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Abstract From a neuropathological perspective, elderly

patients who die with a clinical diagnosis of sporadic

Alzheimer’s disease (AD) are a heterogeneous group with

several different pathologies contributing to the AD phe-

notype. This poses a challenge when searching for low

effect size susceptibility genes for AD. Further, control

groups may be contaminated by significant numbers of

preclinical AD patients, which also reduces the power of

genetic association studies. Here, we discuss how cere-

brospinal fluid and imaging biomarkers can be used to

increase the chance of finding novel susceptibility genes

and as a means to study the functional consequences of risk

alleles.
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Introduction

Alzheimer’s disease (AD) is considered the most common

form of dementia, but still lacks effective preventive or

therapeutic interventions. This is probably partially due to

an incomplete understanding of AD aetiology and the

possible confounding factors associated with its genotypic

and phenotypic heterogeneity. The disease was named after

Alois Alzheimer, who in the early 20th century described

cases of ‘‘presenile dementia’’, with neuropathological

features characterized by gross cerebral atrophy, extracel-

lular senile plaques and intracellular neurofibrillary tangles.

Although there were some early doubts about the distinc-

tion between early-onset and late-onset dementia, during

the first half of the 20th century, AD was mainly thought of

as a rare disease that affected middle-aged people, while

most elderly people with dementia were considered to have

‘‘senile dementia’’, caused primarily by age-related vas-

cular pathology [1]. AD was only recognized as an

important cause of dementia in elderly people after several

autopsy studies in the 1950s to 1970s had noted the high

prevalence of AD-like neuropathology in patients with

‘‘senile dementia’’ [2, 3].

During the 1980s to 1990s, breakthroughs in biochem-

istry and genetics laid the basis for strong hypotheses about

the cause of AD, which first led to the development of the

symptomatic treatments that are currently available [4],

and second to clinical trials of therapeutic approaches

targeted against amyloid b (Ab), the major component of

senile plaques and a potential driver of the disease [5, 6].

Several lines of data point to significant pathological and

clinical heterogeneity among clinically diagnosed AD

patients. Many autopsy studies have shown that most

elderly patients with dementia have mixed pathologies,

with AD-like pathology combined with other brain
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pathologies, such as Lewy bodies, white matter disease,

angiopathy, or TDP-43 inclusions [7–10]. After AD, the

most common dementia form is dementia with Lewy

bodies (DLB), characterized by the accumulation of

a-synuclein aggregates and cognitive impairment that is

not dominated by memory decline, but rather executive and

visuospatial problems, and a high frequency of hallucina-

tions and delusions. About 10–40 % of AD patients have

concomitant Lewy bodies [11–13], which likely affects the

clinical course of AD, since AD patients with Lewy bodies

have faster cognitive decline than those without Lewy

bodies [14]. So far, it remains very difficult to identify

Lewy body pathology in AD patients in vivo. Another very

common cause of dementia is cerebrovascular disease.

Vascular cognitive impairment defines alterations in cog-

nition, ranging from subtle deficits to full-blown dementia,

attributable to cerebrovascular causes. Often coexisting

with AD, mixed vascular and neurodegenerative dementia

has actually been proposed as the leading cause of age-

related cognitive impairment and dementia [15]. Bio-

marker changes that associate with cerebrovascular dis-

ease, e.g., white matter changes on computed tomography

or magnetic resonance imaging (MRI) of the brain and

elevated CSF levels of neurofilament light, are common in

elderly patients with clinical AD [16], and it is possible that

the dementia syndrome in some of these individuals is not

driven by AD pathology but rather deficits in the cere-

brovasculature. Susceptibility genes for AD pathology will

not be found in these patients.

Here, we share our view on what could be gained by

performing genetic studies on patients with more extensive

information on underlying pathologies using different

forms of biomarkers. The focus is on AD-related patholo-

gies but the reasoning should be relevant also to other

neurodegenerative diseases.

Biomarkers for AD Pathology

During the last two decades, biomarker tools have been

developed, which allow researchers and clinicians to

identify AD-like pathology in vivo, even years before the

first symptoms emerge. Cerebrospinal fluid (CSF) levels of

total tau and phospho-tau are positively correlated to neu-

rodegeneration and neurofibrillary tangle pathology,

whereas CSF levels of aggregation-prone 42 amino acid

long Ab (Ab42) are negatively correlated to plaque

pathology [17]. A recent meta-analysis assessing studies in

which clinical criteria were used suggests that the combi-

nation of CSF tau and Ab markers shows a sensitivity of

84 % (76–90 %) and a specificity of 71 % (59–81 %) for

AD both in dementia and mild cognitive impairment stages

of the disease [18]. Further, plaque pathology can be

visualized using amyloid positron emission tomography

(PET) [19], and tau PET is a more recent potential bio-

marker tool to monitor tangle pathology [20]. The first

biomarker changes indicating Ab build-up in the brain

appear 10–20 years before clinical onset of the disease

with Ab markers preceding tau markers by 5–10 years [21,

22•]. This puts Ab before tau in regards to the sequence of

events during the disease process. However, much remains

to be learnt regarding what factors may initiate Ab
deposition.

Genetics of Sporadic AD

APP and PSEN Mutations

The causative roles of mutations in the amyloid b precur-

sor protein (APP) and presenilin (PSEN1 and PSEN2;

encoding the active site of c-secretase that produces

Ab from APP with most mutations resulting in qualitative

changes in APP-processing which promote cerebral

b-amyloidosis [23]) genes in familial AD have long been

recognized [24]. However, genetic analysis of late-onset

sporadic AD has surprisingly revealed that these mutations

are also pathogenic in some cases of late-onset AD and

CSF biomarkers have been used as endophenotypes to

detect mutations in the genes known to harbour AD-caus-

ative mutations [25, 26]. The Swedish APP mutation cau-

ses AD because it makes the protein a better substrate for

BACE1 (the major b-secretase responsible for cleaving

APP in the N-terminal part of the Ab domain making the

remaining stub a c-secretase substrate) and thus more APP

is metabolized along the amyloidogenic pathway and more

Ab is produced [27]. In a recent study, Jonsson and col-

leagues [28•] noted that a specific mutation in APP, which

previously had been identified to be located close to the

b-secretase site [29], made it a worse substrate for BACE1

and correspondingly was associated with lower Ab pro-

duction and lower risk of AD. This observation, if repli-

cated, supports the Ab cascade hypothesis and also BACE1

inhibition as a valid target for AD therapy. Autosomal

dominant mutations that cause familial AD without effect

on Ab metabolism have not yet been reported. The study of

AD biomarkers in these familial cases has been essential to

establish the timeline of pathological events in the disease,

and in particular, to support the existence of a long pre-

clinical stage [22•, 30].

A recent multicenter, longitudinal study of CSF in

families with autosomal dominant AD mutations revealed a

clear transition of CSF markers over-time with reduced

concentrations of CSF Ab1-42 (associated with the pre-

sence of amyloid plaques) and elevated concentrations of

CSF markers of neurofibrillary tangles and neuronal injury/
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death in asymptomatic mutation carriers 10–20 years

before their estimated age at symptom onset. The longi-

tudinal assessment also revealed an over-time decrease in

the concentration of injury-related markers after symptom

onset, suggesting a slowing of acute neurodegenerative

processes with symptomatic disease progression [22•].

APOE

The association of the apolipoprotein E (APOE) e4 allele

with AD is strong (odds ratios ranging from 3 to 10 in

different studies [31•]) and undisputed. ApoE is the major

carrier of cholesterol in the CNS and has also important

roles in Ab metabolism, aggregation, and deposition.

Increased plaque deposition has been observed in APOE

e4-positive individuals and in APOE e4 knock-in animal

models of cerebral b-amyloidosis [32–34]. ApoE binds Ab
but the apoE4 isoform has a lower affinity than apoE3, and

it appears that at least part of the association of APOE e4

with Ab plaque pathology is related to apoE4 being less

efficient in clearing Ab from the brain parenchyma [35].

This may explain why cognitively healthy people with

APOE e4 have biomarker signs of Ab pathology at an

earlier age than people lacking the APOE e4 allele (espe-

cially compared to people carrying the APOE e2 allele)

[36].

In a genome-wide study, the APOE e4 genotype was the

strongest single-genetic factor associated with CSF ApoE

protein levels. ApoE CSF, but not plasma, levels were

found to significantly associate with CSF Ab42 levels

independently of the APOE e4 genotype, and suggesting

that ApoE levels in CSF may be a useful endophenotype

for AD [37]. However, in contrast, APOE e4 does not

interact with age to produce biomarker signs of axonal

degeneration (increased CSF T-tau) or tangle pathology

(increased CSF P-tau), supporting the view that APOE e4

does not have a primary effect on these aspects of AD

pathology (alternatively, these biomarkers may have too

low sensitivity to identify such effects).

One study [38] has shown an interesting interaction

effect between APOE and Ab1-42 in the CSF of APOE e4

carriers. Homo- and heterozygotes of the APOE e4 allele

had significantly lower detectable Ab42 concentrations

than APOE e3 homozygotes. Although the exact mecha-

nism is not understood, the implication is for matrix

composition of these (and potentially other) proteins in

CSF to impact the measurement of corner-stone biomark-

ers such as Ab42, and perhaps aid exploration of patho-

relevant physiological processes. As such there may be

considerable utility for genetic and proteomic character-

isation of AD patients and research subjects.

Exactly how the ApoE4 isoform promotes AD is still

unclear, and conflicting results present in the literature

support both a loss of positive or gain of negative functions

of the protein. The role of ApoE in AD becomes even more

complex when considering the recent report of a patient with

a rare form of severe dysbetalipoproteinemia who was

homozygous for an ablative APOE frameshift mutation. As

expected, the patient had exceptionally high cholesterol

content with profound lipoprotein metabolism dysregulation.

However, this 40-year-old patient presented surprisingly

normal neurological-related features (normal vision, normal

cognitive, neurological, and retinal functions, normal find-

ings on brain magnetic resonance imaging, and normal CSF

levels of Ab and tau proteins) [39]. It would have been very

interesting to determine the CSF lipidation profile of this

patient, especially to assess the possibility of compensation

by other apolipoproteins, and further follow-up will reveal if

age-related neurological deficits will appear.

Other Susceptibility Genes

Genome-wide association studies (GWAS) identify com-

mon loci (typically frequencies of 10–50 %), which have

low to modest effects on risk (typically with odds ratios in

the 1.1–2.0 range). Over the last 5 years, this approach has

begun to yield large numbers of risk loci, and this harvest

continues as study pooling is ongoing and as larger num-

bers of samples are collected [40••]. The utility of these

studies in terms of predicting who will develop disease is

currently modest. However, their larger importance is that

they may identify pathways and processes in which genetic

variability affects disease risk. So far, GWAS have iden-

tified 3 such pathways: (i) endosomal vesicle recycling

(BIN1, PICALM and SORL1), (ii) the innate immune sys-

tem (TREM2, CR1 and CLU) and (iii) genes related to

cholesterol metabolism (ABCA7, CLU) [41]. It is not yet

possible to definitively relate these pathways directly to

each other or to Ab but they resonate well with recent CSF

biomarker data showing links between Ab pathology and/

or AD and CSF levels of endosomal/lysosomal network

proteins, and proteins related to microglial activation and

synaptic function or integrity [42–45].

Can Biomarkers Help us Finding More Risk Genes

for Sporadic AD?

There has been a recent surge in interest in the use of

endophenotypes in research on psychiatric and neurode-

generative diseases, AD in particular. The concept was

introduced by Gottesman and Shields to reduce the harmful

influence of poor accuracy in the clinical diagnosis of

psychiatric and neurological diseases on the power of

genetic association studies [46], which is a major problem

in AD research. In addition, the identification of disease
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endophenotypes offers the prospect of creating experi-

mental models relevant to human pathophysiology, which

will be suitable for experimental approaches and greatly

facilitate the development and screening of novel thera-

peutics. Endophenotypes may be described as internal

phenotypes that lie on the pathway between genes and

disease. Fundamental to the concept is the assumption that

variation in an endophenotype will depend upon variation

in fewer genes than the more complex disease phenotype

and therefore be more tractable to genetic analysis [46].

The combination of clinical and biomarker information (as

opposed to definition based on clinical data only) to define

cases and controls in genetic association studies increases

the power of these analyses. This could be inferred when

APOE e4 was found to present a stronger association with

AD when clinical criteria incorporated biomarker infor-

mation, and when genetic associations were replicated

using much smaller sample sizes when compared to the

original associations, by means of defining cases and

controls according to CSF biomarker profiles [31•].

In AD, CSF and imaging biomarkers have been used as

endophenotypes in several genetic studies, both to increase

the chance of finding novel susceptibility genes and as a

means to study the functional consequences of risk alleles.

These studies have been closely tied with genetic tech-

nology developments, moving from analyses of individual

genetic variants or genes to genome-wide approaches

(Fig. 1).

When studying specific variants/genes, these were

usually chosen given an a priori biological or aetiological

association with disease. This was the case when

Kauwe et al. identified a gene-physiological environment

interaction between MAPT common single-nucleotide

polymorphisms (SNPs) and Ab deposition through the

evaluation of the role of these SNPs in CSF tau/ptau levels

[50]. An analogous approach was used to study genes

involved in the complement system. Daborg et al. chose to

study the complement system because of its involvement in

both physiological and AD synapse elimination. The

authors studied 4 SNPs in different genes (C2, C3, CFB

and CR1) and although no significant associations were

found with AD risk, potential associations between SNPs

in C2 and CFB were identified in relation to CSF tau levels

and Mini-Mental State Examination (MMSE) scores [51].

Cruchaga and colleagues studied 384 SNPs selected

from genes known to code for the most relevant tau kina-

ses, phosphatases, and in other genes implicated in other

posttranslational modifications of tau, or tau degradation.

The authors were able to detect a SNP (rs1868402) in

PPP3R1 associated with CSF P-tau181 levels. This variant

showed a strong association with the rate of decline in AD

patients, but no association was detected with AD risk or

age at onset of the disease [49]. By taking a genome-wide

approach, the same group was able to identify 4 genome-

wide significant signals associated with CSF tau levels

(including tau and ptau): APOE; rs9877502 located at 3q28

between GEMC1 and OSTN; rs514716 located at 9p24.2

within GLIS3; and rs6922617 at 6p21.1 within the TREM

gene cluster [52•]. A clear signal that this is a valid

approach to identify novel risk variants for a complex

disease like Alzheimer’s is the fact that 3 (APOE, 3q28 and

6p21.1) of the 4 genome-wide significant loci identified

had also been independently associated with the disease

[53, 54, 55••, 56••].

To expand the use of endophenotypes beyond CSF

Ab42 and tau, Kauwe et al. studied the CSF levels of 59

Fig. 1 Evolution of genetic studies based on endophenotype associations in Alzheimer’s disease. Examples of studies [47, 48•, 49]
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AD-related proteins in a GWAS study [48•]. They identi-

fied significant genetic associations with CSF levels of 5

proteins involved in amyloid processing and pro-inflam-

matory signalling: Angiotensin-converting enzyme (ACE),

Chemokine (C–C motif) ligand 2 (CCL2), Chemokine

(C–C motif) ligand 4 (CCL4), Interleukin 6 receptor

(IL6R) and Matrix metalloproteinase-3 (MMP3), suggest-

ing mechanisms for genetic control of CSF and plasma

levels of these disease-related proteins. Interestingly, the

SNPs found to be significantly associated in ACE and

MMP3 also showed association with AD risk [48•].

Can Biomarkers Help us to Characterize the Functional

Mechanisms of each Associated Loci in AD?

One of the limitations of case–control GWAS is the fact

that generally only haplotype tagging markers are identi-

fied by this methodology. When comparing frequencies of

genotypes between large numbers of cases and controls, it

would be very difficult to do this for every single variant in

the genome. To overcome this, GWAS platforms are based

on haplotypes and only SNPs tagging each haplotype are

analysed. Although this approach eases the burden of

comparative testing, it also prevents the identification of

specific disease-associated variants, as these can be in

linkage disequilibrium (LD) with the genome-wide hit

identified. An essential follow-up step to the identification

of GWAS significant loci for a disease is the character-

ization of the functional mechanisms by which the asso-

ciated variants influence the risk for disease. Kauwe et al.

used an endophenotype-based approach to attempt to

generate biological hypotheses of risk mechanism for

BIN1, CLU, CR1 and PICALM. To accomplish this, the

authors sampled common variation in these genes, geno-

typing 355 variants in over 600 individuals for whom

measurements of CSF Ab42 and P-tau181 had been

obtained. Although this was a well-designed study, no

associations between SNPs in these genes and CSF Ab42

or P-tau181 levels were found in the studied sample, sug-

gesting that the associated variants at these loci do not

affect risk via a mechanism resulting in a strong additive

effect on CSF levels of Ab42 or P-tau181 [57]. In a study

using family-based and case–control designs, Schjeide

et al. performed an analogous analysis of 5 variants in

CLU, CR1 and PICALM. The authors identified a signifi-

cant effect of rs541458 in PICALM on CSF Ab42 levels

[58]. With the same goal, Elias-Sonnenschein et al. studied

36 SNPs in 25AD-related genes in a cohort of 222 Finish

AD patients for which CSF biomarker levels were avail-

able. They identified several significant associations:

APOE e4, CLU rs11136000, and MS4A4A rs2304933 cor-

related with significantly decreased CSF Ab42; at an

uncorrected level PPP3R1 rs1868402 and MAPT

rs2435211 were related with increased T-tau; SORL1

rs73595277 and MAPT rs16940758 were associated with

increased P-tau [59].

Altogether, these studies clearly point to the need of

structured, well-powered analyses. The application of this

approach to other loci, the increase in the number of samples

studied and the use of replication cohorts will probably allow

for a deeper characterization of these associations.

Conclusions

The integration of genetic results with biomarkers is

essential for advancing the research into AD and other

complex disorders. Genetic studies clearly have an extreme

potential for the identification of novel biomarkers for AD,

but biomarkers are also essential for the guiding of genetic

studies both in familial and sporadic forms of the disease.

The use of endophenotypes in GWAS adds a layer of

information to this type of study because it directly asso-

ciates with specific disease-related biological mechanisms.

The computational ability to test for associations in well-

structured studies at a genome-proteome-wide level will

most likely reveal novel molecular interactions important

for the risk and progression of AD.
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