
An Efficient Constraint Handling Method
for Genetic Algorithms

Kalyanmoy Deb

Kanpur Genetic Algorithms Laboratory (KanGAL)
Department of Mechanical Engineering
Indian Institute of Technology Kanpur

Kanpur, PIN 208 016, India
E-mail: deb@iitk.ac.in

Abstract

Many real-world search and optimization problems involve inequality and/or equality con-
straints and are thus posed as constrained optimization problems. In trying to solve con-
strained optimization problems using genetic algorithms (GAs) or classical optimization
methods, penalty function methods have been the most popular approach, because of their
simplicity and ease of implementation. However, since the penalty function approach is
generic and applicable to any type of constraint (linear or nonlinear), their performance is
not always satisfactory. Thus, researchers have developedsophisticated penalty functions
specific to the problem at hand and the search algorithm used for optimization. However,
the most difficult aspect of the penalty function approach isto find appropriate penalty pa-
rameters needed to guide the search towards the constrainedoptimum. In this paper, GA’s
population-based approach and ability to make pair-wise comparison in tournament selec-
tion operator are exploited to devise a penalty function approach that does not require any
penalty parameter. Careful comparisons among feasible andinfeasible solutions are made
so as to provide a search direction towards the feasible region. Once sufficient feasible so-
lutions are found, a niching method (along with a controlledmutation operator) is used to
maintain diversity among feasible solutions. This allows areal-parameter GA’s crossover
operator to continuously find better feasible solutions, gradually leading the search near
the true optimum solution. GAs with this constraint handling approach have been tested on
nine problems commonly used in the literature, including anengineering design problem.
In all cases, the proposed approach has been able to repeatedly find solutions closer to the
true optimum solution than that reported earlier.

1 Introduction

Many search and optimization problems in science and engineering involve a num-
ber of constraints which the optimal solution must satisfy.A constrained optimiza-

Preprint submitted to Elsevier Preprint 3 December 1998



tion problem is usually written as a nonlinear programming (NLP) problem of the
following type:

Minimize f(~x)
Subject togj(~x) � 0; j = 1; : : : ; J;hk(~x) = 0; k = 1; : : : ;K;xli � xi � xui ; i = 1; : : : ; n: (1)

In the above NLP problem, there aren variables (that is,~x is a vector of sizen), J
greater-than-equal-to type inequality constraints, andK equality constraints. The
functionf(~x) is the objective function,gj(~x) is thej-th inequality constraints, andhk(~x) is thek-th equality constraints. Thei-th variable varies in the range[xli; xui ].
Constraint handling methods used in classical optimization algorithms can be clas-
sified into two groups: (i)genericmethods that do not exploit the mathematical
structure (whether linear or nonlinear) of the constraint,and (ii) specificmethods
that are only applicable to a special type of constraints. Generic methods, such
as the penalty function method, the Lagrange multiplier method, and the complex
search method [1,2] are popular, because each one of them canbe easily applied
to any problem without much change in the algorithm. But since these methods
are generic, the performance of these methods in most cases is not satisfactory.
However, specific methods, such as the cutting plane method,the reduced gradient
method, and the gradient projection method [1,2], are applicable either to problems
having convex feasible regions only or to problems having a few variables, because
of increased computational burden with large number of variables.

Since genetic algorithms (GAs) are generic search methods,most applications of
GAs to constraint optimization problems have used the penalty function approach
of handling constraints. The penalty function approach involves a number of penalty
parameters which must be set right in any problem to obtain feasible solutions. This
dependency of GA’s performance on penalty parameters has led researchers to de-
vise sophisticated penalty function approaches such as multi-level penalty functions
[3], dynamic penalty functions [4], and penalty functions involving temperature-
based evolution of penalty parameters with repair operators [5]. All these approaches
require extensive experimentation for setting up appropriate parameters needed
to define the penalty function. Michalewicz [6] describes the difficulties in each
method and compares the performance of these algorithms on anumber of test
problems. In a similar study, Michalewicz and Schoenauer [7] concluded that the
static penalty function method (without any sophistication) is a more robust ap-
proach than the sophisticated methods. This is because one such sophisticated
method may work well on some problems but may not work so well in another
problem.

2



In this paper, we develop a constraint handling method basedon the penalty func-
tion approach which does not require any penalty parameter.The pair-wise com-
parison used in tournament selection is exploited to make sure that (i) when two
feasible solutions are compared, the one with better objective function value is
chosen, (ii) when one feasible and one infeasible solutionsare compared, the fea-
sible solution is chosen, and (iii) when two infeasible solutions are compared, the
one with smaller constraint violation is chosen. This approach is only applicable to
population-based search methods such as GAs or other evolutionary computation
methods. Although at least one other constraint handling method satisfying above
three criteria was suggested earlier [8] it involved penalty parameters which again
must be set right for proper working of the algorithm.

In the remainder of the paper, we first show that the performance of a binary-coded
GA using the static penalty function method on an engineering design problem
largely depends on the chosen penalty parameter. Thereafter, we describe the pro-
posed constraint handling method and present the performance of real-parameter
GAs on nine test problems, including the same engineering design problem. The
results are also compared with best-known solutions obtained using earlier GA im-
plementations or using classical optimization methods.

2 Constraint Handling in GAs

In most applications of GAs to constrained optimization problems, the penalty
function method has been used. In the penalty function method for handling in-
equality constraints in minimization problems, the fitnessfunctionF (~x) is defined
as the sum of the objective functionf(~x) and a penalty term which depends on the
constraint violationhgj(~x)i:F (~x) = f(~x) + JXj=1Rjhgj(~x)i2; (2)

whereh i denotes the absolute value of the operand, if the operand is negative and
returns a value zero, otherwise. The parameterRj is the penalty parameter of thej-th inequality constraint. The purpose of a penalty parameterRj is to make the
constraint violationgj(~x) of the same order of magnitude as the objective func-
tion valuef(~x). Equality constraints are usually handled by converting them into

3



inequality constraints as follows1 :gk+J (~x) � � � jhk(~x)j � 0;
where� is a small positive value. This increases the total number ofinequality
constraints tom = J +K and the termJ in equation 2 can then be replaced bym
to include all inequality and equality constraints. Thus, there are total ofm penalty
parametersRj which must be set right in a penalty function approach.

In order to reduce the number of penalty parameters, often the constraints are nor-
malized and only one penalty parameterR is used [1]. In any case, there are two
problems associated with this static penalty function approach:

(1) The optimal solution ofF (~x) depends on penalty parametersRj (orR). Users
usually have to try different values ofRj (orR) to find what value would steer
the search towards the feasible region. This requires extensive experimenta-
tion to find any reasonable solution. This problem is so severe that some re-
searchers have used different values ofRj (or R) depending on the level of
constraint violation [3], and some have used sophisticatedtemperature-based
evolution of penalty parameters through generations [5] involving a few pa-
rameters describing the rate of evolution.

(2) The inclusion of the penalty termdistortsthe objective function [1]. For small
values ofRj (orR), the distortion is small, but the optimum ofF (~x) may not
be near the true constrained optimum. On the other hand, if a largeRj (orR)
is used, the optimum ofF (~x) is closer to the true constrained optimum, but the
distortion may be so severe thatF (~x) may have artificial locally optimal solu-
tions. This primarily happens due to interactions among multiple constraints.
To avoid such locally optimal solutions, classical penaltyfunction approach
works in sequences, where in every sequence the penalty parameters are in-
creased in steps and the current sequence of optimization begins from the op-
timized solution found in the previous sequence. This way a controlled search
is possible and locally optimal solutions can be avoided. However, most clas-
sical methods use gradient-based search methods and usually have difficulty
in solving discrete search space problems and to problems having a large num-
ber of variables. Although GAs do not use gradient information, they are not
free from the distortion effect caused due to the addition ofthe penalty term
with the objective function. However, GAs are comparatively less sensitive to
distorted function landscapes due to the stochasticity in their operators.1 It is important to note that this transformation makes the resulting inequality constraint

function non-differentiable, thereby causing difficulty to many classical search and opti-
mization algorithms to use this transformation. In those cases, an equality constraint is
converted into two inequality constraintshk(~x) � � andhk(~x) � ��.

4



In order to investigate the effect of the penalty parameterRj (or R) on the perfor-
mance of GAs, we consider a well-studied welded beam design problem [2]. The
resulting optimization problem has four design variables~x = (h; `; t; b) and five
inequality constraints:

Minimize fw(~x) = 1:10471h2` + 0:04811tb(14:0 + `);
Subject tog1(~x) � 13; 600 � � (~x) � 0;g2(~x) � 30; 000 � �(~x) � 0;g3(~x) � b� h � 0;g4(~x) � Pc(~x)� 6; 000 � 0;g5(~x) � 0:25 � �(~x) � 0;0:125 � h � 10;0:1 � `; t; b � 10: (3)

The terms� (~x), �(~x), Pc(~x), and�(~x) are given below:� (~x)=r(� 0(~x))2 + (� 00(~x))2 + `� 0(~x)� 00(~x)=q0:25(`2 + (h+ t)2);�(~x)= 504; 000t2b ;Pc(~x)= 64; 746:022(1 � 0:0282346t)tb3;�(~x)= 2:1952t3b ;
where� 0(~x)= 6; 000p2h` ;� 00(~x)= 6; 000(14 + 0:5`)q0:25(`2 + (h+ t)2)2 f0:707h`(`2=12 + 0:25(h + t)2)g :
The optimized solution reported in the literature [2] ish� = 0:2444, `� = 6:2187,t� = 8:2915, and b� = 0:2444 with a function value equal tof� = 2:38116.
Binary GAs are applied on this problem in an earlier study [9]and the solution~x = (0:2489; 6:1730; 8:1789; 0:2533) with f = 2:43 (within 2% of the above best
solution) was obtained with a population size of 100. However, it was observed that
the performance of GAs largely dependent on the chosen penalty parameter values.

In order to get more insights on the working of GAs, we apply binary GAs with
tournament selection without replacement and single-point crossover operator with

5



pc = 0:9 on this problem. In the tournament selection, two solutionsare picked
at random from the population and are compared based on theirfitness (F (~x))
values. The better solution is chosen and kept in an intermediate population. This
process is continued till allN population slots are filled. This operation is usually
performed systematically, so the best solution in a population always get exactly
two copies in the intermediate population. Each variable iscoded in 10 bits, so that
total string length is 40. A population size of 80 is used and GAs with 50 different
initial populations are run. GAs are run till 500 generations. All constraints are
normalized (for example, the first constraint is normalizedas1� � (~x)=13600 � 0,
and so on) and a single penalty parameterR is used. Table .1 shows the performance
of binary GAs for different penalty parameter values.

----- Table 1 here-----

For each case, the best, median2 , and worst values of 50 optimized objective func-
tion values are also shown in the table. WithR = 1, although three out of 50 runs
have found a solution within 10% of the best-known solution,13 GA runs have not
been able to find a single feasible solution in 40,080 function evaluations. This hap-
pens because with smallR there is not much pressure for the solutions to become
feasible. With large penalty parameters, the pressure for solutions to become fea-
sible is more and all 50 runs found feasible solutions. However, because of larger
emphasis of solutions to become feasible, when a particularsolution becomes fea-
sible it has a large selective advantage over other solutions (which are infeasible) in
the population. If new and different feasible solutions arenot created, GAs would
overemphasize this sole feasible solution and soon prematurely converge near this
solution. This has exactly happened in GA runs with largerR values, where the
best solution obtained is, in most cases, more than 50% away (in terms of function
values) from the true constrained optimum.

Similar experiences have been reported by other researchers in applying GAs with
penalty function approach to constrained optimization problems. Thus, if penalty
function method is to be used, the user usually have to take many runs or ‘adjust’
the penalty parameters to get a solution within an acceptable limit. In a later sec-
tion, we shall revisit this welded beam design problem and show how the proposed
constrained handling method finds solutions very close to the true optimum reliably
and without the need of using any penalty parameter.

Michalewicz [6] and later Michalewicz and Schoenauer [7] have discussed differ-
ent constraint handling methods used in GAs. They have classified most of the
evolutionary constraint handling methods into five categories: (1) methods based
on preserving feasibility of solutions, (2) methods based on penalty functions, (3)
methods making distinction between feasible and infeasible solutions, (4) methods
based on decoders, and (5) hybrid methods. The methods underthe first category2 The optimized objective function values (of 50 runs) are arranged in ascending order and
the 25th value in the list is called the median optimized function value.

6



explicitly use the knowledge of the structure of the constraints and use a search
operator that maintains the feasibility of solutions. Second class of methods uses
penalty functions of various kinds, including dynamic penalty approaches where
penalty parameter are adapted dynamically over time. The third class of constraint
handling methods uses different search operators for handling infeasible and feasi-
ble solutions. The fourth class of methods uses an indirect representation scheme
which carries instructions for constructing a feasible solution. In the fifth category,
evolutionary methods are combined with heuristic rules or classical constrained
search methods. Michalewicz and Schoenauer [7] have compared different algo-
rithms on a number of test problems and observed that each method works well on
some classes of problems whereas does not work well on other problems. Owing
to this inconsistency in the performance of different methods, they suggested to use
the static penalty function method, similar to that given inequation 2. Recently, a
two-phase evolutionary programming (EP) method is developed [10]. In the first
phase, a standard EP technique with a number of strategy parameters which were
evolved during the optimization process was used. With the solution obtained in the
first phase, a neural network method was used in the second phase to improve the
solution. The performance of the second phase depends on howclose a solution to
the true optimal solution is found in the first phase. The approach involves too many
different procedures with many control parameters and it isunclear which proce-
dure and parameter settings are important. Moreover, out ofthe six test problems
used in the study, five were two-variable problems having at most two constraints. It
is unclear how this rather highly sophisticated method willscale up its performance
to more complex problems.

In the following section, we present a different yet simple penalty function ap-
proach which does not require any penalty parameter, thereby making the approach
applicable to a wide variety of constrained optimization problems.

3 Proposed Constraint Handling Method

The proposed method belongs to both second and third categories of constraint han-
dling methods described by Michalewicz and Schoenauer [7].Although a penalty
term is added to the objective function to penalize infeasible solutions, the method
differs from the way the penalty term is defined in conventional methods and in
earlier GA implementations.

The method proposes to use a tournament selection operator,where two solutions
are compared at a time, and the following criteria are alwaysenforced [11]:

(1) Any feasible solution is preferred to any infeasible solution,
(2) Among two feasible solutions, the one having better objective function value

is preferred,

7



(3) Among two infeasible solutions, the one having smaller constraint violation
is preferred.

Although there exist a number of other implementations [6,8,12] where criteria
similar to the above are imposed in their constraint handling approaches, all of
these implementations used different measures of constraint violations which still
needed a penalty parameter for each constraint.

Recall that penalty parameters are needed to make the constraint violation values
of the same order as the objective function value. In the proposed method, penalty
parameters are not needed because in any of the above three scenarios, solutions
are never compared in terms of both objective function and constraint violation in-
formation. Of the three tournament cases mentioned above, in the first case, neither
objective function value nor the constraint violation information is used, simply the
feasible solution is preferred. In the second case, solutions are compared in terms
of objective function values alone and in the third case, solutions are compared in
terms of the constraint violation information alone. Moreover, the idea of compar-
ing infeasible solutions only in terms of constraint violation has a practical implica-
tion. In order to evaluate any solution (say a particular solution of the welded beam
problem discussed earlier), it is a usual practice to first check the feasibility of the
solution. If the solution is infeasible (that is, at least one constraint is violated), the
designer will never bother to compute its objective function value (such as the cost
of the design). It does not make sense to compute the objective function value of an
infeasible solution, because the solution simply cannot beimplemented in practice.

Motivated by these arguments, we devise the following fitness function, where in-
feasible solutions are compared based on only their constraint violation:F (~x) = 8><>: f(~x); if gj(~x) � 0; 8 j = 1; 2; : : : ;m;fmax +Pmj=1hgj(~x)i; otherwise.

(4)

The parameterfmax is the objective function value of the worst feasible solution
in the population. Thus, the fitness of an infeasible solution not only depends on
the amount of constraint violation, but also on the population of solutions at hand.
However, the fitness of a feasible solution is always fixed andis equal to its objec-
tive function value.

We shall first illustrate this constraint handling technique on a single-variable con-
strained minimization problem and later show its effect on contours of a two-
dimensional problem. In Figure .1, the fitness functionF (~x) (thick line in infeasible
region and dashed line in feasible region) are shown. The unconstrained minimum
solution is not feasible here. It is important to note thatF (~x) = f(~x) in the feasi-

8



ble region and there is a gradual3 increase in fitness for infeasible solutions away
from the constraint boundary. Under the tournament selection operator mentioned
earlier, there will be selective pressure for infeasible solutions to come closer and
inside the feasible region. The figure also shows how the fitness value of six popu-
lation members (shown by solid bullets) will be evaluated. It is interesting to note
how the fitness of infeasible solutions depends on the worst feasible solution. If no
feasible solution exists in a population,fmax is set to zero.

----- Figure 1 here-----

It is important to reiterate that since solutions are not compared in terms of both
objective function value and constraint violation information, there is no need of
any explicit penalty parameter in the proposed method. Thisis a major advantage
of the proposed method over earlier penalty function implementations using GAs.
However, to avoid any bias from any particular constraint, all constraints are nor-
malized (a usual practice in constrained optimization [1])and equation 4 is used.
It is important to note that such a constraint handling scheme without the need of
a penalty parameter is possible because GAs use a populationof solutions in every
iteration and a pair-wise comparison of solutions is possible using the tournament
selection operator. For the same reason, such schemes cannot be used with classical
point-by-point search and optimization methods.

The proposed constraint handling technique is better illustrated in Figures .2 and .3,
where fitness function is shown by drawing contours of the following NLP problem:

Minimize f(x; y) = (x� 0:8)2 + (y � 0:3)2;
Subject tog1(x; y) � 1 � [(x� 0:2)2 + (y � 0:5)2]=0:16 � 0;g2(x; y) � [(x+ 0:5)2 + (y � 0:5)2]=0:81 � 1 � 0: (5)

The contours have higher function values as they move out of the point(x; y) �(0:8; 0:3). Figure .2 shows the contour plot of the objective functionf(x; y) and
the crescent shaped (non-convex) feasible region formed byg1(x; y) andg2(x; y)
constraint functions. Assuming that the worst feasible solution in a population lie
at (0:35; 0:85) (the point marked by a ‘o’ in the figure), the correspondingfmax =0:505. Figure .3 shows the contour plot of the fitness functionF (x; y) (calculated
using equation 4). It is interesting to note that the contours do not get changed inside3 Although, in some cases, it is apparent that the above strategy may face trouble where
constraint violations may not increase monotonically fromthe constraint boundary inside
the infeasible region [13], this may not be a problem to GAs. Since the above strategy guar-
antees that the fitness of any feasible solution is better than fitness of all infeasible solutions
in a population, once a feasible solution is found, such nonlinearity in constraint violations
may not matter much. However, this needs a closer look which we plan to investigate in a
future study.

9



the feasible region, whereas they become parallel to the constraint surface outside
the feasible region. Thus, when most solutions in a population are infeasible, the
search forces solutions to come closer to feasible region. Once sufficient solutions
exist inside the feasible region, the search gets directed by the effect of the objective
function alone. In the case of multiple disconnected feasible regions, the fitness
function has a number of such attractors, one correspondingto each feasible region.
When solutions come inside feasible regions, the selectionoperator mainly works
with the true objective function value and helps to focus thesearch in the correct
(global) feasible region.

----- Figure 2 here-----

----- Figure 3 here-----

We have realized that the proposed method is somewhat similar to Powell and
Skolnick’s [8] method, which involves penalty parameters.Thus, like other penalty
function approaches, Powell and Skolnick ’s (PS) method is also sensitive to penalty
parameters. Moreover, the PS method may sometime create artificial local optima,
as discussed in the following. Consider the same single-variable function shown in
Figure .1. The calculation procedure of the fitness functionin PS method is illus-
trated in Figure .4.

----- Figure 4 here-----

The major difference between the PS method and the proposed method is that in
the PS method the objective function value is considered in calculating the fitness
of infeasible solutions. In the PS method, the penalized function value4 f(~x) +RPjhgj(~x)i is raised by an amount� (shown in the figure) to make the fitness
of the best infeasible solution equal to the fitness of the worst feasible solution.
Figure .4 shows that, in certain situations, the resulting fitness function (shown by
a long dashed line) may have anartificial minimum in the infeasible region. When
the feasible region is narrow, there may not be many feasiblesolutions present in
a population. In such a case, GAs with this constraint handling method may get
trapped into this artificial local optimum. It is worth mentioning that the effect of
this artificial local optimum can get reduced if a large enough penalty parameterR
is used. This dependency of a constraint handling method on the penalty parameter
is not desirable (and the meaning of ‘large penalty parameter’ is subjective to the
problem at hand) and has often led researchers to rerun an optimization algorithm
with different values of penalty parameters.4 In Powell and Skolnick’s study, the square of constraint violation was used. Although,
this changes relative importance of constraint violation with respect to the objective func-
tion value in Powell and Skolnick’s method, it does not matter in the proposed approach,
because of the use of tournament selection.

10



3.1 Binary versus Real-coded GAs

The results of the welded beam design problem presented in Section 2 are all
achieved with binary GAs, where all variables are coded in binary strings. It is
intuitive that the feasible region in constrained optimization problems may be of
any shape (convex or concave and connected or disjointed). In real-parameter con-
strained optimization using GAs, schemata specifying contiguous regions in the
search space (such as (110�. . .�) may be considered to be more important than
schemata specifying discrete regions in the search space (such as (�1�10�...�),
in general. In a binary GA under a single-point crossover operator, all common
schemata corresponding to both parent strings are preserved in both children strings.
Since, any arbitrary contiguous region in the search space cannot be represented by
a single Holland’s schema and since the feasible search space can usually be of any
arbitrary shape, it is expected that the single-point crossover operator used in binary
GAs may not always be able to create feasible children solutions from two feasi-
ble parent solutions. Moreover, in most cases, such problems have feasible region
which is a tiny fraction of the entire search space. Thus, once feasible parent so-
lutions are found, a controlled crossover operator is desired in order to (hopefully)
create children solutions which are also feasible.

The floating-point representation of variables in a GA and a search operator that
respects contiguous regions in the search space may be able to eliminate the above
two difficulties associated with binary coding and single-point crossover. In this pa-
per, we use real-coded GAs with simulated binary crossover (SBX) operator [14]
and a parameter-based mutation operator [15], for this purpose. SBX operator is
particularly suitable here, because the spread of childrensolutions around parent
solutions can be controlled using a distribution index�c (see Appendix A). With
this operator any arbitrary contiguous region can be searched, provided there is
enough diversity maintained among the feasible parent solutions. Let us illustrate
this aspect with the help of Figure .3. Note that the constrained optimum is at the
lower half of the crescent-shaped feasible region (ong1(x; y) constraint). Although
a population may contain solutions representing both the lower and the upper half
of the feasible region, solutions in the lower half are more important, although the
representative solutions in the lower half may have inferior objective function val-
ues compared to those in the upper half. In such cases, the representative solutions
of the lower half must be restored in the population, in the hope of finding better so-
lutions by the action of the crossover operator. Thus, maintaining diversity among
feasible solutions is an important task, which will allow a crossover operator to
constantly find better feasible solutions.

There are a number of ways diversity can be maintained in a population. Among
them, niching methods [16] and use of mutation [17] are popular ones. In this pa-
per, we use either or both of the above methods of maintainingdiversity among
the feasible solutions. A simple niching strategy is implemented in the tournament

11



selection operator. When comparing two feasible solutions(i andj), a normalized
Euclidean distancedij is measured between them. If this distance is smaller than a
critical distance�d, the solutions are compared with their objective function values.
Otherwise, they are not compared and another solutionj is checked. If a specific
number (nf ) of feasible solutions are checked and none is found to qualify within
the critical distance, thei-th solution is declared as winner. The normalized Eu-
clidean distance is calculated as follows:dij = vuuut1n nXk=10@x(i)k � x(j)kxuk � xlk 1A2: (6)

This way, the solutions that are far away from each other are not compared and
diversity among feasible solutions can be maintained.

3.2 Evolutionary Strategies versus Real-coded GAs

Evolutionary strategies (ESs) are evolutionary optimization methods which work
on floating-point numbers directly [18,19]. The main difference in the working
principles of an ES and a real-coded GA is that in ES mutation operator is the main
search operator. ES also uses a block truncation selection operator, which is dif-
ferent from the tournament selection operator. Moreover, an ES uses two different
populations (parent and children populations) with children population size about
an order of magnitude larger than that of the parent population size. It is highlighted
earlier that the population approach and the ability to compare solutions pairwise
are two essential features of the proposed constraint handling method. Although an
ES uses a population approach, it usually does not make a pairwise comparison of
solutions. Although a tournament selection scheme can be introduced in an ES, it
remains an open question as to how such an ES will work in general.

Moreover, there exists a plethora of other implementationsof GAs such as multi-
modal GAs, multi-objective GAs, and others, which have beensuccessfully imple-
mented with real-coded GAs [20]. We believe that the constraint handling strategy
suggested in this study can also be easily incorporated along with various other
kinds of existing real-coded GAs.

Thus, for the sake of simplicity in implementation, we have tested the constraint
handling strategy with real-coded GAs, instead with an ES framework. We are cur-
rently working on implementing the proposed constraint handling method with an
ES framework and results comparing real-coded GAs and ESs will be reported at a
later date.

12



4 Results

In this section, we apply GAs with the proposed constraint handling method to nine
different constrained optimization problems that have been studied in the literature.

In all problems, we run GAs 50 times from different initial populations. Fixing the
correct population size in a problem is an important factor for proper working of a
GA. Previous population sizing considerations [21,22] based on schema processing
suggested that the population size should increase with theproblem size. Although
the correct population size should also depend on the underlying signal-to-noise in
a problem, here we follow a simple procedure of calculating the population size:N = 10n, wheren is the number of variables in a problem. In all problems, we
use binary tournament selection operator without replacement. We use a crossover
probability of 0.9. When binary-coded GAs are used, the single-point crossover op-
erator is used. When real-coded GAs are used, simulated binary crossover (SBX) is
used [14]. The SBX procedure is described briefly in AppendixA. When mutation
is used, the bit-wise mutation operator is used for binary GAs and a parameter-
based mutation is used for real-coded GAs. This procedure isalso described in
Appendix A. Wherever niching is used, we have used�d = 0:1 andnf = 0:25N .

4.1 Test Problem 1

To investigate the efficacy of the proposed constraint handling method, we first
choose a two-dimensional constrained minimization problem:

Minimize f1(~x) = (x21 + x2 � 11)2 + (x1 + x22 � 7)2;
Subject tog1(~x) � 4:84 � (x1 � 0:05)2 � (x2 � 2:5)2 � 0;g2(~x) � x21 + (x2 � 2:5)2 � 4:84 � 0;0 � x1 � 6; 0 � x2 � 6: (7)

The unconstrained objective functionf1(x1; x2) has a minimum solution at (3,2)
with a function value equal to zero. However, due to the presence of constraints,
this solution is no more feasible and the constrained optimum solution isx� =(2:246826; 2:381865) with a function value equal tof�1 = 13:59085. The feasible
region is a narrow crescent-shaped region (approximately 0.7% of the total search
space) with the optimum solution lying on the first constraint, as shown in Figure .5.

Niching and mutation operators are not used here. We have runGAs till 50 gener-
ations. Powell and Skolnick’s [8] constraint handling method (PS) is implemented
with the real-coded GAs and with tournament selection and the SBX operator. With

13



a penalty parameterR = 1 for both constraints, the performance of GAs is tabu-
lated in Table .2. The table shows that 11 out of 50 runs cannotfind a single feasi-
ble solution with Powell and Skolnick’s method withR = 1, whereas the proposed
method (TS-R) finds a feasible solution every time. Moreover, 58% runs have found
a solution within 1% of the true optimum solution. The dependency of PS method
on the penalty parameterR is also clear from the table.

----- Table 2 here-----

In order to investigate the performance of the binary GA on this problem, binary
GAs with the proposed constraint handling method (TS-B) is applied next. Each
variable is coded in 20 bits. Binary GAs find solutions within1% and 50% of the
optimum solution in only 2 and 13 out of 50 runs, respectively. Although, all 50
GA runs are able to find feasible solutions, the performance (best 13.59658, median
37.90495, and worst 244.11616) is not as good as that of real-coded GAs.

In runs where Powell and Skolnick’s (PS) method did not find a feasible solution,
GAs have converged to an artificially created minimum solution in the infeasible
region. We show the proceedings of one such run in Figure .5 withR = 1. The ini-
tial population of 50 random solutions show that initially solutions exist all over the
search space (no solution is feasible in the initial population). After 10 generations,
a real-coded GA with Powell and Skolnick’s constraint handling strategy (withR = 1) could not drive the solutions towards the narrow feasible region. Instead,
the solutions get stuck at a solution~x = (2:891103; 2:11839) (with a function value
equal to 0.41708), which is closer to the unconstrained minimum at (3,2) (albeit
infeasible). The reason for such suboptimal convergence isdiscussed earlier in Fig-
ure .4. When an identical real-coded GA but with the proposedconstraint handling
strategy (TS-R) is applied to the identical initial populations of 50 solutions (rest
all parameter settings are also the same as in the Powell and Skolnick’s case), the
GA distributes well its population around and inside the feasible region (Figure .6)
after 10 generations. Finally, GAs converge near to the trueoptimum solution at~x = (2:243636; 2:342702) with a function value equal to 13.66464 (within 0.54%
of the true optimum solution).

----- Figure 5 here-----

----- Figure 6 here-----

The number of feasible solutions found in each generation inall 50 runs are noted
and their average is plotted in Figure .7. In the initial generation, there are not
many feasible solutions (about 0.7%). Thereafter, the number of feasible solutions
increase rapidly for both binary and real-coded GAs with theproposed constraint
handling scheme. At around generation 25, more than 90% population members
are feasible, whereas GAs with Powell and Skolnick’s constraint handling strategy
the initial rate of feasible solution discovery is also slower and GAs have found less

14



than 50% of their population members in the feasible region.

----- Figure 7 here-----

Although binary GAs have found slightly more solutions in the feasible region that
that found by real-coded GAs in this problem, Figure .8 showsthat the average
Euclidean distance among feasible solutions for the binaryGAs is smaller than that
for the real-coded GAs. This means that real-coded GAs is able to spread solutions
better, thereby allowing their search operators to find better solutions. This is the
reason why real-coded GAs has performed better than binary GAs. In the following,
we compare these GAs to a more complicated test problem.

----- Figure 8 here-----

4.2 Test Problem 2

This problem is a minimization problem with five variables and 38 inequality con-
straints [23,24]:

Minimize f2(~x) = 0:1365 � 5:843(10�7)y17 + 1:17(10�4)y14 + 2:358(10�5)y13+1:502(10�6)y16 + 0:0321y12 + 0:004324y5+1:0(10�4)c15=c16 + 37:48y2=c12;
Subject tog1(~x) � 1:5x2 � x3 � 0;g2(~x) � y1(~x)� 213:1 � 0;g3(~x) � 405:23 � y1(~x) � 0;gj+2(~x) � yj(~x)� aj � 0; j = 2; : : : ; 17;gj+18(~x) � bj(~x)� yj(~x) � 0; j = 2; : : : ; 17;g36(~x) � y4(~x)� 0:28=0:72y5(~x) � 0;g37(~x) � 21 � 3496:0y2(~x)=c12(~x) � 0;g38(~x) � 62212:0=c17(~x)� 110:6 � y1(~x) � 0;704:4148 � x1 � 906:3855; 68:6 � x2 � 288:88;0 � x3 � 134:75; 193 � x4 � 287:0966;25 � x5 � 84:1988:

(8)

The termsyj(~x) andcj(~x), and parametersaj andbj are given in Appendix B. The
best solution reported in [23] and in [24] is

15



~x�=(705:1803; 68:60005; 102:90001; 282:324999; 37:5850413);f�2 =�1:90513:
At this solution, none of the 38 constraints is active (an inequality constraint is
active at any solution if the constraint violation is zero atthat solution). Thus, this
solution lies inside the feasible region5 . This function is particularly chosen to test
the proposed constraint handling method on a problem havinga large number of
constraints.

Table .3 shows the performance of real-coded GAs with the proposed constraint
handling scheme with a population size10 � 5 or 50. Powell and Skolnick’s (PS)
constraint handling method depends on the the penalty parameter used. For a large
penalty parameter, PS method is similar in performance to the proposed method
(TS-R). However, for small penalty parameter values, PS method does not perform
well. The proposed method of this study (TS) does not requireany penalty param-
eter. The performance of GAs with the proposed method (TS-R)improves with
niching and further with the mutation operator. With mutation, all 50 runs have
found solutions better than the best solution reported earlier.

----- Table 3 here-----

However, binary GAs with the proposed scheme (TS-B) cannot find feasible solu-
tions in 9 runs and the best run found a solution within about 13% of the best-known
solution. Six runs have found feasible solutions having an objective function value
more than 150% of that of the best-known solution. The best, median, and worst
function values are�1:66316, �1:20484, and�0:73044, respectively.

Figure .9 shows the average of the total normalized Euclidean distance of all fea-
sible solutions in each iteration. It is clear that with the presence of niching, the
average Euclidean distance of feasible solutions increases, meaning that there is
more diversity present among the feasible solutions. With the introduction of mu-
tation, this diversity further increases and GAs perform the best. Once again, this
figure shows that real-coded GAs with PS (R = 1) and binary GAs with the pro-
posed scheme have not been able to find and distribute solutions well in the feasible
region.

----- Figure 9 here-----

It is also interesting to note that the best solutions obtained with real-coded GAs
(TS-R) isbetterthan that reported in [23,24]. The solution here is~x=(707:337769; 68:600273; 102:900146; 282:024841; 84:198792);5 However, we shall see later in this section that this solution is not the true optimal so-
lution. The solution obtained in this study is better than this solution and makes 5 of 38
constraints active.

16



f2=�1:91460;
which is about 0.5% better in the objective function value than that reported ear-
lier. The main difference between this solution and that reported earlier is in the
value ofx5. At this solution, five constraints (g1, g2, g34, g35, andg38) are active
with constraint values less than10�3. The ratio of the bestf2(~x) obtained in a GA
generation and the best-knownf2(~x) (that is,f�2 = �1:90513) is calculated for all
50 runs and their average is plotted in Figure .10 for different GA implementations.

----- Figure 10 here-----

Since,f�2 is negative, for any suboptimal solution, the ratiof(~x)=f�2 would be
smaller than one. When this ratio is close to one, it is clear that the best-known
solutionx� is found. The figure shows how real-coded GAs with the Powell and
Skolnick’s (PS) constraint handling method withR = 1 get stuck at suboptimal
solutions. The average value off(~x) where GAs converge in 50 runs is even less
than 20% off�2 . However, real-coded GAs with the proposed constraint handling
scheme finds this ratio greater than 0.8. This ratio further increases to more than 0.9
with niching alone. The figure also shows that for GAs with niching and mutation
the ratio is little better than 1.0, indicating that better solutions than that reported
earlier have been obtained in this study.

Because of the dependency of the performance of Powell and Skolnick’s (PS)
method on the penalty parameter, we do not apply this method in the subsequent
test problems and only present the results for GAs with the proposed constraint han-
dling method. Since binary GAs with the proposed constrainthandling scheme also
do not perform well on both the above constrained optimization problems (mainly
due to its inability to maintain diverse solutions in the feasible region), we also do
not apply binary GAs to subsequent test problems.

17



4.3 Test Problem 3

The problem is a minimization problem having 13 variables and nine inequality
constraints [6]:

Minimize f3(~x) = 5P4i=1 xi � 5P4i=1 x2i �P13i=5 xi;
Subject tog1(~x) � 2x1 + 2x2 + x10 + x11 � 10;g2(~x) � 2x1 + 2x3 + x10 + x12 � 10;g3(~x) � 2x2 + 2x3 + x11 + x12 � 10;g4(~x) � �8x1 + x10 � 0;g5(~x) � �8x2 + x11 � 0;g6(~x) � �8x3 + x12 � 0;g7(~x) � �2x4 � x5 + x10 � 0;g8(~x) � �2x6 � x7 + x11 � 0;g9(~x) � �2x8 � x9 + x12 � 0;0 � xi � 1; i = 1; : : : ; 9;0 � xi � 100; i = 10; 11; 12;0 � x13 � 1:

(9)

The optimal solution to this problem is~x� = (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1); f�3 = �15:
At this optimal solution, six constraints (all exceptg4, g5, andg6) are active. This
is a relatively easy problem with the objective function andconstraints being linear
or quadratic. Michalewicz [6] reported that all constrainthandling methods used to
solve this problem have found the optimal solution. Not surprisingly, all methods
tried here have also found the true optimal solution many times, as depicted in
Table .4. However, it is important to note that here no efforthas been spent to
exploit the structure of the constraints, whereas in the other study [6] special closed
operators (in addition to standard GA operators) are applied on linear constraints
to satisfy them. Although a similar approach can also be usedwith the proposed
method, we do not consider the special cases here (because such operators can
only be used to a special class of constraints), instead present a generic strategy for
solving constraint optimization problems.

----- Table 4 here-----

18



GA parameters are set as before. Since there are 13 variables, a population size of
(10 � 13) or 130 is used. With the presence of niching, the performance of GAs
becomes better and 38 out of 50 runs have found solutions within 1% from the true
optimum. With the presence of niching and mutation, the performance of GAs is
even better.

Average normalized Euclidean distance of feasible solutions are plotted in Fig-
ure .11 and average ratio of the best fitness obtained by GAs tothe best-known
objective function valuef�3 is plotted in Figure .12. Figures show how diversity
among feasible solutions is restored in GAs with niching andmutation. The lat-
ter figure also shows the suboptimal convergence of GAs without niching in some
runs.

----- Figure 11 here-----

----- Figure 12 here-----

4.4 Test Problem 4

This problem has eight variables and six inequality constraints [6]:

Minimize f4(~x) = x1 + x2 + x3
Subject tog1(~x) � 1 � 0:0025(x4 + x6) � 0;g2(~x) � 1 � 0:0025(x5 + x7 � x4) � 0;g3(~x) � 1 � 0:01(x8 � x5) � 0;g4(~x) � x1x6 � 833:33252x4 � 100x1 + 83333:333 � 0;g5(~x) � x2x7 � 1250x5 � x2x4 + 1250x4 � 0;g6(~x) � x3x8 � x3x5 + 2500x5 � 1250000 � 0;100 � x1 � 10000;1000 � x2; x3 � 10000;10 � xi � 1000; i = 4; : : : ; 8: (10)

The optimum solution is~x�=(579:3167; 1359:943; 5110:071; 182:0174; 295:5985; 217:9799;286:4162; 395:5979);f�4 =7049:330923:
19



All six constraints are active at this solution.

Table .5 shows the performance of GAs with different constraint handling meth-
ods. Michalewicz [6] experienced that this problem is difficult to solve. Out of
seven methods tried in that study, three found solutions somewhat closer to the true
optimum. The best solution obtained by any method used in that study had an ob-
jective function value equal to7377:976, which is about 4.66% worse than the true
optimal objective function value. A population size of 70 was used and floating-
point GAs with a number specialized crossover and mutation operators were run
for 5,000 generations, totaling 350,070 function evaluations. As mentioned earlier,
in this study, we have used a different real-coded GA with SBXoperator and we
have consistently found solutions very close to the true optimum with 80,080 func-
tion evaluations (population size 80, maximum generations1,000). However, the
best solution obtained by GAs with niching and mutation and with a maximum of
320,080 function evaluations (population size 80, maximumgenerations 4,000) has
a function value equal to7060:221, which is only about 0.15% more than the true
optimal objective function value. Thus, GAs with the proposed constraint handling
method has been able to find better solutions than that found by any method used
in [6]. Moreover, the median solution found in GAs with niching and mutation is
even better than the best solution found in [13].

----- Table 5 here-----

Figures .13 and .14 show the effect of niching on the average Euclidean distance
among feasible solutions and the average proportion of feasible solutions in the
population of 50 GA runs. The former figure shows that nichinghelps to maintain
diversity in the population. When mutation operator is added, the diversity among
feasible solutions is better and is maintained for longer generations. The latter fig-
ure shows that initially no solution was feasible. With generations, more number of
feasible solutions are continuously found. Since niching helps to maintain diversity
in feasible solutions, more feasible solutions are also found with generations.

----- Figure 13 here-----

----- Figure 14 here-----

20



4.5 Test Problem 5

This problem has seven variables and four nonlinear constraints [6]:

Minimize f5(~x) = (x1 � 10)2 + 5(x2 � 12)2 + x43 + 3(x4 � 11:0)2+10x65 + 7x26 + x47 � 4x6x7 � 10x6 � 8x7;
Subject tog1(~x) � 127 � 2x21 � 3x42 � x3 � 4x24 � 5x5 � 0;g2(~x) � 282 � 7x1 � 3x2 � 10x23 � x4 + x5 � 0;g3(~x) � 196 � 23x1 � x22 � 6x26 + 8x7 � 0;g4(~x) � �4x21 � x22 + 3x1x2 � 2x23 � 5x6 + 11x7 � 0;�10 � xi � 10; i = 1; : : : ; 7: (11)

The optimal solution is~x�=(2:330499; 1:951372; �0:4775414; 4:365726; �0:6244870;1:038131; 1:594227);f�5 =680:6300573:
At this solution, constraintsg1 andg4 are active. Michalewicz [6] reported that the
feasible region for this problem occupies only about 0.5% ofthe search space.

Table .6 presents the performance of GAs with the proposed constraint handling
method with a population size of10�7 or 70. In this problem also, niching seems to
have done better. In the first case, when GAs are run without niching and mutation,
all GA runs get stuck to a solution closer to the true optimum solution at around
577 generations. Thus, increasing the generation number to5,000 does not alter
GA’s performance. However, when niching is introduced among feasible solutions,
diversity of solutions is maintained and GAs with SBX operator can find better
solutions. For space restrictions, we do not present generation-wise plots for this
and subsequent test problems.

----- Table 6 here-----

The best result reported in [6] is with penalty function approach in which the
penalty parameters are changed with generation. With a total of 350,070 func-
tion evaluations, the best, median, and worst objective function values of 10 runs
were 680.642, 680.718, and 680.955, respectively. Table .6shows that 50 GA runs
with the proposed constrained handling method have found best, median, and worst
solutions as 680.634, 680.642, 680.651, respectively withan identical number of
function evaluations. These solutions are much closer to the true optimum solution

21



than that found by the best algorithm in [6].

4.6 Test Problem 6

This problem has five variables and six inequality constraints [23,7]:

Minimize f6(~x) = 5:3578547x23+ 0:8356891x1x5 + 37:293239x1� 40792:141;
Subject tog1(~x) � 85:334407+ 0:0056858x2x5 + 0:0006262x1x4 � 0:0022053x3x5 � 0;g2(~x) � 85:334407+ 0:0056858x2x5 + 0:0006262x1x4 � 0:0022053x3x5 � 92;g3(~x) � 80:51249+ 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 � 90;g4(~x) � 80:51249+ 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 � 110;g5(~x) � 9:300961+ 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 � 20;g6(~x) � 9:300961+ 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 � 25;78 � x1 � 102;33 � x2 � 45;27 � xi � 45; i = 3; 4; 5: (12)

The best-known optimum solution [23] is~x� = (78:0; 33:0; 29:995; 45:0; 36:776); f�6 = �30; 665:5:
At this solution, constraintsg2 andg5 are active. The best-known GA solution to
this problem obtained elsewhere [3] using a multi-level penalty function method is~xGA = (80:49; 35:07; 32:05; 40:33; 33:34); fGA6 = �30; 005:7;
which is about 2.15% worse than the best-known optimum solution.

Table .7 presents the performance of GAs with the proposed constraint handling
method with a population size10 � 5 or 50. Once again, it is found that the pres-
ence of niching improves the performance of GAs. When GAs arerun longer, the
solution improves in the presence of niching. GAs without niching and mutation
could not improve the solution much with more generations, but GAs with niching
continuously improve the solution with generations. The presence of niching and
mutation finds the best solution. The important aspect is that 47 of 50 runs have
found solutions within 1% of the best-known solution. It is also interesting to note
that all GAs used here have found solutions better than that reported earlier [3],

22



solved using binary GAs with a multi-level penalty functionmethod.

----- Table 7 here-----

4.7 Test Problem 7

This problem has five variables and three equality constraints [6]:

Minimize f7(~x) = exp(x1x2x3x4x5);
Subject toh1(~x) � x21 + x22 + x23 + x24 + x25 = 10;h2(~x) � x2x3 � 5x4x5 = 0;h3(~x) � x31 + x32 = �1;�2:3 � xi � 2:3; i = 1; 2;�3:2 � xi � 3:2; i = 3; 4; 5: (13)

The optimal solution to this problem is as follows:~x�=(�1:717143; 1:595709; 1:827247; �0:7636413; �0:7636450);f�7 =0:053950:
Equality constraints are handled by converting them as inequality constraints as� � jhk(~x)j � 0 for all k, as mentioned earlier. In this problem,� is set to10�3, in
order to allow some room for the search algorithm to work on. Table .8 shows the
performance of GAs with a maximum of 350,050 function evaluations (population
size 50, maximum generations 7,000). Although niching alone could not improve
performance much, along with mutation 19 out of 50 runs have found a solution
within 1% of the optimal objective function value.

----- Table 8 here-----

23



4.8 Test Problem 8

This problem has 10 variables and eight constraints [6]:

Minimize f8(~x) = x21 + x22 + x1x2 � 14x1 � 16x2 + (x3 � 10)2+4(x4 � 5)2 + (x5 � 3)2 + 2(x6 � 1)2 + 5x27+7(x8 � 11)2 + 2(x9 � 10)2 + (x10 � 7)2 + 45;
Subject tog1(~x) � 105 � 4x1 � 5x2 + 3x7 � 9x8 � 0;g2(~x) � �10x1 + 8x2 + 17x7 � 2x8 � 0;g3(~x) � 8x1 � 2x2 � 5x9 + 2x10 + 12 � 0;g4(~x) � �3(x1 � 2)2 � 4(x2 � 3)2 � 2x23 + 7x4 + 120 � 0;g5(~x) � �5x21 � 8x2 � (x3 � 6)2 + 2x4 + 40 � 0;g6(~x) � �x21 � 2(x2 � 2)2 + 2x1x2 � 14x5 + 6x6 � 0;g7(~x) � �0:5(x1 � 8)2 � 2(x2 � 4)2 � 3x25 + x6 + 30 � 0;g8(~x) � 3x1 � 6x2 � 12(x9 � 8)2 + 7x10 � 0;�10 � x1 � 10; i = 1; : : : ; 10:

(14)

The optimum solution to this problem is as follows:~x�= (2:171996; 2:363683; 8:773926; 5:095984; 0:9906548; 1:430574;1:321644; 9:828726; 8:280092; 8:375927); f�8 = 24:3062091:
The first six constraints are active at this solution.

Table .9 shows the performance of GAs with the proposed constraint handling
scheme with a population size10� 10 or 100. In this problem, GAs with and with-
out niching performed equally well. However, GA’s performance improves dras-
tically with mutation, which provided the necessary diversity among the feasible
solutions. This problem was also solved by Michalewicz [6] by different constraint
handling techniques. The best reported method had its best,median, and worst
objective function values as 24.690, 29.258, and 36.060, respectively, in 350,070
function evaluations. This was achieved with a multi-levelpenalty function ap-
proach. With a similar maximum number of function evaluations, GAs with the
proposed constraint handling method have found better solutions (best: 24.372,
median: 24.409, and worst: 25.075). The best solution is within 0.27% of the op-
timal objective function value. Most interestingly, 41 outof 50 runs have found a
solution having objective function value within 1% (orf(~x) smaller than 24.549)

24



of the optimal objective function value.

----- Table 9 here-----

4.9 Welded beam design problem revisited

We shall now apply the proposed method to solve the welded beam design problem
discussed earlier. GA parameter values same as that used earlier are also used here.
Table .10 presents the performance of GAs with a population size 80. Real-coded
GAs without niching is good enough to find a solution within 2.6% of the best ob-
jective function value. However, with the introduction of niching, 28 runs out of 50
runs have found a solution within 1% of the optimal objectivefunction value and
this has been achieved with only a maximum of 40,080 functionevaluations. When
more number of function evaluations are allowed, real GAs with the proposed con-
straint handling technique and mutation operator perform much better—all 50 runs
have found a solution within 0.1% (to be exact) of the true optimal objective func-
tion value. This means that with the proposed GAs, one run is enough to find a
satisfactory solution close to the true optimal solution. In handling such complex
constrained optimization problems, any user would like to use such an efficient yet
robust optimization algorithm.

----- Table 10 here-----

When binary GAs (each variable is coded in 10 bits) with (or without) niching are
applied, no solution within 50% of the best-known solution is found. With niching
on, the best, median, and worst objective function values ofoptimized solutions
are found to be 3.82098, 8.89996, and 14.29893, respectively. Clearly, the real-
coded GA implementation with SBX operator is better able to find near-optimum
solutions than the binary GAs.

Figure .15 shows the performance of various GAs in terms of finding a solution
closer to the true optimum solution. Average ratio of the best objective function
value obtained by GAs to the best-known objective function value of 50 GA runs
is plotted with generation number. The figure shows that binary GAs prematurely
converge to suboptimal solutions, whereas real-coded GAs with niching (and with
or without mutation) find solutions very close to the true optimal solution.

----- Figure 15 here-----

25



4.10 Summary of Results

Here, we summarize the best GA results obtained in this paper(Table .11) and
compare that with the best reported results in earlier studies. It is found here that
the reported solution (marked with a ‘�’) of test problem 2 is not the true optimum.
The solution obtained here is better than this previously-known best solution. In
all problems marked by a ‘#’, a better solution than that obtained by a previous
GA implementation is obtained. In all other cases, the best solution of this study
matches that of the previous GA studies.

----- Table 11 here-----

For test problems 3 to 8, earlier methods recorded the best, median, and worst
values for 10 GA runs only. However, the corresponding values for GAs with the
proposed method have been presented for 50 runs. In some testproblems, the worst
GA solution (albeit a few isolated cases) has an objective function value away from
the true optimal solution. This is because reasonable values (but fixed for all prob-
lems) of GA parameter values are used in this study. With a parametric study of
important GA parameters (for example, population size (here,10 times the number
of variables is used),�c for SBX operator (here, 1 is used),�m for mutation opera-
tor (here, a linear variation from 1 to 100 is used)), the overall performance of GAs
and the worst GA solution can both be improved.

It is clear that in most cases the proposed constraint handling strategy has per-
formed with moreefficiency(in terms of getting closer to the best-known solution)
and with morerobustness(in terms of more number of successful GA runs finding
solutions close to the best-known solution) than previous methods.

5 Conclusions

The major difficulty in handling constraints using penalty function methods in GAs
and in classical optimization methods has been to set appropriate values for penalty
parameters. This often requires users to experiment with different values of penalty
parameters. In this paper, we have developed a constraint handling method for GAs
which does not require any penalty parameter. The need of a penalty parameter
arises in order to maintain the objective function value andthe constraint violation
values of the same order. In the proposed method, solutions are never compared in
terms of both objective function value and constraint violation information. Thus,
penalty parameters are not needed in the proposed approach.Infeasible solutions
are penalized in a way so as to provide a search direction towards the feasible region
and when adequate feasible solutions are found a niching scheme is used to main-
tain diversity. This aids GA’s crossover operator to find better and better solutions

26



with generation. All these have been possible mainly because of the population
approach of GAs and ability to have pair-wise comparison of solutions using the
tournament selection operator. It is important to note thatthe proposed constraint
handling approach is not suitable for classical point-by-point search methods. Thus,
GAs or other evolutionary computations methods have a nicheover classical meth-
ods to handle constraints with the proposed approach.

On a number of test problems including an engineering designproblem, GAs with
the proposed constraint handling method have repeatedly found solutions closer to
the true optimal solutions than earlier GAs. On one test problem, a solution better
than that reported as the optimal solution earlier is also found.

It has also been observed that since all problems used in thisstudy are defined in
the real space and the feasible regions are usually of arbitrary shape (convex or
concave), the use of real-coded GAs with a controlled searchoperator are more
suited than binary GAs in finding feasible children solutions from feasible parent
solutions. In this respect, the use of real-coded GAs with SBX and a parameter-
based mutation operator have been found to be useful. It would be worthwhile
to investigate how the proposed constraint handling methodwould perform with
binary GAs to problems having discrete variables.

All problem-independent GA parameters are used in this study. In all test problems,
reasonable values for these GA parameters are used. It wouldbe worthwhile to do a
parametric study of important GA parameters to improve the performance of GAs
even further.

The results on the limited test problems studied here are interesting and show
promise for a reliable and efficient constrained optimization task through GAs.

Acknowledgments

The author greatly appreciates the programming help provided by couple of his stu-
dents: Samir Agrawal and Priya Rawat. Comments made by Zbigniew Michalewicz
on an earlier version of the paper are highly appreciated. Some portions of this study
have been performed during the author’s visit to the University of Dortmund, Ger-
many, for which the author acknowledges the support from Alexander von Hum-
boldt Foundation.

References

[1] K. Deb, Optimization for engineering design: Algorithms and examples. (Prentice-
Hall, New Delhi, 1995).

27



[2] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell,Engineeringoptimizationmethods
and applications(Wiley, New York, 1983).

[3] A. Homaifar, S. H.-V. Lai, X. Qi, Constrained optimization via genetic algorithms.
Simulation62/4 (1994) 242–254.

[4] J. A. Joines and C. R. Houck, On the use of nonstationary penalty functions to solve
nonlinear constrained optimization problems with GAs. in:Z. Michalewicz, ed.,
Proceedings of the International Conference on Evolutionary Computation(IEEE
Press, Piscataway, 1994) 579–584.

[5] Z. Michalewicz and N. Attia, Evolutionary optimizationof constrained problems. in:
A. V. Sebald and L. J. Fogel, eds.,Proceedings of the Third Annual Conference on
Evolutionary Programming. (World Scientific, Singapore, 1994) 98–108.

[6] Z. Michalewicz, Genetic algorithms, numerical optimization, and constraints, in:
L. Eshelman, ed.,Proceedings of the Sixth International Conference on Genetic
Algorithms(Morgan Kauffman, San Mateo, 1995) 151–158.

[7] Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for constrained
parameter optimization problems,Evolutionary Computation4/1 (1996) 1–32.

[8] D. Powell and M. M. Skolnick, Using genetic algorithms inengineering design
optimization with nonlinear constraints. in: S. Forrest, ed., Proceedings of the Fifth
International Conference on Genetic Algorithms(Morgan Kauffman, San Mateo,
1993) 424–430.

[9] K. Deb, Optimal design of a welded beam structure via genetic algorithms,AIAA
Journal29/11 (1991) 2013–2015.

[10] J-H. Kim and H. Myung, Evolutionary programming techniques for constraint
optimization problems.IEEE Transcations on Evolutionary Computation1/2 (1997)
129–140.

[11] D. E. Goldberg, Personal communication (September 1992).

[12] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard, Some guidelines for
genetic algorithms with penalty functions, in: J. D. Schaffer, ed.,Proceedings of
the Third International Conference on Genetic Algorithms(Morgan Kauffman, San
Mateo, 1989) 191–197.

[13] Z. Michalewicz, Personal communication (June 1998).

[14] K. Deb, and R. B. Agrawal, Simulated binary crossover for continuous search space,
Complex Systems9 (1995) 115–148.

[15] K. Deb and M. Goyal, A combined genetic adaptive search (GeneAS) for engineering
design,Computer Science and Informatics26/4 (1996) 30–45.

[16] K. Deb, and D. E. Goldberg, An investigation of niche andspecies formation in
genetic function optimization, in: J. D. Schaffer, ed.,Proceedings of the Third
International Conference on Genetic Algorithms(Morgan Kauffman, San mateo,
1989) 42–50.

28



[17] D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning
(Addison-Wesley, Reading, 1989).

[18] I. Rechenberg, Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien
des Biologischen Evolution (Fromman-Holzboog Verlag, Stuttgart, 1973).

[19] H.-P. Schwefel, Numerical Optimization of Computer Models (Wiley, New York,
1983).

[20] K. Deb and A. Kumar, Real-coded genetic algorithms withsimulated binary
crossover: Studies on multimodal and multiobjective problems,Complex Systems9/6
(1995) 431–454.

[21] D. E. Goldberg, K. Deb, and J. H. Clark, Genetic algorithms, noise, and the sizing of
populationsComplex Systems6 (1992) 333–362.

[22] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller,The gambler’s ruin
problem, genetic algorithms, and the sizing of populations, in: T. Bäck, Z.
Michalewicz, and X. Yao, eds.,Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation(IEEE Press, Piscataway, 1997) 7–12.

[23] D. M. Himmelblau, Applied nonlinear programming (McGraw-Hill, New York,
1972).

[24] W. Hock and K. Schittkowski, Test examples for nonlinear programming code.
Lecture Notes on Economics and Mathematical Systems187 (Springer-Verlag,
Berlin, 1981).

29



Appendix

A Simulated Binary Crossover and Parameter-based Mutation

The development of simulated binary crossover operator (SBX) and parameter-
based mutation operator for handling floating point numberswere performed in
earlier studies [14,15]. Here, we simply present the procedures for calculating chil-
dren solutions from parent solutions under crossover and mutation operators.

A.1 Simulated Binary Crossover (SBX) Operator

The procedure of computing children solutionsy(1) andy(2) from two parent solu-
tionsx(1) andx(2) are as follows:

(1) Create a random numberu between 0 and 1.
(2) Find a parameter�� using a polynomial probability distribution, developed in

[14] from a schema processing point of view, as follows:�� = 8><>: (2u) 1�c+1 ; if u � 0:5;� 12(1�u)� 1�c+1 ; otherwise,
(A.1)

where�c is the distribution index for SBX and can take any non-negative
value. A small value of�c allows solutions far away from parents to be created
as children solutions and a large value restricts only near-parent solutions to
be created as children solutions.

(3) The children solutions are then calculated as follows:y(1)=0:5 h(x(1) + x(2))� ��jx(2) � x(1)ji ;y(2)=0:5 h(x(1) + x(2)) + ��jx(2) � x(1)ji :
The above procedure is used for variables where no lower and upper bounds are
specified. Thus, the children solutions can lie anywhere in the real space [�1,1] with varying probability. For calculating the children solutions where lower
and upper bounds (xl andxu) of a variable are specified, equation A.1 needs to be
changed as follows: �� = 8><>: (�u) 1�c+1 ; if u � 1� ;� 12��u� 1�c+1 ; otherwise; (A.2)

30



where� = 2 � ��(�c+1) and� is calculated as follows:� = 1 + 2y(2) � y(1) min[(x(1) � xl); (xu � x(2))]:
It is assumed here thatx(1) < x(2). A simple modification to the above equation
can be made forx(1) > x(2). The above procedure allows a zero probability of
creating any children solution outside the prescribed range [xl, xu]. It is intuitive
that equation A.2 reduces to equation A.1 forxl = �1 andxu =1.

For handling multiple variables, each variable is chosen with a probability 0.5 in
this study and the above SBX operator is applied variable-by-variable. This way
about half of the variables get crossed over under the SBX oparator. SBX operator
can also be applied once on a line joining the two parents. In all simulation results
here, we have used�c = 1.

A.2 Parameter-based Mutation Operator

A polynomial probability distribution is used to create a solution y in the vicinity of
a parent solutionx [15]. The following procedure is used for variables where lower
and upper boundaries are not specified:

(1) Create a random numberu between 0 and 1.
(2) Calculate the parameter�� as follows:�� = 8><>: (2u) 1�m+1 � 1; if u � 0:5,1� [2(1� u)] 1�m+1 ; otherwise,

(A.3)

where�m is the distribution index for mutation and takes any non-negative
value.

(3) Calculate the mutated child as follows:y = x+ ���max;
where�max is the maximum perturbance allowed in the parent solution.

For variables where lower and upper boundaries (xl andxu) are specified, above
equation may be changed as follows:�� = 8><>: [2u + (1� 2u)(1� �)�m+1] 1�m+1 � 1; if u � 0:5,1� [2(1 � u) + 2(u� 0:5)(1 � �)�m+1] 1�m+1 ; otherwise,

(A.4)

31



where� = min[(x�xl); (xu�x)]=(xu�xl). This ensures that no solution would be
created outside the range [xl, xu]. In this case, we set�max = xu�xl. Equation A.4
reduces to equation A.3 forxl = �1 andxu =1.

Using above equations, we can calculate the expected normalized perturbance ((y�x)=(xu�xl)) of the mutated solutions in both positive and negative sides separately.
We observe that this value isO(1=�m). Thus, in order to get a mutation effect of 1%
perturbance in solutions, we should set�m � 100. In all our simulations wherever
mutation is used, we set�m = 100 + t and the probability of mutation is changed
as follows: pm = 1n + ttmax �1� 1n� ;
wheret andtmax are current generation number and the maximum number of gen-
erations allowed, respectively. Thus, in the initial generation, we mutate on an aver-
age one variable (pm = 1=n) with an expected 1% perturbance and as generations
proceed, we mutate more variables with lesser expected perturbance. This setting
of the mutation operator is arbitrarily chosen and has foundto have worked well
in all problems tried in this paper. No effort is spent in tuning these parameters for
obtaining better results.

B Terms and Parameters Used in Test Function 2

The following terms are required to compute the objective function and constraints
for the test problem 2 [23,24]:y1(~x) =x1 + x2 + 41:6;c1(~x) = 0:024x4 � 4:62;y2(~x) = 12:5=c1(~x) + 12:0;c2(~x) = 0:0003535x1x1 + 0:5311x1 + 0:08705y2(~x)x1;c3(~x) = 0:052x1 + 78:0 + 0:002377y2(~x)x1;y3(~x) = c2(~x)=c3(~x);y4(~x) = 19:0y3(~x);c4(~x) = 0:04782(x1 � y3(~x)) + 0:1956(x1 � y3(~x))2=x2 + 0:6376y4(~x) + 1:594y3(~x);c5(~x) = 100:0x2;c6(~x) =x1 � y3(~x)� y4(~x);c7(~x) = 0:95 � c4(~x)=c5(~x);y5(~x) = c6(~x)c7(~x);y6(~x) =x1 � y5(~x)� y4(~x)� y3(~x);c8(~x) = 0:995(y4(~x) + y5(~x));

32



y7(~x) = c8(~x)=y1(~x);y8(~x) = c8(~x)=3798:0;c9(~x) = y7(~x)� 0:0663y7(~x)=y8(~x)� 0:3153;y9(~x) = 96:82=c9(~x) + 0:321y1(~x);y10(~x) = 1:29y5(~x) + 1:258y4(~x) + 2:29y3(~x) + 1:71y6(~x);y11(~x) = 1:71x1 � 0:452y4(~x) + 0:58y3(~x);c10(~x) = 12:3=752:3;c11(~x) = 1:75y2(~x)0:995x1;c12(~x) = 0:995y10(~x) + 1998:0;y12(~x) = c10(~x)x1 + c11(~x)=c12(~x);y13(~x) = c12(~x)� 1:75y2(~x);y14(~x) = 3623:0 + 64:4x2 + 58:4x3 + 146312:0=(y9(~x) + x5);c13(~x) = 0:995y10(~x) + 60:8x2 + 48:0x4 � 0:1121y14(~x)� 5095:0;y15(~x) = y13(~x)=c13(~x);y16(~x) = 148000:0 � 331000:0y15(~x) + 40y13(~x)� 61:0y15(~x)y13(~x);c14(~x) = 2324:0y10(~x)� 28740000:0y2(~x);y17(~x) = 14130000:0 � 1328:0y10(~x)� 531:0y11(~x) + c14(~x)=c12(~x);c15(~x) = y13(~x)=y15(~x)� y13(~x)=0:52;c16(~x) = 1:104 � 0:72y15(~x);c17(~x) = y9(~x) + x5:
The values ofa[i] andb[i] for i = 1; : : : ; 18 are as follows:

a[i] = f0, 0, 17.505, 11.275, 214.228, 7.458,
0.961, 1.612, 0.146, 107.99, 922.693,
926.832, 18.766, 1072.163, 8961.448,
0.063, 71084.33, 2802713.0g,

b[i] = f0, 0, 1053.6667, 35.03, 665.585,
584.463, 265.916,7.046, 0.222, 273.366,
1286.105, 1444.046, 537.141, 3247.039,
26844.086, 0.386, 140000.0, 12146108.0g.

33



Table .1
Number of runs (out of 50 runs) converged within�% of the best-known solution using
binary GAs with different penalty parameter values on the welded beam design problem.
Table .2
Number of runs (out of 50 runs) converged within�% of the optimum solution for real-
coded GAs with two constraint handling techniques—Powell and Skolnick’s method (PS)
with differentR values and the proposed method (TS-R)—on test problem 1.
Table .3
Number of runs (out of 50 runs) converged within�% of the best-known solution using
real-coded GAs with the proposed constraint handling scheme (TS-R) and using Powell and
Skolnick’s method (PS-a) with different penalty parametersR = 10a on test problem 2.
Table .4
Number of runs (out of 50 runs) converged within�% of the best-known solution using
real-coded GAs with the proposed constraint handling scheme on test problem 3.
Table .5
Number of runs (out of 50 runs) converged within�% of the best-known solution using
real-coded GAs with the proposed constraint handling scheme on test problem 4.
Table .6
Number of runs (out of 50 runs) converged within�% of the best-known solution using
GAs with the proposed constraint handling scheme on test problem 5.
Table .7
Number of runs (out of 50 runs) converged within�% of the best-known solution using
real-coded GAs with the proposed constraint handling scheme on test problem 6.
Table .8
Number of runs (out of 50 runs) converged within�% of the best-known solution using
real-coded GAs with the proposed constraint handling scheme on test problem 7.
Table .9
Number of runs (out of 50 runs) converged within�% of the best-known solution using
real-coded GAs with the proposed constraint handling scheme on test problem 8.
Table .10
Number of runs (out of 50 runs) converged within�% of the best-known solution using bi-
nary GAs (TS-B) and real-coded GAs (TS-R) with the proposed constraint handling scheme
on the welded beam design problem.
Table .11
Summary of results of this study. A ‘–’ indicates that information is not available.

34



Fig. .1. The proposed constraint handling scheme is illustrated. Six solid circles are solu-
tions in a GA population.

Fig. .2. Contour plot of the objective functionf(x; y) and the feasible search space are
shown. Contours are plotted atf(x; y) values 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, and 1.

Fig. .3. Contour plot of the fitness functionF (x; y) at a particular generation is shown.
Contours are plotted atF (x; y) values 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 2, 3, and 4.

Fig. .4. Powell and Skolnick’s constraint handling scheme is illustrated. Six solid circles
are solutions in a GA population.

Fig. .5. Population history at initial generation (marked with open circles), at generation 10
(marked with ‘�’) and at generation 50 (marked with open boxes) using Powelland Skol-
nick’s method (R = 1) on test problem 1. The population converges to a wrong, infeasible
solution.

Fig. .6. Population history at initial generation (marked with open circles), at generation
10 (marked with ‘�’) and at generation 50 (marked with open boxes) using the proposed
scheme on test problem 1. The population converges to a solution very close to the true
constrained optimum solution on a constraint boundary.

Fig. .7. Comparison of the proposed (TS) and Powell and Skolnick’s (PS) methods for
constraint handling in terms of average number of feasible solutions found in 50 GA runs
on test problem 1.

Fig. .8. Comparison of the proposed (TS) and Powell and Skolnick’s (PS) methods for
constraint handling in terms of average normalized Euclidean distance among feasible so-
lutions in 50 GA runs on test problem 1.

Fig. .9. Average normalized Euclidean distance of feasiblesolutions versus generation
number on test problem 2.

Fig. .10. Average ratio of the bestf(~x) found by GAs tof�2 is plotted versus generation
number on test problem 2.

Fig. .11. Average normalized Euclidean distance of feasible solutions for different
real-coded GAs with the proposed constraint handling scheme is plotted versus generation
number on test problem 3.

Fig. .12. Averagef(~x)=f�3 obtained by different real-coded GAs with the proposed con-
straint handling scheme is plotted versus generation number on test problem 3.

Fig. .13. Average Euclidean distance of feasible solutionsin 50 runs of real-coded GAs
with the proposed constraint handling scheme on test problem 4.

Fig. .14. Average proportion of feasible solutions in the population obtained by 50 runs of
real-coded GAs with the proposed constraint handling scheme on test problem 4.

Fig. .15. Averagef(~x)=f�w obtained by different GAs with the proposed constraint handling
scheme is plotted versus generation number on the welded beam design problem.

35


