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Abstract

The amorphization due to MeV Au2þ ion implantation in Si(1 1 1) has been studied using Rutherford backscattering

spectrometry/channeling (RBS/C) and transmission electron microscopy (TEM) methods. 1.5 MeV Au2þ ions were

implanted into Si(1 1 1) substrates at various fluences at low currents (0.02–0.04 lA cm�2) while the samples were kept at

room temperature. The RBS/C results for as-implanted specimen shows the onset fluence for amorphization to be

�5 � 1013 ions cm�2 which is much lower than the fluence reported earlier. Selected area diffraction (TEM) for a sample

implanted at a of 1 � 1014 ions cm�2 confirms the occurrence of the amorphization. Earlier, amorphization studies by

Alford and Theodore, using 2.4 MeV gold ions in silicon (1 0 0) reported a threshold fluence of 1:8 � 1015 ions cm�2 for

amorphization when the implantation was carried out at higher currents (0.2–5 lA cm�2) [J. Appl. Phys. 76 (1994)

7265]. The nuclear energy loss (Sn) for 1.5 MeV gold ions in silicon is �13% greater than the value for 2.4 MeV and

cannot be the sole reason for lower threshold fluence for the amorphization. The amorphization at a relatively lower

fluence for the low current implantations could be possible due to reduction in the dynamical annealing effects.
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1. Introduction

Ion implantation has been extensively used to
obtain a wide variation in near-surface micro-

structure and properties. Using MeV ions it has

become possible to make structures of interest

such as buried conducting layers [1] and very large

scale integration (VLSI) deep wells [1,2]. The
damage produced during MeV ion implantation

can be used to reduce minority carrier life time in

Si and to provide buried gettering sites for collec-

tion of metallic impurities [3]. Energetic ions in-

duce damage in the silicon and at higher fluences, a

phase transformation from crystalline Si (c-Si) to

amorphous Si (a-Si) can occur. Damage induced

by ion irradiation in Si depends on fluence, flux,
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energy of the ion, mass of the ion, target temper-

ature, tilt angle of the target, etc. [4,5]. Under-

standing the amorphization process is still an

active area of research and various mechanisms
have been put forward [6–10]. A few decades ago,

Morehead and Crowder proposed that the ampor-

phization initially occurs in the cylindrical region

around each ion path [6] and a continuous amp-

orphization can be explained assuming that there

will be sufficient overlap of the amorphized cylin-

drical cascades and this mechanism was known

as heterogeneous amorphization. Swanson et al.
[7] and Holland et al. [8] introduced a homoge-

neous model according to which amorphization

was a phase transition induced by an accumula-

tion of sufficient number of defects in crystalline

silicon [9].

Previous studies using MeV Au ion implanta-

tion in silicon dealt with determination of range,

straggling and lateral spread of Au ions as a
function of energy, incident angle and temperature

[10–12]. The values of measured projected range

(Rp) and the straggling of MeV Au ions in sili-

con were found to be consistently larger than the

values predicted by TRIM [13] for both the low

current implantation (0.02–0.04 lA cm�2) [11] and

high current implantation (0.5–2.0 lA cm�2) [4]. In

the present work, we report the study of amor-
phization caused by 1.5 MeV Au2þ ion implanta-

tion in Si(1 1 1) single crystals at various fluences

and at low currents while the substrate was kept at

room temperature. Low current implantation was

chosen to avoid dynamic annealing of damage. To

our knowledge, the onset fluence for amorphi-

zation in case of low current (�0.02 lA cm�2)

MeV Au ion implantation in silicon has not been
addressed. The onset fluence of amorphization

for the high current 2.4 MeV Au-ion implanta-

tion into Si(1 0 0) was found to be �1:8 � 1015

ions cm�2 [4].

2. Experimental details

Implantations were carried out with 1.5 MeV

Au2þ ions into silicon single crystals. Prior to the

implantation, the mirror polished (1 1 1)-oriented

Si single crystals (type N, q � 0:5–30 X cm) were

cleaned (rinsed) with de-ionized water followed by

rinsing in methanol, trichloroethelene, methanol

and a final rinse in de-ionized water. The native
oxide was not etched. All the implantations were

performed at room temperature at the ion-im-

plantation beam line at the 3.0 MV tandem

Pelletron accelerator [14]. The implantation beam

line has a raster scanner to scan the beam on the

sample for providing uniform implantation over a

predefined area. The implantation was performed

at an angle of 5� between the sample surface nor-
mal and the incident ion beam in an attempt to

minimize channeling effects during the implanta-

tion [15]. The incident ion current was kept be-

tween 0.02 and 0.04 lA cm�2. The total fluence

on the samples varied from 1 � 1013 to 1 � 1015

ions cm�2. The Rutherford backscattering spect-

rometry/channeling (RBS/C) measurements were

carried out using the above mentioned accelerator
facility with 2.0 MeV He2þ ions. Planar and cross-

section transmission electron microscopy (TEM)

measurements were carried out with 200 keV

electrons (2010 UHR JEOL) at our Institute [16].

3. Results and discussion

We report the fluence dependence of amorph-

ization studies of 1.5 MeV Au2þ ion-implanted

Si(1 1 1) single crystals using RBS/C and X-TEM

methods. Fig. 1 shows the random and aligned

RBS spectra from Si-single crystal specimens im-

planted with 1.5 MeV Au2þ ions at different flu-

ences (1 � 1013–1 � 1015 ions cm�2). The onset

fluence for amorphization can be observed at 5�
1013 ions cm�2. The amorphous layer for 1 � 1015

ions cm�2 fluence starts very close to the surface

and has a width of �445 nm. For 1014 ions cm�2

fluence the amorphous layer width is �382 nm and

that for the 5 � 1013 cm�2 fluence is �150 nm. The

measured amorphized layer width for the case

of 5 � 1013 ions cm�2 fluence could be actually

smaller as the backscattered yield in RBS/C mea-
surements is affected by dechanneling of incident

ions. The planar TEM measurements on this

sample (data not shown) show the presence of
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weak amorphous rings along with the crystalline

diffraction pattern.
The width of the amorphous layer was deter-

mined by converting the energy of the backscat-

tered ions in the RBS/C spectra to a depth scale.

For this purpose one needs to know the stopping

cross section of Heþ ions under aligned condition.

It is to be noted that the value of stopping cross

section under aligned condition is smaller than

that under random incidence condition. According
to Kido and Kawamoto [17] the value of the

stopping power for a perfect crystal under aligned

condition is 0.8–0.85 times of normal stopping

power. The stopping power in an aligned condi-

tion in a damaged crystal is given by

ealigned ¼ ð1 � fdÞevirgin þ fderandom;

where evirgin is the stopping power under aligned
condition in a perfect crystal and erandom is the

stopping power of the ions under random inci-

dence conditions, fd is the dechanneling factor. We

have used an RBS simulation program [18] to

convert the energy to depth scale by assuming,

for the aligned condition, a stopping power of

0:8 � erandom along the incident direction and

erandom along the outgoing ion path. The depth

scale is shown in Fig. 1. In Fig. 1, the backscat-
tering signal from gold is not shown. The range

and the straggling were determined by simulating

the backscattering spectrum with GISA [19] for the

as-implanted sample with the highest fluence. The

experimental value of the range was found to be

420 nm and that with TRIM [13] calculation the

value was found to be 385 nm. It is known that

TRIM calculations underestimate the range and
straggling values and our experimental results

follow the previous experimental observations

[4,10–12]. The onset of amorphization occurs at

depth of �400 nm (Fig. 1, at a fluence of 5:0 � 1013

ions cm�2). This correlates well with a value where

Au has maximum nuclear stopping as obtained

from the experimental value and with TRIM cal-

culated value of range.
Fig. 2 shows a cross-sectional TEM micrograph

(bright field) and selected area diffraction patterns

(SAD) from various regions of the as-implanted

sample for the fluence of 1 � 1014 ions cm�2. The

regions are depicted in Fig. 2(A) from which the

SAD patterns were obtained. In Fig. 2(A), region

(a) is near the surface, (b) is in between the surface

and the amorphized region, (c) the amorphization
region and region (d) corresponds to projected

range of the gold ions. The SAD pattern shown in

Fig. 2(c), confirms the amorphization.

Alford and Theodore [4], using 2.4 MeV gold

ions in silicon (1 0 0) reported a threshold fluence

of 1:8 � 1015 ions cm�2 for amorphization whereas

we observe a fluence of 5:0 � 1013 ions cm�2. This

threshold fluence reduction by a factor of 36
can be understood by taking nuclear energy loss

and dynamical annealing effects into account. The

nuclear energy loss (Sn) for 1.5 MeV gold ions in

silicon is � 269 eV/�AA and that for 2.4 MeV

is � 234 eV/�AA. These values are obtained using

TRIM [13]. The higher value of Sn at 1.5 MeV

(�13% higher than at value at 2.4 MeV as men-

tioned earlier) contributes towards the damage
and hence in the amorphization process. However,

this cannot be the sole cause as the reduction in the

threshold fluence is about a factor of 36. At lower

current implantations, the effect of dynamical

Fig. 1. 2.0 MeV He2þ RBS/C spectrum for 1.5 MeV Au-im-

planted Si(1 1 1) for as-implanted specimens at different flu-

ences. The implantation was performed at a tilt angle of 5�.
Onset of amorphization can be observed at a fluence of 5 � 1013

ions cm�2. The depth scale is shown at the top.
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annealing is reduced and this causes a lowering of

the threshold fluence for amorphization. We pro-

pose that the amorphization at a relatively lower

fluence for low currents could be due to a reduc-

tion in the dynamical annealing effects.

4. Conclusions

In summary, the amorphization due to MeV
Au2þ ion implantation in Si(1 1 1) is reported. The

RBS/C results for as-implanted specimen shows

the onset of amorphization to be �5 � 1013

ions cm�2 which is much lower fluence than that

was reported. Selected area diffraction (TEM) for

a sample implanted at 1 � 1014 ions cm�2 confirms

the occurrence of amorphization. Low current ion

implantation requires lower threshold fluence for
amorphization due to reduction in the dynamical

annealing effects compared to high current ion

implantation.
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