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Abstract

The extent to which sex-specific genetic effects contribute to phenotypic variation is largely unknown. We applied a novel
Bayesian method, sparse partitioning, to detect gene by sex (GxS) and gene by gene (GxG) quantitative loci (QTLs) in 1,900
outbred heterogeneous stock mice. In an analysis of 55 phenotypes, we detected 16 GxS and 6 GxG QTLs. The increase in
the amount of phenotypic variance explained by models including GxS was small, ranging from 0.14% to 4.30%. We
conclude that GxS rarely make a large overall contribution to the heritability of phenotypes, however there are cases where
these will be individually important.
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Introduction

Genome-wide association studies (GWAS) typically seek only

main effects of genetic variation on phenotypes. While this

methodology has succeeded in identifying quantitative trait loci

(QTL), there are two reasons for being interested in interaction of

genetics with other factors, such as sex and aspects of the

organisms’ environment. First, some loci might not be detected

without taking interactions into account. Lander and colleagues

have recently argued that a significant portion of ‘missing

heritability’ in human GWAS is not due to the failure to detect

sequence variants that contribute to phenotypic variation, but is

hidden within unacknowledged interactions [1]. Second, identify-

ing QTL involved in interactions might be important for

understanding specific mechanisms, such as the biology of sex

differences. It is possible that sex effects are manifest in a subset of

the main effect QTL, but it is also possible that they represent a

completely different set of loci whose biological function is

restricted to the sex specific features of the phenotype.

Gene-by-sex (GxS) interaction QTL are genetic contributions to

phenotypic variation that manifest themselves differently depend-

ing on the organism’s sex. In contrast to sex as a main effect, which

may induce sex-based dimorphism via broadly acting mechanisms

like sex hormones, GxS interactions are associated with a specific

locus of the genome and can account for phenotypic variance left

unaccounted for by main effects alone. Observations from several

species suggest that sex-specific genetic architecture plays a key

role in the sex-based dimorphism of many traits, in Drosophila [2],

mice [3], and rats [4], and quantitative traits associated with heart

disease, hypertension, diabetes, asthma and autoimmune disease

in humans [5].

Using crosses between inbred mouse lines, GxS interaction

QTL have previously been identified for a number of phenotypes

in mice, including body weight [6,7], fat deposition [8],

autoimmunity [9], and susceptibility to cancer [10,11]. However,

the poor mapping resolution inherent in designs that use inbred

lines, and the relatively small number of phenotypes examined,

leaves open the question of the extent to which GxS QTL

contribute to phenotypic variation. Specifically, it is not clear to

what extent GxS and main effect loci coincide, nor whether the

contribution of GxS varies among phenotypes.

We set out to answer these questions using 55 phenotypes

mapped at high resolution in heterogeneous stock (HS) mice. The

HS mice are descended from eight inbred progenitors (A/J, AKR/

J, BALB/cJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and LP/J

[12]), each HS animal consisting of a fine-grained mosaic of the

founder chromosomes, hence providing mapping of quantitative

traits to an average resolution of about 3 Mb [13].

Mapping GxS loci in the HS has to deal with two problems.

First, the degree of relatedness varies between individual HS mice

so that mapping is more complicated than in classical inbred strain

crosses; mapping in an HS has to take into account this population

structure. Second, power to detect interactions is limited by the

need to search through many possible combinations of predictors.

Both problems involve finding appropriate models, which is

difficult to do with frequentist methods because of the large

number of parameters that need to be fitted. Bayesian methods

can be designed to deal with this situation by starting with more

parameters than can be included in a frequentist approach. In this

paper we used a Bayesian analytical tool called Sparse Partitioning

[14] to map genetic loci and their interactions. Sparse Partitioning

allows for models in which multiple predictors and their

interactions influence outcome. This enables us to consider the

contributions of GxS and also gene-by-gene interactions (GxG), or

epistasis, on the phenotypes in the HS.
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Materials and Methods

Ethics statement
Animal work was conducted according to the provisions of the

UK Home Office. The protocol was approved by the Local

Ethical Review Committee, Oxford University, and by a UK

Home Office Project license. The protocol conforms to the

principles of refinement, reduction and replacement and all tests

were designed to minimize suffering.

Animals and phenotypes
For this experiment we selected 55 phenotypes from fourteen

different tests used to assess 1,900 HS mice. Data for this

experiment are available from http://mus.well.ox.ac.uk/mouse/

HS/and http://mus.well.ox.ac.uk/gscandb/. We selected these

phenotypes from a larger set of 100, excluding those highly

correlated within a test (for example, in the elevated plus maze, the

time mice spent in the open arms was highly correlated with the

number of times they entered the open arms), those with

asymmetric highly skewed long-tailed distributions, and categor-

ical and latency phenotypes. For an individual phenotype, n

ranged from 712 to 1873, with a mean of 51.9% male (range of

50.6% to 56.0%; Table S2). Phenotypes that were highly non-

Gaussian were normalised prior to analysis following the Box-Cox

power transformation technique (Table S2). Phenotypes were

adjusted for relatedness following the method described in [15].

Fitting phenotype predictors
Our predictor set consisted of 12545 SNPs from across the

whole genome, plus sex (any other known covariates, such as

weight, if significant, were regressed out of phenotypes prior to

analysis). To increase computational efficiency, wherever there

were SNPs on the same chromosome with 99% concordance, only

one of these SNPs was used for analysis (5332 SNPs remained). We

applied a Bayesian method (Sparse Partitioning, or SP) that is

designed to detect both main effects and interactions simulta-

neously [14]. SP defines models according to which predictors are

associated with the phenotype and which of these predictors

interact. SP was configured to settle upon models containing up to

ten of the predictors defined in the above paragraph, with at most

2 three-way interactions between these predictors. SP models were

iteratively fit over 2000 iterations of Markov Chain Monte Carlo.

The first 500 iterations were discarded and the final 1500 used to

calculate posterior probabilities. Thus, the posterior probability of

association for each predictor is a fraction of 1500 representing the

proportion of models in which that predictor was included. The

posterior probability of two predictors interacting equals the

proportion of models in which those two predictors are included

and interact. For our primary SP analysis, any two predictors

could interact (allowing both GxS and GxG interactions); to

specifically assess the contribution of GxS interactions, we

performed a secondary analysis in which only SNPs were allowed

to interact (GxG). To obtain a false discovery rate at a given

posterior probability threshold, we re-ran SP once for each

phenotype using permuted response values. As shown in Figure

S1, three interaction effects surpass the 0.2 posterior probability

threshold we selected, suggesting we should expect a total of three

false positives across all 55 phenotypes.

Comparative fitting with resample model averaging
To confirm SP is appropriate for use with structured

populations like the HS mice, we employed a resample model

averaging method, Bagphenotype, to map main effect QTL for

the same 55 phenotypes. Bagphenotype is an established tool for

carrying out GWAS in HS animals and we ran it following a

methodology described previously [13]. While SP is a Bayesian

method that iteratively removes predictor variables from the

models it fits, Bagphenotype is a frequentist method that iteratively

adds predictors to the models it fits. With Bagphenotype, we ran

one hundred bootstrapped multiple QTL regression models,

resulting in a statistic called a resample model inclusion probability

(RMIP) out of one hundred representing the strength of each

predictive peak across the genome. A peak’s RMIP represents the

proportion of the multiple QTL models in which the peak’s

addition to the model both (1) improves the model fit, and (2) does

not increase the model’s adjusted p-value above a .05 significance

threshold. Thus, a particular QTL that is included 70 times out of

100 based on these criteria, that QTL would be assigned an RMIP

of .70. The genotypic data fed into Bagphenotype were founder

haplotype probabilities, as estimated by HAPPY [16], for each

interval between the 12545 genome-wide mouse SNPs. For a

comparison with the GxS QTL identified by SP, Bagphenotype

was also run using data from each sex alone.

Heritability estimation
We estimated heritability, h2, by constructing from the SNP

data a kinship matrix based on alleleic correlations [17,18], then

performing mixed model analysis supposing that the variation for

each phenotype can be divided into an additive genetic

component (with correlation structure specified by the kinship

matrix) and an environmental component (corresponding to an

identity matrix). We estimated the genetic and environmental

components using REML [19], then our h2 estimate for each

phenotype was then the proportion of phenotypic variance

estimated to be genetic.

Results

We employed SP to analyse 55 phenotypes in the HS and

identified 47 that had a significant main effect of sex on the

phenotype (at a 5% FDR). The distribution of effect sizes is highly

skewed, ranging from 58% (body weight) to 0.2% (home cage

activity), with a median of 2.4%. Figure 1 shows the distribution of

effect sizes. Using SP, we identified 60 main effect loci from across

the mouse genome (Table S1) above a posterior probability

threshold of 0.2. As illustrated in Figure 2, the frequency of QTL

below this threshold increases rapidly. QTL with posterior

probabilities near zero are likely noise so these were discarded.

We compared SP main effect results with those from a resample

model averaging approach (Bagphenotype) designed for use with

structured populations like the HS mice [13]. Conservatively, we

included only strictly overlapping QTL in our comparison of the

two methods. The summary statistic for Bagphenotype is called a

resample model inclusion probability (RMIP). For the 55

phenotypes, there are 294 QTL that exceed an RMIP ..25

threshold (an RMIP threshold of 0.25 was found by simulation to

be equivalent to one false positive per genome wide scan [13]).

Twenty-six (26/55 = 47.3%) of our SP-identified main effect QTL

fell within 2 Mb of the 95% confidence interval (CI) of the

Bagphenotype-identified main effect QTL.

We investigated whether there was greater consistency for QTL

detected with higher certainty by each of the two methods. We

found, as expected, that the posterior probabilities of the matched

QTL (mean = 0.64) were significantly higher than unmatched

(mean = 0.40), Wilcoxon rank sum test W = 581, p,.005.

Similarly, the RMIPs of Bagphenotype QTL that matched

(n = 26, mean = 0.84) to SP QTL were significantly higher than

those that did not (n = 268, mean = .51; W = 6236, p,.0001).

Genetic Interactions with Sex in Mice
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Setting the same posterior probability threshold for detecting

interactions as main effects (0.20), SP detected 16 GxS interaction

QTL (Table 1), summarized by a histogram of posterior

probabilities in Figure 3, and well above the three false positives

we expected at this threshold based on permutation analysis

(Figure S1). These effects were associated with 15 of the 55

phenotypes investigated, with two GxS QTL for high-density

lipoproteins (HDL) and one for each of the other 14 phenotypes.

The highest GxS interaction posterior probability (.53) involved

the time spent freezing in fearful context, and is located at 27.7

megabases (Mb) on chromosome 13.

The GxS QTL identified by SP in many cases corresponded

with main effect QTL we observed when using Bagphenotype on

data from only one sex at a time. Of the 16 GxS QTL, six had a

single-sex main effect QTL within 5 Mbp of the GxS QTL

(female-only for adrenal gland weight and HDL cholesterol; male-

only for alanine transaminase, triglycerides, startle response, and

B220+ cell percentage) with no main effect QTL present nearby

for the other sex. In only one instance, the alkaline phosphatase

GxS QTL, was there both male- and female-only main effect

QTL within 5 Mbp. Single-sex QTL scan results are provided in

Table S3. This adds to the above finding of the considerable

Figure 1. Main effects of sex on 55 heterogeneous stock mouse phenotypes. The vertical axis is the percent of variation explained. The ten
largest effects are labeled.
doi:10.1371/journal.pone.0096450.g001
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overlap (47.3%) of both-sexes-together main effects identified by

SP and Bagphenotype. Although highly different mapping

methods (SP’s Bayesian, Bagphenotype’s frequentist; SP removes

model parameters, Bagphenotype adds them; SP uses three-level

SNP allele data, Bagphenotype uses eight-level founder probabil-

ities), we nevertheless observe consistency in both genetic main

effect and GxS interaction QTL.

In addition to fitting GxS interactions, SP was configured to

allow GxG interactions between QTL to explain variance in a

phenotype. Seven such GxG interactions were identified above

our 0.20 posterior probability threshold. Table 2 shows that each

of the seven interactions is associated with a different phenotype;

two also had GxS interactions (triglycerides and area of the glucose

response curve) and four that did not (CD8+ T-cell count; blood

glucose level; mean corpuscular hemoglobin, MCH; and mean

corpuscular volume, MCV). The GxG interactions with the

highest posterior probabilities (.45) were associated with MCH.

To estimate how much phenotypic variance was attributable to

GxS interactions, cross-validation was employed. Cross-validation

randomly selects a proportion of the data with which the model is

trained, and subsequently tests how well this model fits the

unselected data. Here, we divided the data into ten evenly-sized

tranches. Nine tranches were used to fit predictors to the data and

then the quality of this fit was tested upon the tenth tranche. This

was repeated ten times, allowing us to rotate through the ten

tranches as the test tranche. We performed cross-validation twice

with each of the 15 phenotypes that included a GxS interaction:

first while allowing sex to act as both a marginal effect and as an

interacting term with SNPs, then again while allowing sex to act

only as a marginal effect. In both models, SNPs were able to

interact (i.e., epistasis). The proportion of variance explained

under these two scenarios is summarised in Table 3. The specific

contribution of GxS interactions was assessed by considering how

much more variance was explained under the scenario allowing

GxS interactions.

The best fitting models are for adrenal weight, where the GxS

interaction-prohibited and -permitted models explain 12.3% and

13.9% of the phenotypic variance, respectively. The proportion of

variance explained by the GxS interaction-permitted models was

higher than in their GxS interaction-prohibited counterparts,

ranging from 0.14% (area of the glucose response curve) to 4.30%

(body weight) higher. Other than adrenal weight (1.57%), allowing

GxS interactions did not account for more than about half a

percent of the phenotypic variance.

Across the 15 phenotypes with a GxS QTL identified by SP, the

proportion of phenotypic variance explained by sex as a main

effect (determined by a simple linear model) correlates with the

proportion of variance explained by GxS interactions, r = .57, t(14)

= 2.6, p,.05 (column four, ‘‘difference’’, in Table 3). The

correlation is shown in Figure 4.

Heritability estimates, h2, for all phenotypes are provided in

Table S4. h2 did not correlate significantly with the proportion of

phenotypic variance explained by main effects alone, nor by the

variance explained by main and interaction effects together, nor

with the proportion of variance explained by GxS interactions

(columns two through four in Table 3; p..1 in all three cases).

Figure 2. Histogram of the posterior probabilities of the main effect QTLs found by Sparse Partitioning. This histogram includes all
main effect QTLs identified by Sparse Partitioning with a posterior probability greater than .05. The horizontal red line at .20 represents the threshold
we selected: QTL above it were retained.
doi:10.1371/journal.pone.0096450.g002
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Discussion

Our principle finding is that GxS interactions contribute little to

phenotypic variation in addition to that attributable to main effect

QTL. While we found GxS QTL at just over a quarter of

phenotypes, the median percentage of variation accounted for by a

GxS QTL was 0.23% (Table 3). By contrast, the main effect QTL

had a median contribution of 6.2% (maximum = 24.7%).

Figure 3. Histogram of the posterior probabilities of the GxS QTLs found by Sparse Partitioning. This histogram illustrates the frequency
all GxS interaction QTL identified by SP with a posterior probability above the .20 threshold.
doi:10.1371/journal.pone.0096450.g003

Table 1. GxS QTL found by sparse partitioning.

Phenotype SNP Chr Location (Mbp) Posterior Probability Minor Allele Frequency

Adrenal Gland Weight rs3692711 7 20.63 0.29 0.245

Serum Alkaline Phosphatase rs3719891 4 142.10 0.52 0.169

Serum Alanine Transaminase CEL-X_113373391 X 50.44 0.32 0.201

Serum Chloride rs13481037 11 55.61 0.20 0.221

Serum High-Density Lipoprotein mCV24303778 4 115.92 0.43 0.472

Serum High-Density Lipoprotein CEL-13_85845037 13 89.33 0.28 0.074

Serum Triglycerides rs6299418 11 66.99 0.21 0.284

Freeze Time to Fear-Associated
Context

CEL-13_27061395 13 27.77 0.53 0.247

Freeze Time to Fear-Associated Cue rs3719988 6 73.68 0.20 0.246

Startle Response CEL-11_120628029 11 120.82 0.35 0.376

Area Under Curve of Glucose Levels mCV24984125 3 90.46 0.38 0.144

Hematocrit rs3653651 11 102.01 0.37 0.211

CD4+ Cell% in CD3+ Cells rs13481288 12 7.79 0.21 0.486

CD8+ Cell% in CD3+ Cells rs3674782 16 87.32 0.24 0.179

B220+ Cell% rs13475989 1 95.91 0.21 0.230

Boli Produced in Open Field Test rs6163111 5 74.22 0.27 0.390

doi:10.1371/journal.pone.0096450.t001
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Furthermore, since every GxS QTL we identified coincides with

one of the 60 main effect QTL (Table S1), our data indicate that

the GxS effect does not arise from biological pathways indepen-

dent of those of the main effect QTL.

The search for GxG interactions yielded an even smaller list of

loci. Seven epistatic interactions were found, each for a different

phenotype (Table 2). Three of the GxG interactions coincided

precisely with main effect QTL (loci interacting to predict

triglyceride levels, loci for area under the curve of glucose levels,

loci for CD4+ cell count). Two others (for mean corpuscular

haemoglobin (MCH) and mean cellular volume) lie within 2 Mb

of main effect QTL.

Attempts to find sex specific effects have met with varying

success, partly because of methodological limitations. A review of

the literature on human genetic association studies, despite

identifying 432 claims for sex-specificity, concluded that the

majority of claims were spurious [20]. Yet there is evidence from

twin and genetic linkage studies that, for some phenotypes, a

considerable proportion of the genetic variance is sex specific.

Thus in two independent twin studies of the heritability of

depression, Kendler and colleagues [21,22] estimate that genetic

correlation in risk factors for major depression in men and women

to be approximately 0.6. In an analysis of 17 quantitative

phenotypes, subject to genetic linkage analysis, Ober and

colleagues reported that eleven were sexually dimorphic, twelve

showed evidence of differences between the sexes in heritability or

linkage, and all three genome-wide significant linkage peaks were

significant when tested for an interaction between sex and

genotype [5].

Our results add to this debate by finding evidence for GxS at

just over a quarter of phenotypes, suggesting that GxS QTL are

relatively common, in agreement with the genetic linkage analyses

of human phenotypes [5]. Furthermore, we observed a linear

relationship between sex effects and GxS: the larger the main

effect of sex, the larger the effect of the interaction loci (Figure 4).

This justifies the reasonable assumption that it will be worth

examining highly sexually dimorphic phenotypes for GxS effects.

This linear relationship between sex effects and GxS might be

interpreted to mean that the genetic basis of sex differences arise

from the conjoint effect of many loci, rather than being due to a

specific and relatively constrained biological pathway. However it

is important to realize that the distribution of effect sizes we

observed is skewed. This may indicate that in some phenotypes the

sex effect arises from a few key loci. One example might be the

GxS interaction based at 21 Mbp on chromosome seven that

explains 1.5% of adrenal gland weight.

One important caveat to our approach is that we found

relatively few main effect loci. Compared to the 294 main effect

QTL found with a model averaging mapping method, SP found

just 60 loci, of which 43% were common to the two methods. This

raises the question as to whether reliance on SP for QTL mapping

might be biasing our results. It is surprising, for example, that we

found no GxS for weight, even though this phenotype has by far

the largest sex effect of any phenotype we measured (58%,

Figure 1). This is most likely due to our relatively low power, given

the expected small effects of each GxS QTL.

While the smaller numbers of main effects found with SP

suggests that more interacting loci might exist, it does not

invalidate our main finding of the paucity of interacting loci and

their small effect size, relative to main effect loci. For example

reducing the posterior probability threshold for SP results would

not identify sufficient additional GxS effects to alter our conclusion

that this set of loci makes only a small contribution to the total

genetic variance (Figure 5).
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The advantage of using SP is that it is less subject to the problem

of multiple testing. Like other sparse Bayesian methods, SP allows

for very complicated models defined by a very large number of

parameters. It does this by assuming most parameters are zero

(i.e., that most predictors do not influence the outcome either

marginally or through interactions). This type of approach is

Table 3. The percentage of phenotypic variance explained by two models: one permitting main and GxS effects, and one
permitting only main effects.

Phenotype Main and Interaction Effects Permitted Only Main Effects Permitted Difference

Adrenal Gland Weight 13.88 12.31 1.57

Serum Alkaline Phosphatase 6.09 5.88 0.21

Serum Alanine Transaminase 0.86 0.70 0.16

Serum Chloride 0.84 0.67 0.17

Serum High-Density Lipoprotein 9.37 8.83 0.54

Serum Triglycerides 3.31 3.02 0.29

Freeze Time to Fear-Associated Context 20.05 20.37 0.32

Freeze Time to Fear-Associated Cue 6.34 6.24 0.10

Startle Response 5.26 5.05 0.21

AUC of Glucose Levels 0.50 0.35 0.14

Hematocrit 0.14 20.39 0.53

CD4+ Cell% in CD3+ Cells 3.05 2.82 0.23

CD8+ Cell% in CD3+ Cells 0.40 20.13 0.54

B220+ Cell% 0.81 0.40 0.41

Boli Produced in Open Field Test 20.15 20.48 0.33

doi:10.1371/journal.pone.0096450.t003

Figure 4. Correlation between GxS and main effect of sex. The proportion of phenotypic variance explained by sex as a main effect is plotted
on the horizontal axis and the proportion of variance explained by the interaction effect is shown on the vertical axis. The two correlate with a P value
,0.05.
doi:10.1371/journal.pone.0096450.g004
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particularly effective in situations where the number of predictors

in a model greatly exceeds the sample size (the large p, small n

problem). For GxG interactions, where a genome scan would

involve testing pairwise interactions between thousand of loci,

identifying significant effects would otherwise require extremely

large sample sizes, too large to be feasible.

Finally, although we found that first-order interactions contrib-

ute little to phenotypic variation beyond main effect QTL and

other covariates, we emphasize that this does not imply that they

can be ignored. One example is the GxS interaction based at

21 Mbp on chromosome seven influencing adrenal gland weight.

While GxS rarely make a large overall contribution to the missing

heritability of phenotypes, there are cases where there will be

individually important.
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Figure 5. Proportion of phenotypic variance explained by GxS versus by main effects. For the 15 phenotypes that had a GxS QTL, this plot
depicts the percentage of phenotypic variance explained by models where sex was permitted to act as a main effect only relative to when it could act
as a both main effect and interaction term. As detailed in Table 3, allowing GxS interaction effects in the model at least marginally improved the
amount of phenotypic variance explained by predictors. Thus, all the points fall above the grey line, x = y. It is clear from the figure that adrenal gland
weight (‘‘aw’’) had the greatest improvement in its variance explained by allowing interacting predictors (difference of 1.6%). Additional non-trivial
abbreviations are as follows: chloride (‘‘Cl’’), triglycerides (‘‘tg’’), time spent frozen in fearful context (‘‘c’’), time spent frozen after fearful cue (‘‘CuF’’),
startle response (‘‘FPS’’), area of glucose response curve (‘‘ga’’), B220+ cell percentage (‘‘B’’), and boli produced in the open field test (‘‘b’’). ALT
occupied nearly the same position as chloride so is represented by the same symbol (‘‘Cl’’).
doi:10.1371/journal.pone.0096450.g005
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