentangled. Hence, as a result
of interaction between the qubits, the concurrence exhibits
bright and dark periods in the entanglement. Further we
observe that when concurrence becomes zero, it remains zero
for a time range before reviving. It is worth mentioning here
that such bright and dark periodic behaviour in entanglement
has been predicted for qubits undergoing unitary evolution
in a lossless cavity [29].2 This time range is determined by
condition (10). In figure 2(b) we plot the concurrence for
a = (0.2. Note that for a = 0.2, no ESD is observed when the
qubits are non-interacting and the concurrence monotonically
goes to zero as t —> 00. For v # 0, we observe the bright and
dark periods in entanglement with diminishing magnitudes
and C(t) — 0 ast —> oo. Figure 3 shows the bright
and dark periods in two-qubit entanglement for three different
spontaneous decay rates and a = 0.2. The initial phase y is
chosen to be /2. For this value of a we observe no ESD but
only collapse and revival as expected.

Pure dephasing of qubits due to interaction with the
environment

In order to demonstrate the generic nature of our results, we
consider other models of the environment. A model which
has been successfully used in experiments [30] involves pure
dephasing. In this case, the last two terms in the master
equation (3) are replaced by

— Y Ti(SSip — 287pST + pSiSY)

i=A,B

1)

where 2I's (2T'g) is the dephasing rate of qubit A (B). Note
that in such a model the populations do not decay as a result
of the interaction with the environment whereas coherences
such as py3(t) decay as po3(0) e~ T8 Let us now study
the effect of interaction v between the qubits on the dynamics

2 A recent paper (Yognac and Eberly 2008 Opt. Lett. 33 270) reports on
such bright and dark periods in entanglement for noninteracting qubits driven
by single-mode quantized fields, which is in a way reminiscent of Jaynes—
Cummings dynamics.
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Figure 4. Concurrence as a function of time with initial conditions
b = c = |z| = 1 and different values of phase y for the dephasing
model. The red and black curves in part (a) are for v/4I" = 4 and in
(b) for v/4T = 10.

of entanglement. We assume the same initial density matrix
of equation (6) with the initial conditionsd =1 —a,b =c =
|z] = 1 and a > O to calculate the concurrence. Under pure
dephasing, the form of matrix in (6) is preserved for all time.
Using (7), (8) and (11) we get

o 2
Cp(t) = 3 [e‘r {e‘zt cos? x +sin’ x { cos(Q'1)

1 27172
—§sin(§2’r)} } —\/a(l—a)i|,

where we assume 'y = I'g = I'. Here t = 4I't and
Q = ,/(2v/4")? — 1. Forv = 0 we get Cp(t) = 2/3[e™ %" —
Ja(l — a)], which is independent of the initial phase x. We
find death of entanglement for t > —1/21n4/a(1 — a). Note
that Yu and Eberly [14] have considered this case earlier but for
a = 1 only, in which case there is no ESD. In figure 4, we show
the time dependence of entanglement for a purely dephasing
model, for different values of @ and initial coherences governed
by the phase x. From the figures, it is seen that for v # 0
the two-qubit entanglement exhibits bright and dark periods.
Further, we also see that for v # 0 entanglement exhibits
this feature even beyond the time when ESD occurs for

12)

noninteracting qubits. Moreover, figure 4(b) shows that the
frequency of this periodic feature increases with increase in
strength of the interaction v. The dark period between two
consecutive bright periods arises as a result of Cp(t) < 0, for
some time range. This physically means that the two qubits
remain disentangled during this time range.

This new feature of bright and dark periods
in entanglement should have direct consequences for
microscopic systems like ion traps and quantum dots which are
currently the forerunners in the implementation of quantum
logic gates. The interaction between qubits considered in
this communication is inherently present in these systems.
In quantum dots for example, y~' ~ few nanoseconds
and one can get a very large range of the parameter I'~!
(1-100s ps) [31]. Further, the interaction strength v can
have a range between 1lu eV and 1 meV depending on
gate biasing [9, 10, 32]. An earlier study [33] reports
y ~ 40-100u eV and coupling strength of ~ 100400y eV,
thereby making v/y ~ 1-10 for quantum dot molecules.
Thus, the experimental parameters are in the range we used
for our numerical calculation.

To summarize, we have shown how the interaction
between qubits can effect the entangled dynamics of an initially
entangled two-qubit system. The interaction leads to the
formation of bright and dark periods in entanglement. We
find this feature for different models of the environment. The
frequency of bright and dark periods was found to depend on
the strength of interaction between the qubits. Further, we
find that for noninteracting qubits, even when sudden death of
entanglement does not occur, entanglement can exhibit these
bright and dark periods when the qubits interact. As a future
perspective, we can investigate the entanglement dynamics for
qubits in contact with several different environments.
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