An Efficient Constraint Handling Method
for Genetic Algorithms

Kalyanmoy Deb

Kanpur Genetic Algorithms Laboratory (KanGAL)
Department of Mechanical Engineering
Indian Institute of Technology Kanpur
Kanpur, PIN 208 016, India

E-mail: deb@iitk.ac.in

Abstract

Many real-world search and optimization problems involvequality and/or equality con-
straints and are thus posed as constrained optimizatidrems. In trying to solve con-
strained optimization problems using genetic algorith@#ag) or classical optimization
methods, penalty function methods have been the most pogy@oach, because of their
simplicity and ease of implementation. However, since taealty function approach is
generic and applicable to any type of constraint (linearanlimear), their performance is
not always satisfactory. Thus, researchers have develepehisticated penalty functions
specific to the problem at hand and the search algorithm wseaptimization. However,
the most difficult aspect of the penalty function approadio ind appropriate penalty pa-
rameters needed to guide the search towards the constigtieaim. In this paper, GA's
population-based approach and ability to make pair-wiseparison in tournament selec-
tion operator are exploited to devise a penalty functiorraggh that does not require any
penalty parameter. Careful comparisons among feasiblerdeasible solutions are made
So as to provide a search direction towards the feasibleme@nce sufficient feasible so-
lutions are found, a niching method (along with a controimatation operator) is used to
maintain diversity among feasible solutions. This alloweal-parameter GA's crossover
operator to continuously find better feasible solutionadgially leading the search near
the true optimum solution. GAs with this constraint hanglapproach have been tested on
nine problems commonly used in the literature, includingeagineering design problem.
In all cases, the proposed approach has been able to relydatddsolutions closer to the
true optimum solution than that reported earlier.

1 Introduction

Many search and optimization problems in science and eaegimginvolve a num-
ber of constraints which the optimal solution must satiéfgonstrained optimiza-

Preprint submitted to Elsevier Preprint 3 December 1998

tion problem is usually written as a nonlinear programmiNg®) problem of the
following type:

Minimize f(&)

Subject tog;(¥) > 0, =1,...,J, 1)
hk(:i"):(), kzl,...,[(,
l’i <g, <zt =1 n.

In the above NLP problem, there atevariables (that isy is a vector of size:), J
greater-than-equal-to type inequality constraints, Andquality constraints. The
function f(Z) is the objective functiory; () is thej-th inequality constraints, and
hy(Z) is thek-th equality constraints. Theth variable varies in the rande!, z*].

IR RS

Constraint handling methods used in classical optiminagigorithms can be clas-
sified into two groups: (igenericmethods that do not exploit the mathematical
structure (whether linear or nonlinear) of the constraamigl (ii) specificmethods
that are only applicable to a special type of constraintsigéie methods, such
as the penalty function method, the Lagrange multiplierroét and the complex
search method [1,2] are popular, because each one of thetnecaasily applied
to any problem without much change in the algorithm. But sitteese methods
are generic, the performance of these methods in most cases isatisfactory.
However, specific methods, such as the cutting plane methededuced gradient
method, and the gradient projection method [1,2], are apple either to problems
having convex feasible regions only or to problems havingyavariables, because
of increased computational burden with large number ofaldes.

Since genetic algorithms (GAs) are generic search methodst applications of
GAs to constraint optimization problems have used the pehahction approach
of handling constraints. The penalty function approacblves a number of penalty
parameters which must be set rightin any problem to obtaisilfide solutions. This
dependency of GAs performance on penalty parameters dag$earchers to de-
vise sophisticated penalty function approaches such as lewgt| penalty functions
[3], dynamic penalty functions [4], and penalty functionsalving temperature-
based evolution of penalty parameters with repair opesd&jr All these approaches
require extensive experimentation for setting up appadprparameters needed
to define the penalty function. Michalewicz [6] describes thfficulties in each
method and compares the performance of these algorithmsmmmder of test
problems. In a similar study, Michalewicz and Schoenaugc¢ncluded that the
static penalty function method (without any sophisticalice a more robust ap-
proach than the sophisticated methods. This is because umhe sephisticated
method may work well on some problems but may not work so weknother
problem.

In this paper, we develop a constraint handling method bardtie penalty func-
tion approach which does not require any penalty paraméher.pair-wise com-
parison used in tournament selection is exploited to make that (i) when two
feasible solutions are compared, the one with better abgedtinction value is
chosen, (ii) when one feasible and one infeasible solu@mesompared, the fea-
sible solution is chosen, and (iii) when two infeasible solus are compared, the
one with smaller constraint violation is chosen. This ajppfois only applicable to
population-based search methods such as GAs or other @ computation
methods. Although at least one other constraint handlinthatksatisfying above
three criteria was suggested earlier [8] it involved pgnplrameters which again
must be set right for proper working of the algorithm.

In the remainder of the paper, we first show that the perfosear a binary-coded
GA using the static penalty function method on an engingedesign problem
largely depends on the chosen penalty parameter. Thereaéeescribe the pro-
posed constraint handling method and present the perfaenainreal-parameter
GAs on nine test problems, including the same engineerisgderoblem. The
results are also compared with best-known solutions obthairsing earlier GA im-
plementations or using classical optimization methods.

2 Constraint Handling in GAs

In most applications of GAs to constrained optimizationkpeons, the penalty
function method has been used. In the penalty function ndetbiohandling in-
equality constraints in minimization problems, the fitnesgction /(%) is defined
as the sum of the objective functigiiz) and a penalty term which depends on the
constraint violationg;(Z)):

J

F(&) = f(Z) + 22 Ri{g; (7)), 2

i=1

where() denotes the absolute value of the operand, if the operarebistive and
returns a value zero, otherwise. The paraméters the penalty parameter of the
J-th inequality constraint. The purpose of a penalty paramgt is to make the
constraint violationg, () of the same order of magnitude as the objective func-
tion value f(Z). Equality constraints are usually handled by convertirgntinto

inequality constraints as follows

gr5(T) = 6 = [hi(T)] = 0,

whered is a small positive value. This increases the total numbaneduality
constraints ton = .J + K and the term/ in equation 2 can then be replacedshy
to include all inequality and equality constraints. Thirgre are total of: penalty
parameters?; which must be set right in a penalty function approach.

In order to reduce the number of penalty parameters, oftercdnstraints are nor-
malized and only one penalty parameters used [1]. In any case, there are two
problems associated with this static penalty function agpin:

(1) The optimal solution of’(%) depends on penalty parametés(or R). Users
usually have to try different values &f; (or k) to find what value would steer
the search towards the feasible region. This requires sxemxperimenta-
tion to find any reasonable solution. This problem is so seteat some re-
searchers have used different valueg®f(or k) depending on the level of
constraint violation [3], and some have used sophisticestperature-based
evolution of penalty parameters through generations [&dliring a few pa-
rameters describing the rate of evolution.

(2) The inclusion of the penalty terthstortsthe objective function [1]. For small
values ofR; (or R), the distortion is small, but the optimum 6% #) may not
be near the true constrained optimum. On the other handaiige F; (or R)
is used, the optimum df (%) is closer to the true constrained optimum, but the
distortion may be so severe that) may have artificial locally optimal solu-
tions. This primarily happens due to interactions amongtiplel constraints.
To avoid such locally optimal solutions, classical penéliigction approach
works in sequences, where in every sequence the penaltynptees are in-
creased in steps and the current sequence of optimizatgindtom the op-
timized solution found in the previous sequence. This wagrdrolled search
is possible and locally optimal solutions can be avoidedvéier, most clas-
sical methods use gradient-based search methods andyusaed difficulty
in solving discrete search space problems and to problewisdha large num-
ber of variables. Although GAs do not use gradient informmtithey are not
free from the distortion effect caused due to the additiothefpenalty term
with the objective function. However, GAs are comparagneks sensitive to
distorted function landscapes due to the stochasticitlgeir bperators.

11t is important to note that this transformation makes trsléng inequality constraint

function non-differentiable, thereby causing difficulty tnany classical search and opti-
mization algorithms to use this transformation. In thossesa an equality constraint is
converted into two inequality constrainig(z) < § andh(Z) > —6.

In order to investigate the effect of the penalty paramétefor i) on the perfor-
mance of GAs, we consider a well-studied welded beam desigigm [2]. The
resulting optimization problem has four design variabfes: (4, /¢, t,b) and five

inequality constraints:
Minimize f,,(Z) = 1.10471h%¢ 4 0.04811tb(14.0 + (),

13,600 — (%) > 0,

30,000 — o(Z) > 0,
b—h>0,

P(7) — 6,000 >0,
0.2

h <

Subject tog,

g2\

&1

)
)
)

@

3)

@

4

—6(7) >0,
10,
< 10.

(7
(7
5
(7
95(&
12

IA

v)
v)
5
<

o
@‘

o o

A , L,

The termsr (), o(%), P.(Z), andd(Z) are given below:

H(@) = (@) + (@) + (@) (@) 025 + (h + 1),

() = 504, 000
AT
P.(%)=64,746.022(1 — 0.0282346¢)b,
o 2.1952
(S((E) = W,
where
() = 6,000
TIZ
V2h
6,000(14 + 0.50)4/0.25(£2 + (h + t)?
() = $2000 WO0.25(£2 + (h +1)%)

2{0.707he(£2 /12 + 0.25(h + 1)2)}

The optimized solution reported in the literature [2his = 0.2444, /* = 6.2187,
t* = 8.2915, andb* = 0.2444 with a function value equal tg* = 2.38116.
Binary GAs are applied on this problem in an earlier studyday the solution
7 = (0.2489,6.1730,8.1789,0.2533) with f = 2.43 (within 2% of the above best
solution) was obtained with a population size of 100. Howgteras observed that
the performance of GAs largely dependent on the chosentygrabmeter values.

In order to get more insights on the working of GAs, we applydoy GAs with
tournament selection without replacement and singletmoassover operator with

p. = 0.9 on this problem. In the tournament selection, two solutiares picked
at random from the population and are compared based on fitlvegss (7))
values. The better solution is chosen and kept in an intelateegopulation. This
process is continued till alV population slots are filled. This operation is usually
performed systematically, so the best solution in a pomradlways get exactly
two copies in the intermediate population. Each variabt®ded in 10 bits, so that
total string length is 40. A population size of 80 is used as@ith 50 different
initial populations are run. GAs are run till 500 generaioAll constraints are
normalized (for example, the first constraint is normaliasdl — () /13600 > 0,
and so on) and a single penalty paramétés used. Table .1 shows the performance
of binary GAs for different penalty parameter values.

----- Table 1 here - - - -

For each case, the best, mediaand worst values of 50 optimized objective func-
tion values are also shown in the table. With= 1, although three out of 50 runs
have found a solution within 10% of the best-known soluti®GA runs have not
been able to find a single feasible solution in 40,080 fumataluations. This hap-
pens because with smadll there is not much pressure for the solutions to become
feasible. With large penalty parameters, the pressurediotisns to become fea-
sible is more and all 50 runs found feasible solutions. Hexgvecause of larger
emphasis of solutions to become feasible, when a partisolation becomes fea-
sible it has a large selective advantage over other soki{fhich are infeasible) in
the population. If new and different feasible solutions raoé created, GAs would
overemphasize this sole feasible solution and soon pregigttonverge near this
solution. This has exactly happened in GA runs with largevalues, where the
best solution obtained is, in most cases, more than 50% awagr(ns of function
values) from the true constrained optimum.

Similar experiences have been reported by other researohapplying GAs with

penalty function approach to constrained optimizatiorbfgms. Thus, if penalty
function method is to be used, the user usually have to take mas or ‘adjust’

the penalty parameters to get a solution within an acceptakbit. In a later sec-
tion, we shall revisit this welded beam design problem armhshow the proposed
constrained handling method finds solutions very closegartie optimum reliably
and without the need of using any penalty parameter.

Michalewicz [6] and later Michalewicz and Schoenauer [Ajehdiscussed differ-
ent constraint handling methods used in GAs. They haveifitessnost of the
evolutionary constraint handling methods into five categgr(1l) methods based
on preserving feasibility of solutions, (2) methods basegenalty functions, (3)
methods making distinction between feasible and infeasiblutions, (4) methods
based on decoders, and (5) hybrid methods. The methods thredérst category

2 The optimized objective function values (of 50 runs) aramaged in ascending order and
the 25th value in the list is called the median optimized fiomcvalue.

explicitly use the knowledge of the structure of the consteaand use a search
operator that maintains the feasibility of solutions. Setalass of methods uses
penalty functions of various kinds, including dynamic pénapproaches where
penalty parameter are adapted dynamically over time. Tiné ¢hass of constraint
handling methods uses different search operators for mnufifeasible and feasi-
ble solutions. The fourth class of methods uses an indiggmesentation scheme
which carries instructions for constructing a feasiblausioh. In the fifth category,
evolutionary methods are combined with heuristic ruleslassical constrained
search methods. Michalewicz and Schoenauer [7] have cadmhfferent algo-
rithms on a number of test problems and observed that eadiosh@torks well on
some classes of problems whereas does not work well on otbblgmns. Owing
to this inconsistency in the performance of different mef)dhey suggested to use
the static penalty function method, similar to that giverequation 2. Recently, a
two-phase evolutionary programming (EP) method is dewsddi0]. In the first
phase, a standard EP technique with a number of strategynptees which were
evolved during the optimization process was used. With th&i®n obtained in the
first phase, a neural network method was used in the secorse ptndmprove the
solution. The performance of the second phase depends ogrlbsea solution to
the true optimal solution is found in the first phase. The apph involves too many
different procedures with many control parameters and unislear which proce-
dure and parameter settings are important. Moreover, otlteogix test problems
used in the study, five were two-variable problems havingatrtwo constraints. It
is unclear how this rather highly sophisticated method sadlle up its performance
to more complex problems.

In the following section, we present a different yet simpenalty function ap-
proach which does not require any penalty parameter, tigenatxing the approach
applicable to a wide variety of constrained optimizatioalpgems.

3 Proposed Constraint Handling Method

The proposed method belongs to both second and third caegdiconstraint han-
dling methods described by Michalewicz and SchoenaueAlfough a penalty
term is added to the objective function to penalize infdassblutions, the method
differs from the way the penalty term is defined in conversiomethods and in
earlier GA implementations.

The method proposes to use a tournament selection opesdtere two solutions
are compared at a time, and the following criteria are alvexfsrced [11]:

(1) Any feasible solution is preferred to any infeasibleusiain,
(2) Among two feasible solutions, the one having better cibje function value
is preferred,

(3) Among two infeasible solutions, the one having smaltarstraint violation
is preferred.

Although there exist a number of other implementations,@Bwhere criteria
similar to the above are imposed in their constraint hargdlpproaches, all of
these implementations used different measures of constrmiations which still

needed a penalty parameter for each constraint.

Recall that penalty parameters are needed to make the amnstolation values
of the same order as the objective function value. In the ggegd method, penalty
parameters are not needed because in any of the above tergiss, solutions
are never compared in terms of both objective function amgsiraint violation in-
formation. Of the three tournament cases mentioned aboveeifirst case, neither
objective function value nor the constraint violation infation is used, simply the
feasible solution is preferred. In the second case, solstasze compared in terms
of objective function values alone and in the third casejtsmhs are compared in
terms of the constraint violation information alone. Moren the idea of compar-
ing infeasible solutions only in terms of constraint viadaithas a practical implica-
tion. In order to evaluate any solution (say a particulaunsoh of the welded beam
problem discussed earlier), it is a usual practice to firsc&hhe feasibility of the
solution. If the solution is infeasible (that is, at lease@wonstraint is violated), the
designer will never bother to compute its objective functalue (such as the cost
of the design). It does not make sense to compute the olgdatiction value of an
infeasible solution, because the solution simply cannatipéemented in practice.

Motivated by these arguments, we devise the following farfaaction, where in-
feasible solutions are compared based on only their canstrialation:

v if g;(=1,2,...
F(f) _ f(l’), I g](x)z 07 \V/.] 9=y 7m7 (4)
fmax + X721 (g; (%)), otherwise.

The parametel.... is the objective function value of the worst feasible sauti
in the population. Thus, the fithess of an infeasible sotuhiot only depends on
the amount of constraint violation, but also on the popafatf solutions at hand.
However, the fitness of a feasible solution is always fixediardjual to its objec-
tive function value.

We shall first illustrate this constraint handling techrégqun a single-variable con-
strained minimization problem and later show its effect @amtours of a two-
dimensional problem. In Figure .1, the fitness functi®) (thick line in infeasible
region and dashed line in feasible region) are shown. Thensiained minimum
solution is not feasible here. It is important to note that') = f(Z) in the feasi-

ble region and there is a graddaincrease in fitness for infeasible solutions away
from the constraint boundary. Under the tournament seleaiperator mentioned
earlier, there will be selective pressure for infeasibleisons to come closer and
inside the feasible region. The figure also shows how thed#tralue of six popu-
lation members (shown by solid bullets) will be evaluatéds interesting to note
how the fitness of infeasible solutions depends on the weesilble solution. If no
feasible solution exists in a populatiofy,. is set to zero.

----- Figure 1 here - - - -

It is important to reiterate that since solutions are not pared in terms of both
objective function value and constraint violation infortnoa, there is no need of
any explicit penalty parameter in the proposed method. iBrésmajor advantage
of the proposed method over earlier penalty function im@etations using GAs.
However, to avoid any bias from any particular constraititcanstraints are nor-

malized (a usual practice in constrained optimization fj)l equation 4 is used.
It is important to note that such a constraint handling sahenthout the need of
a penalty parameter is possible because GAs use a popubsofutions in every

iteration and a pair-wise comparison of solutions is pdesilsing the tournament
selection operator. For the same reason, such schemed baunsed with classical
point-by-point search and optimization methods.

The proposed constraint handling technique is bettetitesd in Figures .2 and .3,
where fitness function is shown by drawing contours of thie#aihg NLP problem:

Minimize f(x,y) = (z — 0.8)* + (y — 0.3),
Subject tog; (z,y) =1 — [(x — 0.2)2 + (y — 0.5)%]/0.16 > 0, (5)
ga(z,y) = [(x +0.5)% + (y — 0.5)2]/0.81 — 1 > 0.

The contours have higher function values as they move oltepoint(z,y) =
(0.8,0.3). Figure .2 shows the contour plot of the objective functjin,y) and
the crescent shaped (non-convex) feasible region formeg (by y) and g2 (z, y)
constraint functions. Assuming that the worst feasibleitsoh in a population lie
at(0.35,0.85) (the point marked by a ‘o’ in the figure), the correspondjiyg, =
0.505. Figure .3 shows the contour plot of the fitness functit,) (calculated
using equation 4). Itis interesting to note that the corgalarnot get changed inside

3 Although, in some cases, it is apparent that the above gyratay face trouble where

constraint violations may not increase monotonically friiva constraint boundary inside
the infeasible region [13], this may not be a problem to GAsc&the above strategy guar-
antees that the fitness of any feasible solution is betterfitreess of all infeasible solutions
in a population, once a feasible solution is found, suchineatity in constraint violations

may not matter much. However, this needs a closer look whielphan to investigate in a

future study.

the feasible region, whereas they become parallel to thst@int surface outside
the feasible region. Thus, when most solutions in a popriadre infeasible, the
search forces solutions to come closer to feasible regimeeQufficient solutions
exist inside the feasible region, the search gets directélaebeffect of the objective
function alone. In the case of multiple disconnected fdagiegions, the fitness
function has a number of such attractors, one corresporndiegch feasible region.
When solutions come inside feasible regions, the selecjo@mator mainly works
with the true objective function value and helps to focusgbarch in the correct
(global) feasible region.

----- Figure 2 here - - - -
----- Figure 3 here - - - -

We have realized that the proposed method is somewhat sitoilRowell and
Skolnick’s [8] method, which involves penalty parametditsus, like other penalty
function approaches, Powell and Skolnick 's (PS) metholsssensitive to penalty
parameters. Moreover, the PS method may sometime crediei@rtocal optima,
as discussed in the following. Consider the same singlexdvi@ function shown in
Figure .1. The calculation procedure of the fitness funciioRS method is illus-
trated in Figure .4.

----- Figure 4 here - - - -

The major difference between the PS method and the proposé#tbahis that in
the PS method the objective function value is consideredlicutating the fitness
of infeasible solutions. In the PS method, the penalizedtfan value' f(7) +

R (g;(%)) is raised by an amount (shown in the figure) to make the fitness
of the best infeasible solution equal to the fithess of theswiaasible solution.
Figure .4 shows that, in certain situations, the resultitrgefis function (shown by
a long dashed line) may have artificial minimum in the infeasible region. When
the feasible region is narrow, there may not be many feasiligtions present in
a population. In such a case, GAs with this constraint hagdiethod may get
trapped into this artificial local optimum. It is worth memring that the effect of
this artificial local optimum can get reduced if a large enopgnalty parameter

is used. This dependency of a constraint handling methotepeénalty parameter
is not desirable (and the meaning of ‘large penalty pararmisteubjective to the
problem at hand) and has often led researchers to rerun anipgtion algorithm
with different values of penalty parameters.

4 In Powell and Skolnick’s study, the square of constraintation was used. Although,
this changes relative importance of constraint violatiatihwespect to the objective func-
tion value in Powell and Skolnick’s method, it does not maittethe proposed approach,
because of the use of tournament selection.

10

3.1 Binary versus Real-coded GAs

The results of the welded beam design problem presented dno8e2 are all
achieved with binary GAs, where all variables are coded maty strings. It is
intuitive that the feasible region in constrained optintiza problems may be of
any shape (convex or concave and connected or disjointeddal-parameter con-
strained optimization using GAs, schemata specifying igoous regions in the
search space (such aslQx...x) may be considered to be more important than
schemata specifying discrete regions in the search spachk é&s ¢1x10x. . . x),

in general. In a binary GA under a single-point crossoverrajoe, all common
schemata corresponding to both parent strings are preserbeth children strings.
Since, any arbitrary contiguous region in the search spaceat be represented by
a single Holland’s schema and since the feasible searcle spawsually be of any
arbitrary shape, it is expected that the single-point @esisoperator used in binary
GAs may not always be able to create feasible children smiatfrom two feasi-
ble parent solutions. Moreover, in most cases, such prableame feasible region
which is a tiny fraction of the entire search space. Thusgedeasible parent so-
lutions are found, a controlled crossover operator is éelsin order to (hopefully)
create children solutions which are also feasible.

The floating-point representation of variables in a GA an@arch operator that
respects contiguous regions in the search space may beoadliminate the above
two difficulties associated with binary coding and singterp crossover. In this pa-
per, we use real-coded GAs with simulated binary crossdsBiX() operator [14]
and a parameter-based mutation operator [15], for thisqeepSBX operator is
particularly suitable here, because the spread of childodations around parent
solutions can be controlled using a distribution indgxXsee Appendix A). With
this operator any arbitrary contiguous region can be seakcprovided there is
enough diversity maintained among the feasible parentisok Let us illustrate
this aspect with the help of Figure .3. Note that the consé@ioptimum is at the
lower half of the crescent-shaped feasible regiong@n, y) constraint). Although
a population may contain solutions representing both thet@and the upper half
of the feasible region, solutions in the lower half are mon@artant, although the
representative solutions in the lower half may have infeslgective function val-
ues compared to those in the upper half. In such cases, tresegyative solutions
of the lower half must be restored in the population, in thpehof finding better so-
lutions by the action of the crossover operator. Thus, naaimg diversity among
feasible solutions is an important task, which will allow @%sover operator to
constantly find better feasible solutions.

There are a number of ways diversity can be maintained in alptpn. Among
them, niching methods [16] and use of mutation [17] are papaoihes. In this pa-
per, we use either or both of the above methods of maintaidingysity among
the feasible solutions. A simple niching strategy is impdented in the tournament

11

selection operator. When comparing two feasible solut{oasd;), a normalized
Euclidean distancé;; is measured between them. If this distance is smaller than a
critical distancel, the solutions are compared with their objective functiaiues.
Otherwise, they are not compared and another solytisnchecked. If a specific
number ¢) of feasible solutions are checked and none is found to fyualthin

the critical distance, théth solution is declared as winner. The normalized Eu-
clidean distance is calculated as follows:

1 & l’;:)—l'g) ’
dij= | =2 | 1| - (6)

a3\ Ty T T

This way, the solutions that are far away from each other atecampared and
diversity among feasible solutions can be maintained.

3.2 Evolutionary Strategies versus Real-coded GAs

Evolutionary strategies (ESs) are evolutionary optimaaimethods which work
on floating-point numbers directly [18,19]. The main dif#ace in the working

principles of an ES and a real-coded GA is that in ES mutatperator is the main

search operator. ES also uses a block truncation selectierator, which is dif-

ferent from the tournament selection operator. MoreoveIi=8 uses two different
populations (parent and children populations) with clatdpopulation size about
an order of magnitude larger than that of the parent popriatize. It is highlighted

earlier that the population approach and the ability to caragsolutions pairwise
are two essential features of the proposed constraint mgnaiethod. Although an
ES uses a population approach, it usually does not make w&ipaicomparison of
solutions. Although a tournament selection scheme cantbediced in an ES, it
remains an open question as to how such an ES will work in géner

Moreover, there exists a plethora of other implementat@nSAs such as multi-
modal GAs, multi-objective GAs, and others, which have mecessfully imple-
mented with real-coded GAs [20]. We believe that the condtiandling strategy
suggested in this study can also be easily incorporatedyakotih various other
kinds of existing real-coded GAs.

Thus, for the sake of simplicity in implementation, we hagstéd the constraint
handling strategy with real-coded GAs, instead with an B&&work. We are cur-
rently working on implementing the proposed constraintdigug method with an

ES framework and results comparing real-coded GAs and Efbevieported at a
later date.

12

4 Results

In this section, we apply GAs with the proposed constrainttiag method to nine
different constrained optimization problems that havenstadied in the literature.

In all problems, we run GAs 50 times from different initialgpdations. Fixing the
correct population size in a problem is an important factordroper working of a
GA. Previous population sizing considerations [21,22Hok@n schema processing
suggested that the population size should increase withrtitdem size. Although
the correct population size should also depend on the undgrsignal-to-noise in
a problem, here we follow a simple procedure of calculatimg population size:
N = 10n, wheren is the number of variables in a problem. In all problems, we
use binary tournament selection operator without replacgnVe use a crossover
probability of 0.9. When binary-coded GAs are used, thelsHpgint crossover op-
erator is used. When real-coded GAs are used, simulatedfsr@ssover (SBX) is
used [14]. The SBX procedure is described briefly in Apperdi¥Vhen mutation
is used, the bit-wise mutation operator is used for binarys@Ad a parameter-
based mutation is used for real-coded GAs. This proceduadst described in
Appendix A. Wherever niching is used, we have uged 0.1 andn; = 0.25N.

4.1 TestProblem1

To investigate the efficacy of the proposed constraint hagdhethod, we first
choose a two-dimensional constrained minimization proble

Minimize f1(%) = (27 4+ x2 — 11)? + (21 + 23 — 7)?,
Subject tog, (7) = 4.84 — (z1 — 0.05)* — (2 — 2.5)* > 0, o
g2(T) = 22 + (23 — 2.5)2 — 4.84 > 0,
0< 2, <6,0<a,<6.

The unconstrained objective functigi(x,, x2) has a minimum solution at (3,2)
with a function value equal to zero. However, due to the preseof constraints,
this solution is no more feasible and the constrained optinsolution isz* =
(2.246826, 2.381865) with a function value equal tg; = 13.59085. The feasible
region is a narrow crescent-shaped region (approximat&Bb®f the total search
space) with the optimum solution lying on the first consttas shown in Figure .5.

Niching and mutation operators are not used here. We hav&Asitill 50 gener-
ations. Powell and Skolnick’s [8] constraint handling neeth{PS) is implemented
with the real-coded GAs and with tournament selection aadsiBX operator. With

13

a penalty parameter = 1 for both constraints, the performance of GAs is tabu-
lated in Table .2. The table shows that 11 out of 50 runs cainmb& single feasi-
ble solution with Powell and Skolnick’s method with= 1, whereas the proposed
method (TS-R) finds a feasible solution every time. Mored®8%6 runs have found

a solution within 1% of the true optimum solution. The depamzy of PS method
on the penalty parametét is also clear from the table.

----- Table 2 here - - - -

In order to investigate the performance of the binary GA as gnoblem, binary
GAs with the proposed constraint handling method (TS-B)pigliad next. Each
variable is coded in 20 bits. Binary GAs find solutions withi# and 50% of the
optimum solution in only 2 and 13 out of 50 runs, respectiv@lghough, all 50
GA runs are able to find feasible solutions, the performahest(13.59658, median
37.90495, and worst 244.11616) is not as good as that otoed GAs.

In runs where Powell and Skolnick’s (PS) method did not finéasible solution,
GAs have converged to an artificially created minimum soluin the infeasible
region. We show the proceedings of one such run in Figurets &= 1. The ini-
tial population of 50 random solutions show that initialbhgtions exist all over the
search space (no solution is feasible in the initial popatgt After 10 generations,
a real-coded GA with Powell and Skolnick’s constraint hamgllstrategy (with
R = 1) could not drive the solutions towards the narrow feasikelgion. Instead,
the solutions get stuck at a solution= (2.891103, 2.11839) (with a function value
equal to 0.41708), which is closer to the unconstrained mnimn at (3,2) (albeit
infeasible). The reason for such suboptimal convergendscsissed earlier in Fig-
ure .4. When an identical real-coded GA but with the propasetstraint handling
strategy (TS-R) is applied to the identical initial popidas of 50 solutions (rest
all parameter settings are also the same as in the Powellleoidi&k’s case), the
GA distributes well its population around and inside thesfiele region (Figure .6)
after 10 generations. Finally, GAs converge near to the oqut@num solution at
I = (2.243636,2.342702) with a function value equal to 13.66464 (within 0.54%
of the true optimum solution).

----- Figure 5 here - - - -
----- Figure 6 here - - - -

The number of feasible solutions found in each generatiail iB0 runs are noted
and their average is plotted in Figure .7. In the initial gatien, there are not
many feasible solutions (about 0.7%). Thereafter, the rermabfeasible solutions
increase rapidly for both binary and real-coded GAs withphgposed constraint
handling scheme. At around generation 25, more than 90%lab@u members
are feasible, whereas GAs with Powell and Skolnick’s canstthandling strategy
the initial rate of feasible solution discovery is also sémvand GAs have found less

14

than 50% of their population members in the feasible region.
----- Figure 7 here - - - -

Although binary GAs have found slightly more solutions ie fieasible region that
that found by real-coded GAs in this problem, Figure .8 shtiwed the average
Euclidean distance among feasible solutions for the biskg is smaller than that
for the real-coded GAs. This means that real-coded GAs sstaldpread solutions
better, thereby allowing their search operators to finddvetblutions. This is the
reason why real-coded GAs has performed better than binAsy [& the following,
we compare these GAs to a more complicated test problem.

----- Figure 8 here - - - -

4.2 Test Problem 2

This problem is a minimization problem with five variablesi&88 inequality con-
straints [23,24]:
Minimize f»(%) = 0.1365 — 5.843(107 7)yi7 + 1.17(10™4)y1q + 2.358(107°)y1s
+1.502(107%)y16 + 0.0321y2 + 0.004324ys;
—|—1.0(10_4)cl5/016 + 37.48y3 /12,

Subject tog; (¥) = 1.5x9 — 23 > 0,
G2(Z) = yi(¥) — 213.1 > 0,
93(¥) =405.23 — y1(2) > 0,
Gi+2(2

" , (8)
g]+18(f)5](l') y]()>0]:27"'7177

) — 0.28/0.72y5 (%) > 0,
g3s(T) = 62212.0/¢17(Z) — 110.6 — y,(¥) > 0,

704.4148 < 79 < 906.3855, 68.6 < x5 < 288.88,

|||
A
&1

0< a5 <134.75, 193 < a4 < 287.0966,
25 < x5 < 84.1988.

The termgy;(#) andc; (), and parameters; andb; are given in Appendix B. The
best solution reported in [23] and in [24] is

15

7 =(705.1803, 68.60005, 102.90001, 282.324999, 37.5850413),
fr=—-1.90513.

At this solution, none of the 38 constraints is active (argiraity constraint is
active at any solution if the constraint violation is zerdlat solution). Thus, this
solution lies inside the feasible regionThis function is particularly chosen to test
the proposed constraint handling method on a problem hawvilegge number of
constraints.

Table .3 shows the performance of real-coded GAs with th@gsed constraint
handling scheme with a population sizé x 5 or 50. Powell and Skolnick’s (PS)
constraint handling method depends on the the penalty maesimsed. For a large
penalty parameter, PS method is similar in performance eégptloposed method
(TS-R). However, for small penalty parameter values, PShotktloes not perform
well. The proposed method of this study (TS) does not recangepenalty param-
eter. The performance of GAs with the proposed method (T8¥Ryoves with
niching and further with the mutation operator. With mutati all 50 runs have
found solutions better than the best solution reportedezarl

----- Table 3 here - - - -

However, binary GAs with the proposed scheme (TS-B) canndtfgasible solu-
tions in 9 runs and the best run found a solution within ab8& bf the best-known
solution. Six runs have found feasible solutions havinglgjedive function value
more than 150% of that of the best-known solution. The bestjiam, and worst
function values are-1.66316, —1.20484, and—0.73044, respectively.

Figure .9 shows the average of the total normalized Euahidkstance of all fea-
sible solutions in each iteration. It is clear that with thegence of niching, the
average Euclidean distance of feasible solutions incegaseaning that there is
more diversity present among the feasible solutions. Wighibtroduction of mu-
tation, this diversity further increases and GAs perform brest. Once again, this
figure shows that real-coded GAs with P8 £ 1) and binary GAs with the pro-
posed scheme have not been able to find and distribute stdwtiell in the feasible
region.

----- Figure 9 here - - - -
It is also interesting to note that the best solutions oletiwith real-coded GAs

(TS-R) isbetterthan that reported in [23,24]. The solution here is

#=(707.337769, 68.600273, 102.900146, 282.024841, 84.198792),

> However, we shall see later in this section that this sofuigonot the true optimal so-
lution. The solution obtained in this study is better thais golution and makes 5 of 38
constraints active.

16

fo=—1.91460,

which is about 0.5% better in the objective function valuantithat reported ear-
lier. The main difference between this solution and thabrega earlier is in the
value of x5. At this solution, five constraintsy{, ¢., gs4, 935, andgss) are active
with constraint values less thaf—>. The ratio of the besf,(%) obtained in a GA
generation and the best-knowi(¥) (thatis, f; = —1.90513) is calculated for all
50 runs and their average is plotted in Figure .10 for diffie@A implementations.

----- Figure 10 here - - - -

Since, f5 is negative, for any suboptimal solution, the rafigr)/ f; would be
smaller than one. When this ratio is close to one, it is clbat the best-known
solutionz* is found. The figure shows how real-coded GAs with the Powsd a
Skolnick’s (PS) constraint handling method with= 1 get stuck at suboptimal
solutions. The average value 6fz') where GAs converge in 50 runs is even less
than 20% off;. However, real-coded GAs with the proposed constraint lagmd
scheme finds this ratio greater than 0.8. This ratio furthemaases to more than 0.9
with niching alone. The figure also shows that for GAs withhimg and mutation
the ratio is little better than 1.0, indicating that bettelusions than that reported
earlier have been obtained in this study.

Because of the dependency of the performance of Powell aonthigk's (PS)
method on the penalty parameter, we do not apply this methdloel subsequent
test problems and only present the results for GAs with tbpgsed constraint han-
dling method. Since binary GAs with the proposed constizamidling scheme also
do not perform well on both the above constrained optimmragiroblems (mainly
due to its inability to maintain diverse solutions in thedixde region), we also do
not apply binary GAs to subsequent test problems.

17

4.3 Test Problem 3

The problem is a minimization problem having 13 variabled ame inequality
constraints [6]:

Minimize f5(%) =5 2, — 5, 2 — Y12 2y,
Subject tog, (¥) = 2x1 + 222 + 210 + 211 < 10,

92(%) = 221 + 223 4 710 + 12 < 10,

93(F) = 225 + 273 + 741 + 712 < 10,

94(¥) = —=8x1 + 210 <0,

g5(¥) = —8xy + 211 <0,

96(¥) = —8a3 + 212 <0, (9)

g7(¥) = =224 — a5 + 210 <0,

9s(¥) = =216 — a7 + 211 <0,
z)

The optimal solution to this problem is

=(1,1,1,1,1,1,1,1,1,3,3,3,1), f5 =—15.

At this optimal solution, six constraints (all exceqt ¢s, andgs) are active. This
is a relatively easy problem with the objective function aodstraints being linear
or quadratic. Michalewicz [6] reported that all constrdiandling methods used to
solve this problem have found the optimal solution. Not ssimpgly, all methods
tried here have also found the true optimal solution manyes$jras depicted in
Table .4. However, it is important to note that here no effas been spent to
exploit the structure of the constraints, whereas in therdtudy [6] special closed
operators (in addition to standard GA operators) are agpie linear constraints
to satisfy them. Although a similar approach can also be waddthe proposed
method, we do not consider the special cases here (becaciseoparators can
only be used to a special class of constraints), instea@presgeneric strategy for
solving constraint optimization problems.

----- Table 4 here - - - -

18

GA parameters are set as before. Since there are 13 varialpepulation size of
(10 x 13) or 130 is used. With the presence of niching, the perforraafdGAs

becomes better and 38 out of 50 runs have found solutiongnwii# from the true
optimum. With the presence of niching and mutation, theqrenrbince of GAs is
even better.

Average normalized Euclidean distance of feasible sahstiare plotted in Fig-
ure .11 and average ratio of the best fithess obtained by GAlsetdest-known
objective function valug is plotted in Figure .12. Figures show how diversity
among feasible solutions is restored in GAs with niching endation. The lat-
ter figure also shows the suboptimal convergence of GAs withizhing in some
runs.

----- Figure 11 here - - - -

----- Figure 12 here - - - -

4.4 Test Problem 4

This problem has eight variables and six inequality consisd46]:

Minimize f4(7) = @1 + 22 + 23
Subject tog; () = 1 — 0.0025(x4 +) > 0,
92(¥) =1 —0.0025(x5 + 27 — x4) > 0,
g3(Z) =1 —0.01(zg —a5) >0,
94(F) = w126 — 833.3325224 — 1002, + 83333.333 > 0, (10)
g5(T) = 297 — 125025 — @924 + 125024 > 0,
96(T) = waws — waws + 250025 — 1250000 > 0,
100 < 2y < 10000,

1000 < 24, 25 < 10000,
10 < z; <1000, i=4,....8.

The optimum solution is

v =(579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799,
286.4162, 395.5979),
fi="7049.330923.

19

All six constraints are active at this solution.

Table .5 shows the performance of GAs with different comstrhandling meth-
ods. Michalewicz [6] experienced that this problem is diffido solve. Out of
seven methods tried in that study, three found solutionsesdmat closer to the true
optimum. The best solution obtained by any method used instbdy had an ob-
jective function value equal t6377.976, which is about 4.66% worse than the true
optimal objective function value. A population size of 70smssed and floating-
point GAs with a number specialized crossover and mutatjmerators were run
for 5,000 generations, totaling 350,070 function evaluadi As mentioned earlier
in this study, we have used a different real-coded GA with Sipérator and we
have consistently found solutions very close to the truenoyoin with 80,080 func-
tion evaluations (population size 80, maximum generatib090). However, the
best solution obtained by GAs with niching and mutation arith & maximum of
320,080 function evaluations (population size 80, maxingemerations 4,000) has
a function value equal t8060.221, which is only about 0.15% more than the true
optimal objective function value. Thus, GAs with the propdgonstraint handling
method has been able to find better solutions than that fourath{» method used
in [6]. Moreover, the median solution found in GAs with niogiand mutation is
even better than the best solution found in [13].

----- Table 5 here - - - -

Figures .13 and .14 show the effect of niching on the averagdidean distance
among feasible solutions and the average proportion oflfieasolutions in the
population of 50 GA runs. The former figure shows that nichietps to maintain
diversity in the population. When mutation operator is atjdbe diversity among
feasible solutions is better and is maintained for longeregations. The latter fig-
ure shows that initially no solution was feasible. With getti®ns, more number of
feasible solutions are continuously found. Since nichialp&to maintain diversity
in feasible solutions, more feasible solutions are alsedowith generations.

----- Figure 13 here - - - -

----- Figure 14 here - - - -

20

45 Test Problem 5

This problem has seven variables and four nonlinear canssrgs]:

+1028 + T2l + 22 — dagry — 1026 — 827,

5127—2:1;%—3:1;‘21—:1;3—4:1;?1—5:1;520,

(%)
92(T) = 282 — Ty — 3wy — 1022 — 44 a5 > 0, (11)
g3(Z) =196 — 23z; — 3 — 622 + 8x7 > 0,
94(T) = —4ai — 23 + 3x129 — 2203 — Bag + 11y > 0,
—10<2;, <10, +=1,...,7.

The optimal solution is

7" =(2.330499, 1.951372, —0.4775414, 4.365726, —0.6244870,
1.038131, 1.594227),
fa =680.6300573.

At this solution, constraintg; andg, are active. Michalewicz [6] reported that the
feasible region for this problem occupies only about 0.5%hefsearch space.

Table .6 presents the performance of GAs with the proposadt@int handling
method with a population size of < 7 or 70. In this problem also, niching seems to
have done better. In the first case, when GAs are run withetimy and mutation,
all GA runs get stuck to a solution closer to the true optimwiutson at around
577 generations. Thus, increasing the generation numbg0@0 does not alter
GA's performance. However, when niching is introduced agif@asible solutions,
diversity of solutions is maintained and GAs with SBX operatan find better
solutions. For space restrictions, we do not present gaoeravise plots for this
and subsequent test problems.

----- Table 6 here - - - -

The best result reported in [6] is with penalty function aggarh in which the

penalty parameters are changed with generation. With & ¢6t850,070 func-

tion evaluations, the best, median, and worst objectivetfan values of 10 runs
were 680.642, 680.718, and 680.955, respectively. Taldbots that 50 GA runs
with the proposed constrained handling method have foust] beedian, and worst
solutions as 680.634, 680.642, 680.651, respectively antidentical number of
function evaluations. These solutions are much closeredartre optimum solution

21

than that found by the best algorithm in [6].

4.6 Test Problem 6

This problem has five variables and six inequality constsdi23,7]:

=
S.
=
N
D
e
=
I

(

()
g2(Z) = 85.334407 + 0.0056858z 525 + 0.00062622124 — 0.0022053z325 < 92,
g3(Z) = 80.51249 + 0.00713 17225 + 0.00299552 125 + 0.002181323 > 90,
94(%) = 80.51249 4 0.0071317a 925 + 0.00299552 129 + 0.002181323 < 110, (12)
g5(Z) = 9.300961 + 0.00470262525 + 0.00125472zq23 + 0.0019085z324 > 20,
g6(Z) = 9.300961 + 0.00470262 525 + 0.00125472zq23 + 0.0019085z324 < 25,

The best-known optimum solution [23] is

7 = (78.0,33.0,29.995,45.0,36.776), f; = —30,665.5.

At this solution, constraintg, andgs are active. The best-known GA solution to
this problem obtained elsewhere [3] using a multi-levelgdgnfunction method is

9% = (80.49,35.07,32.05,40.33,33.34), f&* = —30,005.7,

which is about 2.15% worse than the best-known optimum wwiut

Table .7 presents the performance of GAs with the proposadt@int handling
method with a population size) x 5 or 50. Once again, it is found that the pres-
ence of niching improves the performance of GAs. When GAgandonger, the
solution improves in the presence of niching. GAs withowhimg and mutation
could not improve the solution much with more generations &As with niching
continuously improve the solution with generations. Thesence of niching and
mutation finds the best solution. The important aspect is4feof 50 runs have
found solutions within 1% of the best-known solution. It isainteresting to note
that all GAs used here have found solutions better than dyadrted earlier [3],

22

solved using binary GAs with a multi-level penalty functiorethod.

----- Table 7 here - - - -

4.7 Test Problem 7

This problem has five variables and three equality conds§@):

Minimize f7(¥) = exp(xix2232425),

Ex%—l—x%—l—x%—l—xi—l—xézl@,

(13)

The optimal solution to this problem is as follows:

" =(—1.717143, 1.595709, 1.827247, —0.7636413, —0.7636450),
f7=0.053950.

Equality constraints are handled by converting them asuakty constraints as
§ — |hi(2)] > 0 for all k, as mentioned earlier. In this problefis set tol0~2, in
order to allow some room for the search algorithm to work aabl& .8 shows the
performance of GAs with a maximum of 350,050 function evatre (population
size 50, maximum generations 7,000). Although niching @loould not improve
performance much, along with mutation 19 out of 50 runs hawasd a solution
within 1% of the optimal objective function value.

----- Table 8 here - - - -

23

4.8 Test Problem 8

This problem has 10 variables and eight constraints [6]:

Minimize fs(Z) = 3 + 2% + xy25 — 142y — 1625 + (23 — 10)?

+4(x4 —5)* 4 (w5 — 3)? + 2(x6 — 1)? + Ha2
(vg — 11)* + 2(wg — 10)* + (210 — 7)* + 45,
=105 —4zy — dxy + 37 — 925 > 0,

|
-~

(14)
9a(Z) = =3(xy — 2)* — 4(xy — 3)* — 222 + Tay + 120 > 0,

g5(7) = —bai — 8wy — (w3 — 6)* + 224 + 40 > 0,
g6(7) = —a? — 2(xg — 2)* + 2xy25 — 1das + 6z > 0,
qgr f = —05(1’1 — 8)2 — 2(1’2 — 4)2 — 31’; + Tg + 30 2 0,

—10< 2, <10, i=1,...,10.

The optimum solution to this problem is as follows:

£ =(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, 8.375927), fi = 24.3062091.

The first six constraints are active at this solution.

Table .9 shows the performance of GAs with the proposed cainsthandling
scheme with a population sizé x 10 or 100. In this problem, GAs with and with-
out niching performed equally well. However, GAs perfonneca improves dras-
tically with mutation, which provided the necessary divigreamong the feasible
solutions. This problem was also solved by Michalewicz ptifferent constraint
handling techniques. The best reported method had its bestjan, and worst
objective function values as 24.690, 29.258, and 36.0&pedively, in 350,070
function evaluations. This was achieved with a multi-lepehalty function ap-
proach. With a similar maximum number of function evaluapGAs with the
proposed constraint handling method have found bettettisaki (best: 24.372,
median: 24.409, and worst: 25.075). The best solution ikiwid.27% of the op-
timal objective function value. Most interestingly, 41 ait50 runs have found a
solution having objective function value within 1% (6¢2) smaller than 24.549)

24

of the optimal objective function value.

----- Table 9 here - - - -

4.9 Welded beam design problem revisited

We shall now apply the proposed method to solve the weldeah lolegign problem
discussed earlier. GA parameter values same as that udiedl @ar also used here.
Table .10 presents the performance of GAs with a populaimn&0. Real-coded
GAs without niching is good enough to find a solution withi6%. of the best ob-
jective function value. However, with the introduction a€ining, 28 runs out of 50
runs have found a solution within 1% of the optimal objecfiwaction value and
this has been achieved with only a maximum of 40,080 fun@i@iuations. When
more number of function evaluations are allowed, real GAth Wie proposed con-
straint handling technique and mutation operator perfounshbetter—all 50 runs
have found a solution within 0.1% (to be exact) of the truaroat objective func-
tion value. This means that with the proposed GAs, one rumaigh to find a
satisfactory solution close to the true optimal solutianhbndling such complex
constrained optimization problems, any user would likege such an efficient yet
robust optimization algorithm.

----- Table 10 here - - - -

When binary GAs (each variable is coded in 10 bits) with (ahaut) niching are
applied, no solution within 50% of the best-known solutisfidund. With niching
on, the best, median, and worst objective function valuesptiinized solutions
are found to be 3.82098, 8.89996, and 14.29893, respect@&tarly, the real-
coded GA implementation with SBX operator is better able hd fiear-optimum
solutions than the binary GAs.

Figure .15 shows the performance of various GAs in terms dfiffign a solution
closer to the true optimum solution. Average ratio of thetlmgective function
value obtained by GAs to the best-known objective functialug of 50 GA runs
is plotted with generation number. The figure shows thatryiG@As prematurely
converge to suboptimal solutions, whereas real-coded G#smching (and with
or without mutation) find solutions very close to the trueioyal solution.

----- Figure 15 here - - - -

25

4.10 Summary of Results

Here, we summarize the best GA results obtained in this p@fadrie .11) and
compare that with the best reported results in earlier stdt is found here that
the reported solution (marked with &) of test problem 2 is not the true optimum.
The solution obtained here is better than this previousigwkn best solution. In
all problems marked by a ‘#, a better solution than that ol&d by a previous
GA implementation is obtained. In all other cases, the basttion of this study
matches that of the previous GA studies.

----- Table 11 here - - - -

For test problems 3 to 8, earlier methods recorded the bestjan, and worst
values for 10 GA runs only. However, the corresponding \alioe GAs with the

proposed method have been presented for 50 runs. In sonpedbms, the worst
GA solution (albeit a few isolated cases) has an objectimetian value away from
the true optimal solution. This is because reasonable sqlug fixed for all prob-

lems) of GA parameter values are used in this study. With arpatric study of
important GA parameters (for example, population sizedhertimes the number
of variables is used),. for SBX operator (here, 1 is used), for mutation opera-
tor (here, a linear variation from 1 to 100 is used)), the allgrerformance of GAs
and the worst GA solution can both be improved.

It is clear that in most cases the proposed constraint hagdiirategy has per-
formed with moreefficiency(in terms of getting closer to the best-known solution)
and with morerobustnesgin terms of more number of successful GA runs finding
solutions close to the best-known solution) than previoathads.

5 Conclusions

The major difficulty in handling constraints using penalinétion methods in GAs
and in classical optimization methods has been to set apptepalues for penalty
parameters. This often requires users to experiment witbrdnt values of penalty
parameters. In this paper, we have developed a constraidting method for GAs

which does not require any penalty parameter. The need ohalfgeparameter
arises in order to maintain the objective function value #n&lconstraint violation

values of the same order. In the proposed method, soluti@sexer compared in
terms of both objective function value and constraint \iiola information. Thus,

penalty parameters are not needed in the proposed appiloéehasible solutions
are penalized in a way so as to provide a search directiorrtiathe feasible region
and when adequate feasible solutions are found a nichirepselis used to main-
tain diversity. This aids GAs crossover operator to findteeand better solutions

26

with generation. All these have been possible mainly bexadighe population
approach of GAs and ability to have pair-wise comparisonadditfons using the
tournament selection operator. It is important to note thatproposed constraint
handling approach is not suitable for classical point-byapsearch methods. Thus,
GAs or other evolutionary computations methods have a rogkeclassical meth-
ods to handle constraints with the proposed approach.

On a number of test problems including an engineering dgsighlem, GAs with
the proposed constraint handling method have repeatedhdfeolutions closer to
the true optimal solutions than earlier GAs. On one test jgraba solution better
than that reported as the optimal solution earlier is alsméb

It has also been observed that since all problems used istidly are defined in
the real space and the feasible regions are usually of arpighape (convex or
concave), the use of real-coded GAs with a controlled seapgrator are more
suited than binary GAs in finding feasible children soluidrom feasible parent
solutions. In this respect, the use of real-coded GAs witlk @Bd a parameter-
based mutation operator have been found to be useful. Itdvoelworthwhile
to investigate how the proposed constraint handling methodld perform with
binary GAs to problems having discrete variables.

All problem-independent GA parameters are used in thisystadall test problems,
reasonable values for these GA parameters are used. It wewmdrthwhile to do a
parametric study of important GA parameters to improve taigggmance of GAs
even further.

The results on the limited test problems studied here aexesting and show
promise for a reliable and efficient constrained optimmatiask through GAs.

Acknowledgments

The author greatly appreciates the programming help pealiy couple of his stu-
dents: Samir Agrawal and Priya Rawat. Comments made by #igdichalewicz
on an earlier version of the paper are highly appreciatetheSmortions of this study
have been performed during the author’s visit to the Uniteif Dortmund, Ger-
many, for which the author acknowledges the support fronx&heler von Hum-
boldt Foundation.

References

[1] K. Deb, Optimization for engineering design: Algoritsrand examples. (Prentice-
Hall, New Delhi, 1995).

27

[2] G.V.Reklaitis, A. Ravindran, and K. M. Ragsddtingineering optimization methods
and applicationgWiley, New York, 1983).

[3] A.Homaifar, S. H.-V. Lai, X. Qi, Constrained optimizati via genetic algorithms.
Simulation62/4 (1994) 242-254.

[4] J.A.Joines and C. R. Houck, On the use of nonstationamgipefunctions to solve
nonlinear constrained optimization problems with GAs. Zh:Michalewicz, ed.,
Proceedings of the International Conference on Evolutigr@omputation(IEEE
Press, Piscataway, 1994) 579-584.

[5] Z. Michalewicz and N. Attia, Evolutionary optimizatiarf constrained problems. in:
A. V. Sebald and L. J. Fogel, ed®roceedings of the Third Annual Conference on
Evolutionary ProgrammingWorld Scientific, Singapore, 1994) 98—-108.

[6] Z. Michalewicz, Genetic algorithms, numerical optimiion, and constraints, in:
L. Eshelman, ed.Proceedings of the Sixth International Conference on Genet
Algorithms(Morgan Kauffman, San Mateo, 1995) 151-158.

[71 Z. Michalewicz and M. Schoenauer, Evolutionary algomis for constrained
parameter optimization problentSyolutionary Computatiod/1 (1996) 1-32.

[8] D. Powell and M. M. Skolnick, Using genetic algorithms @mgineering design
optimization with nonlinear constraints. in: S. Forrest,, €roceedings of the Fifth
International Conference on Genetic AlgorithifMorgan Kauffman, San Mateo,
1993) 424-430.

[9] K. Deb, Optimal design of a welded beam structure via gjeradgorithms,AIAA
Journal29/11 (1991) 2013-2015.

[10] J-H. Kim and H. Myung, Evolutionary programming techués for constraint
optimization problemdEEE Transcations on Evolutionary Computatib (1997)
129-140.

[11] D.E. Goldberg, Personal communication (Septembef)99

[12] J. T. Richardson, M. R. Palmer, G. Liepins, and M. HitiaSome guidelines for
genetic algorithms with penalty functions, in: J. D. Sckaffed.,Proceedings of
the Third International Conference on Genetic Algorithfl®rgan Kauffman, San
Mateo, 1989) 191-197.

[13] Z. Michalewicz, Personal communication (June 1998).

[14] K. Deb, and R. B. Agrawal, Simulated binary crossoverdontinuous search space,
Complex Systen®s(1995) 115-148.

[15] K. Deband M. Goyal, A combined genetic adaptive sea@@¥neAS) for engineering
design,Computer Science and Informati26/4 (1996) 30—-45.

[16] K. Deb, and D. E. Goldberg, An investigation of niche asmkcies formation in
genetic function optimization, in: J. D. Schaffer, e@roceedings of the Third
International Conference on Genetic Algorithrfidorgan Kauffman, San mateo,
1989) 42-50.

28

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

D. E. Goldberg, Genetic algorithms in search, optirtia and machine learning
(Addison-Wesley, Reading, 1989).

I. Rechenberg, Evolutionstrategie: Optimierung Tasher Systeme nach Prinzipien
des Biologischen Evolution (Fromman-Holzboog Verlag t§tart, 1973).

H.-P. Schwefel, Numerical Optimization of Computer déds (Wiley, New York,
1983).

K. Deb and A. Kumar, Real-coded genetic algorithms wsimulated binary
crossover: Studies on multimodal and multiobjective peoid, Complex Systen®6
(1995) 431-454.

D. E. Goldberg, K. Deb, and J. H. Clark, Genetic algorith noise, and the sizing of
populationgComplex Systents(1992) 333—-362.

G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Mill@he gambler’s ruin
problem, genetic algorithms, and the sizing of populatioms T. Back, Z.
Michalewicz, and X. Yao, eds.Proceedings of the 1997 IEEE International
Conference on Evolutionary ComputatiBEE Press, Piscataway, 1997) 7-12.

D. M. Himmelblau, Applied nonlinear programming (Mc&v-Hill, New York,
1972).

W. Hock and K. Schittkowski, Test examples for nonlingagogramming code.
Lecture Notes on Economics and Mathematical Syst&8% (Springer-Verlag,
Berlin, 1981).

29

Appendix

A Simulated Binary Crossover and Parameter-based Mutation

The development of simulated binary crossover operatoiX(Sdhd parameter-
based mutation operator for handling floating point numbveege performed in
earlier studies [14,15]. Here, we simply present the praoesifor calculating chil-
dren solutions from parent solutions under crossover an@tom operators.

A.1 Simulated Binary Crossover (SBX) Operator

The procedure of computing children solutiaft§ andy(? from two parent solu-
tionsz") andz?) are as follows:

(1) Create a random numbetetween 0 and 1.
(2) Find a parametep using a polynomial probability distribution, developed in
[14] from a schema processing point of view, as follows:

(L)”°1+1,otherwise, A

_ (2u) nc1+1, if u<0.5,
0=

where, is the distribution index for SBX and can take any non-negati
value. A small value of. allows solutions far away from parents to be created
as children solutions and a large value restricts only paaent solutions to
be created as children solutions.

(3) The children solutions are then calculated as follows:

y»=0.5 {(x(l) +2@) 4 3]2® — x(l)u ‘

The above procedure is used for variables where no lower apéribounds are
specified. Thus, the children solutions can lie anywherenenreal space-{oo,

oo] with varying probability. For calculating the childrenlstions where lower
and upper bounds:{ andz*) of a variable are specified, equation A.1 needs to be
changed as follows:

ﬁ = 1 (AZ)

(1)m,otherwise

2—au

_ {(au)nclﬂ, ifu <1,

30

wherea = 2 — 3~<t1) andg is calculated as follows:

2 , .
B=1+ Wmm[(aﬁ(l) —), (v — @),

It is assumed here thatf!) < z(3). A simple modification to the above equation
can be made for:(V) > x(?). The above procedure allows a zero probability of
creating any children solution outside the prescribed edng =*]. It is intuitive
that equation A.2 reduces to equation A.1 for= —co andaz* = oo.

For handling multiple variables, each variable is choseth aiprobability 0.5 in
this study and the above SBX operator is applied variablednable. This way
about half of the variables get crossed over under the SBXab@a SBX operator
can also be applied once on a line joining the two parentdl] Binaulation results
here, we have used = 1.

A.2 Parameter-based Mutation Operator

A polynomial probability distribution is used to create dugmn y in the vicinity of
a parent solution [15]. The following procedure is used for variables whengdo
and upper boundaries are not specified:

(1) Create a random numbetetween 0 and 1.
(2) Calculate the parametéias follows:

~ (2u)nmlT -1, if u<0.5,
5 = (A.3)

1 — [2(1 — u)]# ¥, otherwise,

wheren,, is the distribution index for mutation and takes any nonatieg
value.
(3) Calculate the mutated child as follows:

y=2x + 5Amaxa
whereA .« is the maximum perturbance allowed in the parent solution.
For variables where lower and upper boundarigsand =*) are specified, above

equation may be changed as follows:

§ = (A.4)

[2u + (1 — 2u)(1 — &)+ — 1, if u < 0.5,
1= [2(1 = u) + 2(u — 0.5)(1 — 8)™+1]77T | otherwise,

31

wheres = min[(z—2'), (z*—=2)]/(x*—2"). This ensures that no solution would be
created outside the rang€ [+"]. In this case, we sek ., = =" —z'. Equation A.4
reduces to equation A.3 faf = —co andaz® = oo.

Using above equations, we can calculate the expected niaadaerturbance ¢ —
z)/(x*—=2")) of the mutated solutions in both positive and negativessedparately.
We observe that this valued(1/7,,). Thus, in order to get a mutation effect of 1%
perturbance in solutions, we should ggt~ 100. In all our simulations wherever
mutation is used, we set, = 100 + ¢ and the probability of mutation is changed

as follows:
1 [1
-
n Tmax n

wheret andt ., are current generation number and the maximum number of gen-
erations allowed, respectively. Thus, in the initial gextiem, we mutate on an aver-
age one variablep(, = 1/n) with an expected 1% perturbance and as generations
proceed, we mutate more variables with lesser expectedrparice. This setting

of the mutation operator is arbitrarily chosen and has foumdave worked well

in all problems tried in this paper. No effort is spent in tugithese parameters for
obtaining better results.

B Terms and Parameters Used in Test Function 2

The following terms are required to compute the objectivecfion and constraints
for the test problem 2 [23,24]:

y1(%) =21 + a2 + 41.6,

c1(F) = 0,024z, — 4.62,

yo(7) =12.5/¢1 (%) + 12.0,

eo(7) = 0.00035352, 2, + 0.53112; + 0.08705y, (F)e1,
e5() = 0.052, + 78.0 + 0.00237Tys (Z)1,
y3(T) = c2() [es(7),

ya(7) =19.0ys(7),

cs(T) = 0.04782(xy — y3(Z)) + 0.1956(x1 — y3(F))? /22 + 0.6376y4(F) + 1.594y5(T),
es(27) =100.0z4,

06(1_;) =1 — y3(f) - y4(f)a

cr(Z) =0.95 — ey(7) [e5(T),

ys5(T) = ce(T)er (),

y6(f) =T — y5(§;’) - y4(§;’) - y3(f)a

cs(7) = 0.995(5a(7) + s (7)),

32

yr (&) = es(7) /()
ys(¥) = cs(2)/3798.0,
¢o(F) = yr(F) — 0.0663y; (7) /ys(7) — 0.3153,
Yo(T) = 96.82/ o (T) + 0.321y, (),
y10(Z) = 1.29y5(2) + 1.258y4(¥) + 2.29y3(¥) + 1.71ys(),
y11(7) = 1.712; — 0.452y,4(Z) + 0.58y3(7),
c10(7) =12.3/752.3,
e (Z) = 1.75y,(2)0.995z,
c19(2) = 0.995y,0(7) + 1998.0,
Y12(Z) = c10(¥) 21 + c11(2) [e12(T),
y13() = c12(%) — L5y (7),
y14(T) = 3623.0 + 64.4x5 + 58.4x5 + 146312.0/ (yo (F) + 25),
c13(Z) = 0.995y10(7) + 60.875 + 48.024 — 0.1121y14(F) — 5095.0,
y15(7) = y13(7) / e13(7),
y16(T) = 148000.0 — 331000.0y15(7) 4 40y13(F) — 61.0y15(Z)y13(7),
c14(7) = 2324.0y10(%) — 28740000.0y, (7),
y17(Z) = 14130000.0 — 1328.0y10(Z) — 531.0y11(Z) + €14(Z) [c12(7),
c15(F) = y13(7) [y15(F) — 113(7)/0.52,
c16(Z) = 1.104 — 0.72y15(7),
c17(%) =yo(T) + 5.
The values ofi[i] andb[:] for: = 1,...,18 are as follows:

alil= {0,0,17.505,11.275, 214.228, 7.458,
0.961, 1.612, 0.146, 107.99, 922.693,
926.832, 18.766, 1072.163, 8961.448,
0.063, 71084.33, 2802713.0

blil= {0, 0, 1053.6667, 35.03, 665.585,
584.463, 265.916,7.046, 0.222, 273.366,
1286.105, 1444.046, 537.141, 3247.039,
26844.086, 0.386, 140000.0, 12146108.0

33

Table .1
Number of runs (out of 50 runs) converged withi¥t of the best-known solution using

binary GAs with different penalty parameter values on thé&lee beam design problem.
Table .2

Number of runs (out of 50 runs) converged withi of the optimum solution for real-
coded GAs with two constraint handling techniques—Powedl 8kolnick’s method (PS)

with different R values and the proposed method (TS-R)—on test problem 1.
Table .3

Number of runs (out of 50 runs) converged withitt of the best-known solution using
real-coded GAs with the proposed constraint handling sen@8-R) and using Powell and

Skolnick’s method (P%) with different penalty parametei3 = 10* on test problem 2.
Table .4

Number of runs (out of 50 runs) converged withi¥t of the best-known solution using

real-coded GAs with the proposed constraint handling sehemtest problem 3.
Table .5

Number of runs (out of 50 runs) converged withitt of the best-known solution using

real-coded GAs with the proposed constraint handling sehemtest problem 4.
Table .6

Number of runs (out of 50 runs) converged withitt of the best-known solution using

GAs with the proposed constraint handling scheme on tesi@mo5.
Table .7

Number of runs (out of 50 runs) converged withitt of the best-known solution using

real-coded GAs with the proposed constraint handling sehemtest problem 6.
Table .8

Number of runs (out of 50 runs) converged withitt of the best-known solution using

real-coded GAs with the proposed constraint handling sehemtest problem 7.
Table .9

Number of runs (out of 50 runs) converged withitt of the best-known solution using

real-coded GAs with the proposed constraint handling sehemtest problem 8.
Table .10

Number of runs (out of 50 runs) converged witla of the best-known solution using bi-
nary GAs (TS-B) and real-coded GAs (TS-R) with the propogettraint handling scheme

on the welded beam design problem.
Table .11

Summary of results of this study. A ‘~" indicates that infation is not available.

34

Fig. .1. The proposed constraint handling scheme is idistt. Six solid circles are solu-
tions in a GA population.

Fig. .2. Contour plot of the objective functiof(z, y) and the feasible search space are
shown. Contours are plotted Atz, y) values 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, and 1.

Fig. .3. Contour plot of the fitness functidfi(z, y) at a particular generation is shown.
Contours are plotted df(z, y) values 0.1, 0.2, 0.3,0.4, 0.5,0.75, 1, 2, 3, and 4.

Fig. .4. Powell and Skolnick’s constraint handling schemélustrated. Six solid circles
are solutionsin a GA population.

Fig. .5. Population history at initial generation (markeidhopen circles), at generation 10
(marked with *x’) and at generation 50 (marked with open boxes) using PaavellSkol-
nick’s method £ = 1) on test problem 1. The population converges to a wrongasitde
solution.

Fig. .6. Population history at initial generation (markedhwopen circles), at generation
10 (marked with &’) and at generation 50 (marked with open boxes) using thpgsed
scheme on test problem 1. The population converges to aiGolgry close to the true
constrained optimum solution on a constraint boundary.

Fig. .7. Comparison of the proposed (TS) and Powell and $¢di(PS) methods for
constraint handling in terms of average number of feasiblet®ns found in 50 GA runs
on test problem 1.

Fig. .8. Comparison of the proposed (TS) and Powell and $¢di(PS) methods for
constraint handling in terms of average normalized Euelidéistance among feasible so-
lutions in 50 GA runs on test problem 1.

Fig. .9. Average normalized Euclidean distance of feas#ulleitions versus generation
number on test problem 2.

Fig. .10. Average ratio of the beg{(%) found by GAs tof; is plotted versus generation
number on test problem 2.

Fig. .11. Average normalized Euclidean distance of feasi@blutions for different
real-coded GAs with the proposed constraint handling sehismplotted versus generation
number on test problem 3.

Fig. .12. Averagef(Z)/ f; obtained by different real-coded GAs with the proposed con-
straint handling scheme is plotted versus generation nuorb&est problem 3.

Fig. .13. Average Euclidean distance of feasible solutiors0 runs of real-coded GAs
with the proposed constraint handling scheme on test pno#le

Fig. .14. Average proportion of feasible solutions in th@plation obtained by 50 runs of
real-coded GAs with the proposed constraint handling sehemtest problem 4.

Fig..15. Average (%) / f obtained by different GAs with the proposed constraint tiagd
scheme is plotted versus generation number on the welded thesign problem.

35

