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Abstract. The quantum dynamics of an electron moving under the Henon–Heiles (HH)
potential in the presence of external time-dependent (TD) laser fields of varying intensities
have been studied by evolving in real time the unperturbed ground-state wave function
ψ(x, y, t) of the HH oscillator. The TD Schrödinger equation is solved numerically and the
system is allowed to generate its own wave packet. Two kinds of sensitivities, namely, sen-
sitivity to the initial quantum state and to the Hamiltonian, are examined. The threshold
intensity of the laser field for an electron moving in the HH potential to reach its continuum
is identified and in this region quantum chaos has been diagnosed through a combination of
various dynamical signatures such as the autocorrelation function, quantum ‘phase-space’
volume, ‘phase-space’ trajectory, distance function and overlap integral (akin to quantum
fidelity or Loschmidt echo), in terms of the sensitivity towards an initial state character-
ized by a mixture of quantum states (wave packet) brought about by small changes in
the Hamiltonian, rather than a ‘pure’ quantum state (a single eigenstate). The similarity
between the HH potential and atoms/molecules in intense laser fields is also analyzed.

Keywords. Quantum chaos; coupled oscillators; multiphoton processes; high-order har-
monics generation.
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1. Introduction

During the last three decades the quantum domain behaviour of the fascinating
and classically chaotic Henon–Heiles oscillator (HHO) [1] has been studied in con-
siderable detail [2–13]. The quantum HHO has a dissociation energy of 13.3333
a.u. and 99 bound states [14]; some of the bound-state energy levels are doubly
degenerate [5]. The regime of stochastic motion sets in at around E = 9.0, which
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is about two-thirds of the well-depth of the dissociation limit; approximately half
of the bound states are in this regime, i.e., between E = 9.0 and the dissociation
limit [13,14]. In studying the possibility of quantum chaos for a classically chaotic
system, earlier efforts were mainly directed towards evolving an external Gaussian
wave packet under the HH potential by numerically solving the time-dependent
Schrödinger equation (TDSE) wherein the Hamiltonian was time-independent
[7–12].

In contrast to a classically chaotic system, where the exponential divergence of
trajectories in phase-space is an unambiguous and confirmatory signature of chaos
[15–17], the decision about whether a quantum system is chaotic or not is fre-
quently not unambiguous and one cannot generally depend on only one ‘signature’
of quantum chaos. This is mainly because the deterministic concept of an orbit or
a trajectory in classical mechanics vanishes in quantum mechanics. The difficulty
is further compounded by the fact that in quantum domain, classical chaos might
vanish due to quantum fluctuations although this need not be universally true (see
the argument in [18]).

In spite of previous extensive works, the question whether the classically chaotic
HHO can exhibit quantum chaos under a time-dependent Hamiltonian does not
seem to have been addressed so far. In this paper, we pursue this question by
taking the TD potential as arising from an intense laser field acting on an electron
moving as an HHO, without employing an external wave packet. The reasons for
this are the following which also emphasize the importance of this problem:

(i) Atoms, molecules, clusters and solids reveal highly interesting nonlinear
phenomena under intense laser fields, e.g., high-order harmonics generation
(HHG), above-threshold ionization (ATI), stabilization under superintense
laser fields, etc. During the last two decades, these aspects have been exten-
sively studied both theoretically and experimentally [19–24].

(ii) It has been speculated earlier that helium atom might exhibit quantum chaos
under intense laser fields [25].

(iii) Where response to intense laser fields is concerned, e.g. HHG, ATI and sta-
bilization, a striking parallelism has been established between atoms and
molecules on the one hand and one-dimensional nonlinear oscillators (with
or without infinite barriers) on the other (see [26,27] and other references
therein). Note that the HHO is a coupled two-dimensional system and the
same parallelism should remain valid here.

(iv) An intense laser field excites an electron in an atom to the continuum. Since
the HHO is classically chaotic, it might manifest quantum chaos on excitation
to the continuum.

(v) Instead of evolving an external wave packet under the TDSE, it might be
preferable to let the system itself (HHO in an intense laser field) generate
its own wave packet which would continue to evolve under the strong TD
perturbation.

In this paper, we would consider quantum chaos to be characterized by sensitive
dependence on initial conditions, like classical chaos. Since the quantum time-
evolution operator is unitary, this sensitivity is not towards an initial ‘pure’ quan-
tum state (a single eigenstate) but towards an initial state characterized by a
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mixture of quantum states (see (v) above). Therefore, our approach to study the
motion of an electron under the HH potential in an intense laser field is as follows:

(a) We first calculate the ground state energy of the unperturbed HHO by nu-
merically solving the TDSE in imaginary time. The first and second excited
states are also calculated. Apart from settling the question of accuracy (see
later) of our numerical algorithm for TDSE, it may be noted that the ground
state is the solution at zero time (initial input) for the real-time Schrödinger
equation involving the laser field. Note that our initial system of reference
is the classical HHO at zero time and not the classical HHO + intense laser
system.

(b) Two slightly different initial inputs are generated in two different ways: (1)
Keeping the Hamiltonian the same, the ground state is obtained under two
different prescribed tolerances (convergence conditions). This leads to two
slightly different ground state energies and wave functions. This approach
may be regarded as an ‘internal’ perturbation without perturbing the Hamil-
tonian. (2) Keeping the tolerance the same, two slightly different laser fields,
i.e. Hamiltonians, are taken. The initial input at t = 0 (unperturbed ground
state) is the same for both the Hamiltonians. But after the first time step,
i.e., after t = 0.05 a.u., the same input state is now slightly different for the
two Hamiltonians involving slightly different laser intensities.

(c ) With respect to such different initial inputs, the TDSE was numerically solved
in real time for lasers of varying intensities. Thus, the system generates its
own wave packet. Finally, we examine a combination of several dynamical
signatures of quantum chaos, viz., autocorrelation function, quantum ‘phase-
space’ volume, quantum ‘phase-space’ trajectory, distance function and decay
of overlap integral (similar to quantum fidelity or Loschmidt echo [28–32]
which has been connected to a Lyapunov regime in some cases [32]) that have
emerged over the years. Such a combination of time-dependent signatures of
quantum chaos under an intense perturbation does not appear to have been
tried before.

The method of calculation is described in §2. Section 3 discusses the results while
§4 summarizes the conclusions.

2. Methodology

The two-dimensional TDSE is (atomic units employed unless mentioned otherwise)

Hψ(x, y, t) = i
∂ψ(x, y, t)

∂t
. (1)

The Hamiltonian for an electron moving under the HH potential in the presence of
an laser field in x-direction is given by

H = −1
2

∂2

∂x2
− 1

2
∂2

∂y2
+ V (x, y)− xε0f(t) sin(ωLt), (2)
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where ωL is the laser frequency, f(t) is the ramp function (see later), ε0 is the
peak electric field obtained from the laser intensity I(ε0 = (8πI/c)1/2 and c is the
velocity of light). V (x, y) is the HH potential which is given as

V (x, y) =
1
2
(x2 + y2) + λx

(
y2 − x2

3

)
. (3)

Here, the coupling constant λ is taken as 0.11180340 [1–14] for the classically chaotic
HH oscillator. The ground-state wave function of unperturbed HH potential is
obtained by numerically solving the TDSE in imaginary time. The method is based
on transforming the TDSE into an equation that resembles a diffusion quantum
Monte Carlo (DQMC) equation [33]. Successive higher energies are calculated by
employing the same imaginary time evolution but additionally requiring that an
excited state is orthogonal to all the lower states. The numerical method reported
earlier for one-dimensional oscillators [34,35] has been adopted for two-dimensional
oscillators. Our calculated ground and the first two excited-state energies are in
excellent agreement with the corresponding literature values (given in parentheses)
[14]: E0 = 0.998595(0.9986), E1 = 1.990768(1.9901), E2 = 2.956244(2.9563). The
same algorithm is then employed to evolve ψ(x, y, t = 0) in real time under the HH
potential in intense laser fields. In other words, TDSE is now solved in real time
instead of solving a diffusion equation.

The parameters for the present calculation are:
Laser wavelength and frequency, λL = 1064 nm, ωL = 0.0428228 a.u.
Laser intensity I = 5× 1013–2.001× 1017 W cm−2, ∆t = 0.05.
−150 ≤ x ≤ 150, −15 ≤ y ≤ 15 for I = 2× 1017, 2.001× 1017 W cm−2.
−15 ≤ x ≤ 15, −5 ≤ y ≤ 5 for I = 5× 1013–1× 1017 W cm−2.
∆x = ∆y = 0.1 for I = 2× 1017, 2.001× 1017 W cm−2.
∆x = ∆y = 0.02 for I = 5× 1013 − 1× 1017 W cm−2.
0 ≤ t ≤ 2252.75 (55 fs), 15 optical cycles.
For I = 5×1013–1×1017 W cm−2 the computations were carried out for 29 optical

cycles. Since no noticeable difference was observed compared to 15 optical cycles, all
the results are reported here up to 15 optical cycles. The linear ramp is f(t) = t/t0
up to five optical cycles and unity thereafter. For the two highest intensities, a larger
grid (specified above) was employed in order to take care of reflection/transmission
of the wave function at/through the grid boundaries. Nevertheless, for these two
intensities, the norm N(t) changed by ±3% and these fluctuations were taken care
of by renormalizing the wave function to the last stable value (1.000267). Such
fluctuations are characteristic of systems undergoing transitions to highly excited
states, including the continuum, such that the probability density spreads over a
large domain of space and therefore cannot remain confined within a computation
grid. For comparison, we also report a similar study on an electron moving in a
two-dimensional harmonic oscillator (HO) potential under a laser field of intensity
2× 1017 W cm−2.

The two different initial inputs (§1) generated in two different ways are:

(i) The ground state eigenfunctions ψ1(x, y, t = 0) and ψ2(x, y, t = 0) obtained
with energy tolerance limits 10−12 and 10−8 respectively.
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(ii) The wave function ψ1(x, y, t = 0) evolved under the HH potential in laser
fields of slightly different intensities, i.e. 2× 1017 and 2.001× 1017 W cm−2.
When ψ1(x, y, t = 0) is evolved in time under the laser field of I = 2.001×1017

W cm−2, it is designated as ψ′1(x, y, t).

It may be noted that the present methodology of numerically solving the TDSE
should yield more accurate results than a Floquet-type analysis which may experi-
ence convergence problems under intense laser fields. Furthermore, these numerical
solutions are basis-set-independent and are exact, in principle. Although an ap-
parent disadvantage of these calculations is that they do not permit the use of
symmetry-adapted basis sets, it may be noted that it is difficult to employ time-
independent symmetry principles within a strong time-dependent perturbation such
as intense laser fields because most of the time during interaction the potential func-
tion has no symmetry except when the field vanishes at t = nπ/ωL, n = 0, 1, 2, . . .
[26] (see potential plots given later).

3. Results and discussion

Since both classical and quantum chaos are dynamical phenomena, we examine be-
low various time-dependent quantities which might serve as signatures of quantum
chaos for the electron moving in the HH potential under intense laser fields.

The correlation of the system with its initial state is measured in terms of the
autocorrelation function [8]

C(t) = |〈ψ1(x, y, t = 0)|ψ1(x, y, t)〉|2. (4)

Figure 1 shows the variation of C(t) with time; the laser electric field ε(t) is given
in figure 1a. For the HH potential under low intensity (5× 1013–5× 1016 W cm−2,
figures 1c and d) and the HO potential under intensity 2×1017 W cm−2 (figure 1a),
the periodicity in C(t) is twice that of ε(t). Although the value of C(t) falls below
unity after five optical cycles, it periodically returns to its initial value. Thus, in
all the three cases the system is well-correlated to its initial state. However, note
that the fall in the value of C(t) increases as the laser intensity is increased. But,
when the HH potential is under the intensity 2×1017 W cm−2, C(t) decays rapidly
and does not return to its starting value of unity. This behaviour indicates that the
electron loses correlation with its initial quantum state under such a laser intensity
and therefore this may be regarded as a signature of quantum chaos. In contrast,
at zero field, C(t) for the HH potential is unity for all times (figure 1e).

A similar behaviour is reflected in the power spectra A(ω) obtained through the
fast Fourier transform (FFT) of C(t) for the last six optical cycles with integration
limits t1 = 819.15 to t2 = 1638.35. A(ω) is given by

A(ω) =
∣∣∣∣
∫ t2

t1

C(t)e−iωtdt

∣∣∣∣
2

; −∞ ≤ ω ≤ +∞, C(t) = C(−t). (5)

A relatively simple spectrum with a few lines is obtained for the HH potential at
I = 5×1016 W cm−2 (figure 2c) and for the HO at I = 2×1017 W cm−2 (figure 2a).
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Figure 1. Plots of autocorrelation function C(t) against time t in a.u. for
(a) two-dimensional harmonic oscillator (HO) at I = 2 × 1017 W cm−2 and
the Henon–Heiles (HH) oscillator at (b) I = 2 × 1017, (c) I = 5 × 1016, (d)
I = 5×1013 W cm−2 respectively. As shown in (e), C(t) for the HH oscillator
at zero-field is just a horizontal line at unity. In (a) the laser electric field ε(t)
is shown in dotted line for I = 2 × 1017 W cm−2. For other lower intensities
the field amplitude decreases but the periodicity remains the same.

The HH potential at I = 2× 1017 W cm−2 shows a rich spectrum (figure 2d) that
has some characteristics of an atomic ATI spectrum as the higher energy peaks are
less intense than the lower ones. However, at zero field, only the ground and first
excited states are seen for the HH potential (figure 2b). The complete spectrum of
energy levels of the HH potential below the dissociation energy (13.3333) is given in
[14]. The comparative analysis of power spectrum obtained for HH at I = 2× 1017

W cm−2 with the available energy spectrum reveals that about 25 states appear
in the power spectrum with significant intensity. Higher excited states and the
peak corresponding to the last bound state also appear, although with much less
intensity. This implies that the continuum states are contributing to the power
spectrum.

Figure 3 depicts the variation of the distance function [36,37] with time. Since
the present work employs initial inputs generated in two different ways, D(t) is
defined separately for each initial input:

(i) Distance function obtained from slightly different initial wave functions
ψ1(x, y, t = 0) and ψ2(x, y, t = 0) that are evolved under the same Hamiltonian
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Figure 2. Power spectra plotted against the photon energy (ω), in a.u. for
(a) the two-dimensional harmonic oscillator at I = 2× 1017 W cm−2 and the
Henon–Heiles oscillator at (b) zero field, (c) I = 5× 1016, (d) I = 2× 1017 W
cm−2 respectively.
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Figure 3. Plot of distance function D(t), in a.u. of Henon–Heiles oscillator
against time. Both (a), (b) refer to D(t) calculated with two slightly different
initial states and (c) refers to DH(t) calculated with two slightly different
Hamiltonians. (a) I = 0.0, 5 × 1013–1 × 1017, (b) I = 2 × 1017 and (c)
I = 2.001× 1017 W cm−2 respectively.

is given by

D(t) = {(〈x1(t)〉 − 〈x2(t)〉)2 + (〈px1(t)〉 − 〈px2(t)〉)2}1/2, (6)

where 〈x1(t)〉, 〈px1(t)〉, 〈x2(t)〉 and 〈px2(t)〉 are expectation values at time t of
position and momentum operators in the x-direction with respect to ψ1(x, y, t) and
ψ2(x, y, t) respectively. Here expectation values in the y-direction, i.e., 〈y〉 and 〈py〉
are not considered since the potential is symmetric in the y-direction and therefore
these values vanish, as verified computationally for further checking the numerical
accuracy of our method.

(ii) Distance function obtained from the same initial wave function that is evolved
under slightly different Hamiltonians is given by
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DH(t) = {(〈x1(t)〉 − 〈x′1(t)〉)2 + (〈px1(t)〉 − 〈p′x1
(t)〉)2}1/2. (7)

Here 〈x′1(t)〉 and 〈p′x1
(t)〉 are expectation values calculated with ψ′1(x, y, t). Note

that ψ1(x, y, t = 0) = ψ′1(x, y, t = 0). Figure 3a shows minor fluctuations in D(t)
that fall on a straight line for HH at I = 5 × 1013–1 × 1017 W cm−2 and HO for
the laser intensity 2 × 1017 W cm−2. The zero-field case of the HH potential also
falls on a straight line (figure 3a). When the HH potential is under the intensity
2 × 1017 W cm−2, there are prominent peaks after 5 optical cycles (figure 3b).
But the change in D(t) is negligible as compared to the increase in DH(t) (figure
3c). Also, the peak height decreases in D(t) whereas it increases for DH(t). Thus,
the distance corresponding to two identical wave functions that are evolving in
quantum ‘phase-space’ (see later) under slightly different Hamiltonians increases.
This is analogous to the exponential divergence of classical phase-space trajectories
characteristic of chaotic systems. This behaviour also exhibits greater sensitivity
of quantum motion to small changes in the Hamiltonian rather than in the initial
quantum state when the underlying classical motion is chaotic.

Another criterion to measure the sensitivity of quantum dynamical motion to the
initial quantum state or the Hamiltonian is provided by the overlap integral, I(t)
[28]. For the slightly different initial wave functions, ψ1(x, y, t = 0) and ψ2(x, y, t =
0) that are evolved under the same Hamiltonian, I(t) is given by

I1(t) = |〈ψ1(x, y, t)|ψ2(x, y, t)〉| (8)

and when ψ1(x, y, t = 0) and ψ′1(x, y, t = 0) (ψ1 = ψ′1, only at t = 0) are evolved
under slightly different Hamiltonians, I(t) is defined as

I2(t) = |〈ψ1(x, y, t)|ψ′1(x, y, t)〉|. (9)

In view of the fact that the quantum time-evolution operator is unitary, I1(t) should
remain constant in time at any particular laser intensity. Figure 4a shows that I1(t)
maintains a steady initial value of unity whereas figure 4b shows that, starting
from an initial value of unity, I2(t) decays rapidly after five optical cycles and
falls to 0.72 at the end of the 15th optical cycle. The constancy of I1(t) in time
is a further check on the numerical accuracy of our algorithm. Thus, the decay
of the overlap between the time-evolved quantum states under slightly different
Hamiltonians again exhibits greater sensitivity of quantum motion to slight changes
in the Hamiltonian.

It is worthwhile to note that I2
2 (t) may be identified as the quantum fidelity or

Loschmidt echo [28–32] except that both ψ1(x, y, t) and ψ′1(x, y, t) refer to perturbed
states. However, if one considers ψ1(x, y, t) as originating from an ‘unperturbed’
Hamiltonian that incorporates the original oscillator potential plus the laser po-
tential, and looks upon ψ′1(x, y, t) as originating from a ‘perturbed’ Hamiltonian in
which the laser intensity is slightly changed, then I2

2 (t) indeed becomes the fidelity
(note that since our classical system of reference is the oscillator in the absence of a
laser field, we do not adopt such a viewpoint here). It is known that fidelity decay
can be taken as a reliable indicator of quantum chaos in the unperturbed system
provided the applied perturbation commutes with a classical coordinate [30]. From
eq. (2), it is clear that this condition is satisfied for the present system. For systems
exhibiting classical chaos, fidelity decay was found to be Gaussian or exponential,
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Figure 4. Overlap integral I(t) plotted in a.u. against optical cycle. (a)
refers to I1(t) calculated with two slightly different initial states while (b)
refers to I2(t) obtained for slightly different Hamiltonians.

including a Lyapunov regime [32]. Since this was not considered satisfactory, Wang
et al [32] have proposed a general semiclassical approach to fidelity decay in the
limit of large perturbations. In the present case, we have studied the decay of I2(t)
from unity in course of time.

The variation of quantum ‘phase-space’ volume [8] V (t), or the uncertainty prod-
uct, with time and the laser electric field ε(t) are given in figure 5. V (t) is defined
as

V (t) = {(〈x2〉 − 〈x〉2)(〈p2
x〉 − 〈px〉2)〈y2〉〈p2

y〉}1/2, (10)

where all the expectation values are with respect to ψ1(x, y, t). V (t) remains nearly
constant for the HH potential under lower field intensities (I = 5 × 1013–1 × 1017

W cm−2, figure 5b) and for the HO potential under I = 2 × 1017 W cm−2 (figure
5b). The HH potential at zero field also falls on (b). V (t) increases after five
optical cycles and is around 1800 for the HH potential at I = 2 × 1017 W cm−2.
Interestingly, the maxima in V (t) correspond to the minima in the laser electric
field ε(t). A large increase in V (t) can be interpreted as the fingerprint of quantum
chaos as it implies a loss of information about the electron being represented by the
wave packet. Note that while excitation to the continuum might increase V (t) for
a non-quantum-chaotic system, the nature and magnitude of such increase should
be qualitatively different for a quantum chaotic system. It may also happen that
after an initial increase, V (t) no longer increases significantly, leading to a partial
suppression of quantum chaos [38]. This, however, did not happen in the present
case.

There is a likelihood of the system characterized by large V (t) to follow a chaotic
trajectory. Figure 6 shows the quantum ‘phase-space’ trajectories where 〈x(t)〉 is
plotted against 〈px(t)〉 in the spirit of Ehrenfest theorem. Figures 6a, c, and d show
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Figure 5. Plot of ‘phase-space’ volume of Henon–Heiles oscillator against
time. (a) refers to I = 2 × 1017 W cm−2 while (b) refers to I = 0.0,
5 × 1013–1 × 1017 W cm−2 as well as the two-dimensional harmonic oscil-
lator at I = 2 × 1017 W cm−2. The laser electric field ε(t) is also shown in
dotted line. All quantities are in atomic units.

the spiral trajectory obtained for the HH potential in laser fields of lower intensities
and for the HO potential at I = 2×1017 W cm−2. When the HH potential is under
the laser field of this intensity, the trajectory starts as a spiral but rapidly diverges
into a complicated pattern (figure 6b). For the zero-field case of the HH potential,
the trajectory is again a spiral (figure 6e) which is more like a quashed spring in
which every turn is displaced from the previous one due to a kink in the turn (figure
6f). When the laser field is switched on, the displacements of the turns in the spring
diminish as the laser intensity increases, until the trajectory becomes chaotic at the
highest intensity.

It may be mentioned here that the trajectories obtained by evolving slightly
different wave functions under the same Hamiltonian superimpose on each other.
This indicates that the time-evolution of quantum systems is much more sensitive to
small changes in the Hamiltonian, than to small changes in the initial ground state.
This is in accord with earlier studies [28,29] which demonstrated that the evolution
of a quantum state was altered under a slightly perturbed (small internal pertur-
bation) Hamiltonian, the overlap between the perturbed and unperturbed states
tended to a comparatively smaller value if the analogous classical motion is chaotic
than if it is regular. This may be explained by saying that in quantum dynamical
motion all the states are mixed (linear combination of other states), whereas the
classical exponential sensitivity to the initial state applies only to an individual
state [18]. However, it has also been argued that quantum systems exhibit a state
sensitivity very similar to classical state sensitivity, by using computational motion
reversal [18]. Note that in the present case, due to strong perturbation, the fall in
I2(t) with time is quite significant (nearly 30%).
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Figure 6. Quantum ‘phase-space’ trajectories, in a.u., of (a) the two-dimen-
sional harmonic oscillator at I = 2 × 1017 W cm−2 and of the Henon–Heiles
oscillator at (b) I = 2 × 1017, (c) I = 5 × 1016, (d) I = 5 × 1013 W cm−2

respectively, and (e) zero-field (with the same axial system). In (f), a three-
dimensional plot of the zero-field case (e) is shown with the x-axis as 〈x〉,
y-axis as 〈px〉 and z-axis as time (a.u.) For (a)–(d), ∆t between successive
contours is 0.05 a.u. while it is 6.5 a.u. for (e) and (f).

Figure 7 shows 〈px(t)〉 for HH at I = 2× 1017 W cm−2 against 〈x(t)〉 at the end
of each optical cycle. The values lie close together for the first few optical cycles
but diverge by the end of the 15th optical cycle, thus displaying greater sensitivity
to the initial Hamiltonian.
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Figure 7. The expectation values (a.u) 〈px(t)〉 of the momentum opera-
tor in x-direction, plotted against the expectation value of position operator
〈x(t)〉 at the end of each optical cycle, for the Henon–Heiles oscillator. (a)
I = 2.001× 1017, (b) I = 2× 1017 W cm−2.

The potential energy surfaces (PES) and the probability densities at t = 0 as
well as at the crest (ε0 = 2.387202, t = 2090.85) and trough (ε0 = −2.387202,
t = 2164.20) of the 15th optical cycle are shown in figure 8. The ground-state
probability density is given by a single centrosymmetric peak (figure 8d). The
shifting of the minima of the PES and likewise the spread of probability density is
in the positive and negative x-direction respectively at the crest (figures 8b and 8e)
and at the trough (figures 8c and 8f) of the laser electric field. It is clear that the
initial quantum state is evolving into a mixture of numerous states. When the HH
potential is under a low-intensity field, the norm was preserved at unity but it is
changed by ±3% when the applied laser intensity is 2× 1017 W cm−2, even though
a larger grid was employed at this intensity. This indicates that the probability
density is leaking into the continuum. Moreover, the spread of the probability
density all over the grid and the existence of higher bound states in the power
spectrum suggest that an electron moving under the HH potential in the presence
of a laser field of intensity 2 × 1017 W cm−2 has reached the continuum. This is
further supported by the HHG spectrum H(ω) obtained by taking the FFT of the
time-varying dipole moment, µ(t) = 〈ψ1(x, y, t)|x|ψ1(x, y, t)〉. H(ω) is calculated
for the last six optical cycles with integration limits t1 = 819.15 to t2 = 1638.35,
viz.,

H(ω) =
∣∣∣∣
∫ t2

t1

µ(t)e−iωtdt

∣∣∣∣
2

; −∞ ≤ ω ≤ +∞, µ(t) = µ(−t) (11)

and plotted against the harmonic order. There is no significant harmonic spectrum
below 2 × 1017 W cm−2 as the electron has not reached the highly excited states
(figures 9c, d). For the HO (figure 9a), the spectrum shows a single peak as it is
a bound potential. The plateau of harmonics obtained in the HHG spectrum at
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Figure 8. The Henon–Heiles oscillator potential energy surfaces (a,b,c) and
the corresponding probability densities (d,e,f) in a.u., for I = 2 × 1017 W
cm−2. (a), (d) correspond to t = 0 while (b), (c) correspond to the crest
(ε(t) = ε0, t = 2090.5 a.u.) and (c), (f) correspond to the trough (ε(t) = −ε0,
t = 2164.20 a.u.) respectively of the 15th optical cycle.

I = 2 × 1017 W cm−2 results from transitions to the continuum and subsequent
emissions to lower levels, especially the ground state. The spectrum has a rich
multiplet structure that is rich in both even and odd harmonics (inset of figure 9b).
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Figure 9. HHG spectrum in a.u. is plotted against harmonic order (ω/ωL)
for (a) the two-dimensional harmonic oscillator at I = 2 × 1017 W cm−2

and the Henon–Heiles oscillator at (b) I = 2 × 1017, (c) I = 5 × 1016, (d)
I = 5× 1013 W cm−2 respectively. The inset of (b) shows both even and odd
harmonics. (c) shows only the 1st and 2nd harmonics while (d) shows only
the first harmonic.

Interestingly, it has the characteristic features of HHG spectra of atoms and mole-
cules, viz., a rapid initial decrease in signal intensity followed by a plateau followed
by a sharp fall in intensity. Thus, the parallelism between nonlinear oscillators and
atoms/molecules regarding their interactions with intense laser fields [26] is further
reinforced.

4. Conclusion

The present work confirms the two speculations made in §1 as follows:

1. When a classically chaotic system such as an electron moving under the HH
potential is lifted to the quantum continuum by a strong periodic driving
force such as that from intense laser fields, it exhibits quantum chaos. How-
ever, in order to reach the continuum, a threshold laser intensity (2 × 1017

W cm−2 in the present case) is required below which quantum chaos is not
manifested even in a nonintegrable system like the HHO. Note that atoms and
molecules also require a threshold intensity in order to reach the quantum con-
tinuum and display characteristic features of matter-intense-laser interactions
such as ATI, HHG, etc. At the threshold intensity, various dynamical (time-
dependent) signatures of quantum chaos such as (i) the lack of correlation
with the initial state, (ii) increase in the distance function, (iii) decrease in the
overlap integral, (iv) increase in the quantum ‘phase-space’ volume, and (v)
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divergence of trajectories in the quantum ‘phase-space’ have been examined.
The system’s incursion into the quantum continuum has been demonstrated
through the ATI-like power spectrum, HHG spectrum and probability den-
sity plots. Note that the two-dimensional quantum harmonic oscillator does
not display quantum chaos irrespective of the laser intensity, because there
is no continuum or ‘pseudocontinuum’ (see ref. [26] for the explanation of
‘pseudocontinuum’).

The present approach characterizes quantum chaos as sensitivity to the ini-
tial quantum state, in the same spirit as in classical (deterministic) chaos.
However, in view of the unitarity of the time-evolution operator, the sensi-
tivity is not towards an initial ‘pure’ quantum state (a single eigenstate) but
towards an initial state characterized by a mixture of quantum states. This
mixture or wave packet is created by the time-dependent perturbation itself
acting on a single eigenstate at t = 0. Two slightly different initial mixtures
of quantum states have been created at the end of the first time step (0.05
a.u.) by small changes in the laser intensity, i.e. the Hamiltonian. While
sensitivity to small changes in the Hamiltonian have been observed before, in
the absence of any external perturbation [18,34], to the best of our knowledge,
the results and insights presented in this work by bringing a strong, external
time-dependent perturbation and the quantum continuum into consideration,
have not been reported before. It may also be noted that while some of the
signatures of quantum chaos, examined in this paper, have been employed
separately by other workers, our conclusions on quantum chaos have been
guided by a combination of all the dynamical (time-dependent) signatures
rather than any individual signature.

2. Like one-dimensional nonlinear oscillators [26], two-dimensional coupled non-
linear oscillators are suitable model systems for studying laser–matter in-
teractions as they mimic the behaviour of atoms/molecules in intense laser
fields, e.g., in the ATI-like spectra, HHG spectra, stabilization in superin-
tense laser fields, etc. The decade-old conjecture [25] that atoms, e.g., the He
atom, should exhibit quantum chaos under intense laser fields is thus verified
through the parallel system of a coupled two-dimensional nonlinear oscillator.
It also raises the interesting possibility of classically integrable systems, with
quantum continua of their own, exhibiting quantum chaos on excitation to the
continuum by an intense laser field. Furthermore, in case the HH potential
is experimentally realized for electronic motion, it would provide a relatively
simple way to generate X-ray lasers and attosecond lasers (see, e.g., [26,39]).
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