ON COMPLETE RESIDUE SETS

By T. VIJAYARAGHAVAN (Waltair) and S. CHOWLA (Ludhiana)

[Received 8 February 1944 ; in' revised form 12 December 1947]

1. The following result is known: \dagger

If q be an odd prime, $r_{1}, r_{2}, \ldots, r_{q}$ and $s_{1}, s_{2}, \ldots, s_{q}$ be two complete sets of residues $(\bmod q)$, then $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{q} s_{q}$ cannot be a complete set of residues $(\bmod q)$.

To prove the result we follow Polya in supposing the contrary. We can take $r_{q} \equiv 0(\bmod q)$ and then it is easy to deduce that $s_{q} \equiv 0(\bmod q)$. We have then (to modulus q)

$$
\begin{aligned}
1.2 .3 \ldots(q-1) \equiv & r_{1} r_{2} \ldots r_{q-1} \equiv \dot{8}_{1} s_{2} \ldots s_{q-1} \\
& \equiv r_{1} s_{1} \cdot r_{2} s_{2} \ldots r_{q-1} s_{q-1}
\end{aligned}\{1.2 .3 \ldots(q-1)\}^{2} \text {.... }
$$

which is impossible since (by Wilson's theorem)

$$
1.2 .3 \ldots(q-1) \equiv-1(\bmod q) .
$$

We prove in this section that the above result is true not only for odd prime values of q but for all values of $q>2$.

Suppose now that the result is not true for a composite value of q. It is shown below that there arises a contradiction. Let p be a prime divisor of q, and $q / p=N$. We see that $r_{t} s_{t}$ is a multiple of p for precisely N values of t and that $r_{t} s_{t}$ is prime to p for the remaining $q-N$ values of t. Since in each of the two sets $r_{1}, r_{2}, \ldots, r_{q}$ and $s_{1}, s_{2}, \ldots, s_{q}$ there are precisely $q-N$ numbers that are prime to p, we deduce at once that, whenever $r_{t} s_{t}$ is a multiple of a prime number p that divides q, then r_{l} and s_{t} are both multiples of p. If we now make the further assumption that q is a multiple of p^{2} as well, then we see that either $r_{t} s_{t}$ is prime to p or is a multiple of p^{2} and that therefore there is no value of t for which $r_{t} s_{t} \equiv p(\bmod q)$.

This contradiction proves the result when q is divisible by. the square of a prime. It remains to prove the result when q is a product of two or more distinct primes. In this case we take an odd prime divisor p of q and consider the values of t for which $r_{t} s_{t}$ is a multiple of $N(=p / q)$. There are precisely p such values of t; let these values
\dagger A. Hurwitz, Nouv. Ann. Serie 3, 1 (1882), 389. See also G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. ii, chap. 8, problem 245, p. 158 and p. 379.
of t be $t_{1}, t_{2}, \ldots, t_{p}$. Now in each of the two sets $r_{1}, r_{2}, \ldots, r_{q}$ and $s_{1}, s_{2}, \ldots, s_{q}$ there are precisely p numbers that are multiples of N and precisely $q-p$ numbers that are not multiples of N. It follows that each of the numbers $r_{t_{1}}, r_{t,}, \ldots, r_{t_{p}}$ is a multiple of N. Moreover, these p numbers in some order or other are congruent to $N, 2 N, \ldots, p N$ $(\bmod q)$ and are therefore incongruent $(\bmod p)$. The same remarks apply to $s_{t_{1}}, s_{t_{2}}, \ldots, s_{t_{p}}$ and to $r_{t_{1}} s_{t_{1}}, r_{t_{2}} s_{t_{2}}, \ldots, r_{t_{p}} s_{t_{p}}$. But according to the result of A. Hurwitz this is not possible. This completes the proof when q is a product of two or more distinct primes. Hence we have the result:

If $r_{1}, r_{2}, \ldots, r_{q}$ and $s_{1}, s_{2}, \ldots, s_{q}$ are two complete residue sets $(\bmod q)$, where $q>2$, then $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{q} s_{q}$ is not a complete residue set $(\bmod q)$.
2. The main result of this note is given in this section.

We consider the following problem. Suppose that n is a positive integer, $\phi(n)=h$, and $r_{1}, r_{2}, \ldots, r_{h}$ are all prime to n and incongruent $(\bmod n)$. Such a set may be called a complete primitive residue set $(\bmod n)$. Suppose now that $r_{1}, r_{2}, \ldots, r_{h}$ and $s_{1}, s_{2}, \ldots, s_{h}$ are two such sets. Can it happen that the product set $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{h} s_{h}$ is also a complete primitive residue set? It is easy to see from the proof of the result of A. Hurwitz that the product set cannot be a complete primitive residue set if n is a prime number >2; it is easy to verify that the same is the case if $n=4,6,9$, etc. But we see from the following table that for some other values of n the product set can be a complete primitive residue set provided that the first two sets are suitably ordered.

	$n=2$	$n=8$	$n=12$	$n=15$
r_{t}	1	$1,3,5,7$	$1,5,7,11$	$1,2,4,7,8,11,13,14$
s_{t}	1	$1,5,7,3$	$1,7,11,5$	$1,4,14,2,11,7,13,8$
$r_{1} s_{t}$ rerluced $(\operatorname{modl} n)$	1	$1,7,3,5$	$1,11,5,7$	$1,8,11,14,13,2,4,7$

It turns out that there is a neat answer to the query: 'Which numbers have the property considered above?' The answer is given by the following
'Theorem. If $n=2$ or has no primitive root, then there exist suitable complete primitive residue sets $r_{1}, r_{2}, \ldots, r_{h}$ and $s_{1}, s_{2}, \ldots, s_{h}$ such that $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{h} s_{h}$ too is a complete primitive residue set.

Remark. If $n>2$ and has a primitive root g, then it is easy to show that n has not the property under consideration. For otherwise we should have to modulus n

$$
g: g^{2} \ldots g^{h} \equiv r_{1} r_{2} \ldots r_{h} \equiv s_{1} s_{2} \ldots s_{h} \equiv r_{1} s_{1} r_{2} s_{2} \ldots r_{h} s_{h} \equiv\left(g . g^{2} \ldots g^{h}\right)^{2},
$$

which is a contradiction since $n,>2$ and

$$
g \cdot g^{2} \ldots g^{h} \equiv g^{w h+\frac{y}{2}} \equiv g^{t h} \equiv-1(\bmod n),
$$

where $w=\frac{1}{2} h$ is an integer.
Lemma. If m and n are prime to each other and the conclusion of the theorem is true for m and n, then it is true for $m n$.

Let $\phi(m)=h, \phi(n)=k$, and $r_{1}, r_{2}, \ldots, r_{h}, s_{1}, s_{2}, \ldots, s_{h}$ and $r_{1} s_{1}$, $r_{2} s_{2}, \ldots, r_{h} s_{h}$ be three complete primitive residue sets $(\bmod m)$, and let $\rho_{1}, \rho_{2}, \ldots, \rho_{k}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$, and $\rho_{1} \sigma_{1}, \rho_{2} \sigma_{2}, \ldots, \rho_{k} \sigma_{k}$ be three such sets $(\bmod n)$. Let $\{\alpha, \beta\}$ denote the residue class $x(\bmod m n)$, where x is such that $x \equiv \alpha(\bmod m), x \equiv \beta(\bmod n)$, and let $R_{1}, R_{2}, \ldots, R_{h k}$ be a complete primitive residue set $(\bmod m n)$. If $R_{a}=\left\{r_{b}, \rho_{c}\right\}$, then we take $S_{a}=\left\{s_{b}, \sigma_{c}\right\} \quad(a=1,2,3, \ldots, h k)$. It is easy to verify that $S_{1}, S_{2}, \ldots, S_{h k}$ and $R_{1} S_{1}, R_{2} S_{2}, \ldots, R_{h k} S_{h k}$ are two complete primitive residue sets $(\bmod m n)$, and this proves the lemma.

The theorem is first proved for values of n that belong to a set S, where S consists precisely of the five following forms:
(1) $n=2^{\lambda}$, where $\lambda \neq 2$;
(2) $n=2^{\lambda} m$, where $\lambda \geqslant 2$ and m is a power of any odd prime;
(3) $n=p^{\lambda} q^{\mu}$, where p and q are any pair of distinct odd primes;
(4) $n=4 M$, where M is any member of the form (3) mentioned just above;
(5) $n=p^{\lambda} q^{\mu} r^{\nu}$, where p, q, r are any three distinct odd primes.

It may be remarked here that, if a number n has no primitive root, then either it is a member of S or can be represented as a product of two or more mutually prime members of S. In view of the lemma already proved it follows immediately that the theorem of this note is completely proved when it has been proved for all values of n that belong to S.
(I) $n=p^{\lambda} q^{\mu}$. Let g be a primitive root of $p^{\lambda}, \phi\left(p^{\lambda}\right)=2 M, g^{\prime}$ a primitive root of q^{μ} and $\phi\left(q^{\mu}\right)=2 N$. We denote by $\{\alpha, \beta\}$ the residue class x which is such that

$$
x \equiv g^{\alpha}\left(\bmod p^{\lambda}\right), \quad x \equiv g^{\prime \beta}\left(\bmod q^{\mu}\right)
$$

It should be noticed that by giving to α the values $0,1,2, \ldots, 2 M-1$ and to β the values $0,1,2, \ldots, 2 N-1$ we get all the $4 M N$ primitive residue classes $\left(\bmod p^{\lambda} q^{\mu}\right)$. Also

$$
\{\alpha, \beta\}=\{\alpha+2 M, \beta\}=\{\alpha, \beta+2 N\}
$$

for every pair of values α, β; the converse is also true, i.e. if

$$
\{\alpha, \beta\}=\left\{\alpha^{\prime}, \beta^{\prime}\right\}
$$

then $\alpha \equiv \alpha^{\prime}(\bmod 2 M)$ and $\beta \equiv \beta^{\prime}(\bmod 2 N)$. Finally, if $x=\{\alpha, \beta\}$ and $y=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$, then $x y=\left\{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}\right\}$ for all $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$. These properties enable us to solve the problem under consideration. Let $r_{1}, r_{2}, \ldots, r_{h}$ (where $h=4 M N$) be a complete set of primitive residues $(\bmod n)$. We show below how a complete set of primitive residue classes $s_{1}, s_{2}, \ldots, s_{h}$ can be chosen in such a way that $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{h} s_{h}$ is also a complete primitive residue set.

$$
\begin{array}{cc}
\text { If } r_{i}=\{\alpha, \beta\} & (1 \leqslant \alpha \leqslant M ; 1 \leqslant \beta \leqslant N), \\
\text { theh } s_{t} \text { is to be taken equal to }\{\alpha, \beta\} ; \\
\text { if } \quad & r_{i}=\{\alpha, \beta\} \quad(M<\alpha \leqslant 2 M ; 1 \leqslant \beta \leqslant N), \\
\text { then } s_{t} \text { is to be taken equal to }\{\alpha, \beta-1\} ; \\
\text { if } \quad r_{i}=\{\alpha, \beta\} & (M \leqslant \alpha<2 M ; N<\beta \leqslant 2 N), \\
\text { then } s_{t} \text { is to be taken equal to }\{\alpha+1, \beta-1\} ; \\
\text { if } \quad r_{i}=\{\alpha, \beta\} & (0 \leqslant \alpha<M ; N<\beta \leqslant 2 N), \\
& \text { then } s_{t} \text { is to be taken equal to }\{\alpha+1, \beta\} .
\end{array}
$$

It is easy to verify that, if $r_{1}, r_{2}, \ldots, r_{h}$ be a complete primitive residue set, the same is true of $s_{1}, s_{2}, \ldots, s_{h}$ and also of $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{h} s_{h}$.

The proofs are as follows:
(i) for the numbers r_{i}. From the first two lines of the above scheme we see.that α takes $2 M$ incongruent values $(\bmod 2 M)$ when

$$
1 \leqslant \beta \leqslant N
$$

from the third and fourth lines we see that α takes $2 M$ incongruent values $(\bmod 2 M)$ when $N<\beta \leqslant 2 N$;
(ii) for the numbers s_{l}. From the first and fourth lines of the scheme we see that $s_{6}=\{\alpha, \beta\}$, where $1 \leqslant \alpha \leqslant M$ and β takes $2 N$ incongruent values $(\bmod 2 N)$; from the second and third lines of the scheme we see that $s_{t}=\{\alpha, \beta\}$, where $M<\alpha \leqslant 2 M$ and β takes $2 N$ incongruent values $(\bmod 2 N)$;
(iii) for the numbers $r_{i} s_{l}$. Here we have $r_{l} s_{i}=\{\alpha, \beta\}$, where in the first line, $\quad \alpha$ takes all even values $(\bmod 2 M)$,
β takes all even values $(\bmod 2 N)$;
in the second line, α takes all even values $(\bmod 2 M)$,
β takes all odd values $(\bmod 2 N)$; in the third line, $\quad \alpha$ takes all odd values $(\bmod 2 M)$,
β takes all odd values $(\bmod 2 N) ;$ in the fourth line, $\quad \alpha$ takes all odd values $(\bmod 2 M)$, β takes all even values $(\bmod 2 N)$.
In all the cases (i), (ii), (iii) we get $4 M N$ numbers $\{\alpha, \beta\}$, where α runs through $2 M$ incongruent values $(\bmod 2 M)$ and β runs through $2 N$ incongruent values $(\bmod 2 N)$: Thus we have proved that the three sets r_{t}, s_{t}, and $r_{t} s_{t}(1 \leqslant t \leqslant h)$ are complete primitive residue sets.

We can present the choices in the above scheme more briefly in a tabular form. [In the table given below the 'type' to which $r_{i} s_{t}$. belongs is indicated; if α is even and β is odd we shall say that $r_{i} s$ belongs to the type +- . The three other types,$++ \cdot+,--$ are similarly defined.]

$$
n=p^{\lambda} q^{\mu} ; \quad r_{\iota}=\{\alpha, \beta\}
$$

α	β	s_{t}	$r_{t} s_{t}$
$1 \leqslant \alpha \leqslant M$	$1 \leqslant \beta \leqslant N$	$\{\alpha, \beta\}$	++
$M<\alpha \leqslant 2 M$	$1 \leqslant \beta \leqslant N$	$\{\alpha, \beta-1\}$	+-
$M \leqslant \alpha<2 M$	$N+1 \leqslant \beta \leqslant 2 N$	$\{\alpha+1, \beta-1\}$	--
$0 \leqslant \alpha<M$	$N<\beta \leqslant 2 N$	$\{\alpha+1, \beta\}$	-+

An even more brief representation of the table would be.

r_{t}	11	21	$2^{\prime} 2$	1.2
s_{t}	11	21^{\prime}	22^{\prime}	12
$r_{t} s_{t}$	++	+-	-	-+

(II) $n=4 q^{\mu}$. This case is disposed of in exactly the same way as $n=p^{\lambda} q^{\mu}$ since the number 4 has the primitive root 3. The case $2^{\lambda} q^{\mu}$, where $\lambda>2$, is discussed a little farther down.
(III) $n=2^{\lambda} \cdot(\lambda>2)$. This case is disposed of in exactly the same way as $p^{\lambda} q^{\mu}$ for the following reason. Any primitive residue class (mod 2^{λ}) can be represented as $\{\alpha, \beta\}$, where $\{\alpha, \beta\}$ represents the residue class x, if and only if $x \equiv 5^{\alpha}(-1)^{\beta}(\bmod n)$.

We get all the residue classes by giving to α the values $0,1,2, \ldots$,
$2^{\lambda-2}-1$, and to β the values 0 and 1 . This representation has all the properties mentioned earlier in connexion with the case $n=p^{\lambda} q^{\mu}$. We give below the details of the choice of $s_{1}, s_{2}, \ldots, s_{h}$, where

$$
h=2^{\lambda-1}=4 M
$$

r_{t} 8_{t} $r_{t} 8_{t}$	$\left\|\begin{array}{c} -5,-5^{2}, \ldots,-5^{M} \\ -5, \\ 5^{2 \alpha} \\ \quad(1 \leqslant \alpha \leqslant M, \end{array}\right\|$	$\left\|\begin{array}{l} -5^{M+1}, \ldots,-5^{2 M} \\ 5^{M+1}, \ldots, 5^{2 M} \\ -5^{2 \alpha} \\ (M<\alpha \leqslant 2 M) \end{array}\right\|$	$\left\|\begin{array}{l} 5^{M}, 5^{M+1}, \ldots, 5^{2 M-1} \\ -5^{M+1},-5^{M+2}, \ldots,-5^{2 M} \\ -5^{2 \alpha+1} \\ \quad(M \leqslant \alpha<2 M) \end{array}\right\|$	$\begin{aligned} & 1,5,5^{2}, \ldots, 5^{M-1} \\ & 5,5^{2}, 5^{3}, \ldots, 5^{M} \\ & 5^{2 a+1} \\ & (0 \leqslant \alpha<M) \end{aligned}$

(IV) $n=p^{\lambda} q^{\mu} r^{\nu}$. Let $g, g^{\prime}, g^{\prime \prime}$ be respectively primitive roots of $p^{\lambda}, q^{\mu}, r^{\nu}$. We denote by $\{\alpha, \beta, \gamma\}$ the residue class $x(\bmod n)$, where

$$
x \equiv g^{\alpha}\left(\bmod p^{\lambda}\right), \quad x \equiv g^{\beta}\left(\bmod q^{\mu}\right), \quad x \equiv g^{\prime \prime} \gamma\left(\bmod r^{\nu}\right)
$$

The choice of s_{l} is made according to the following table:

r_{t}	111	211	222	122	$2^{\prime} 21$	$1^{\prime} 21$	$2^{\prime} 12$	$1^{\prime} 12$
s_{i}	111	$21^{\prime} 1$	$22^{\prime} 2^{\prime}$	122^{\prime}	$22^{\prime} 1^{\prime}$	121^{\prime}	$21^{\prime} 2$	112
$r_{t} s_{t}$	+++	+-+	+--	++-	--	-+-	-++	++

A more explicit version of this table would be

$$
\begin{gathered}
n=p^{\lambda} q^{\mu} r^{\nu}, \quad \phi\left(p^{\lambda}\right)=2 M, \quad \phi\left(q^{\mu}\right)=2 N \\
\phi\left(r^{\nu}\right)=2 L, \quad r_{i}=\{\alpha, \beta, \gamma\}
\end{gathered}
$$

α	β	γ	8_{i}	$r_{t} s_{t}$
$1 \leqslant \alpha \leqslant M$	$1 \leqslant \beta \leqslant N$	$1 \leqslant \gamma \leqslant L$	$\{\alpha, \beta, \gamma\}$	+++
$M<\alpha \leqslant 2 M$	$1 \leqslant \beta \leqslant N$	$1 \leqslant \gamma \leqslant L$	$\{\alpha, \beta-1, \gamma\}$	+-+
$M<\alpha \leqslant 2 M$	$N \leqslant \beta \leqslant 2 N$	$L<\gamma \leqslant 2 L$	$\{\alpha, \beta-1, \gamma-1\}$	+--
$1 \leqslant \alpha \leqslant M$	$N<\beta \leqslant 2 N$	$L<\gamma \leqslant 2 L$	$\{\alpha, \beta, \gamma-1\}$	++-
$M \leqslant \alpha<2 M$	$N<\beta \leqslant 2 N$	$1 \leqslant \gamma \leqslant L$	$\{\alpha+1, \beta-1, \gamma-1\}$	---
$0 \leqslant \alpha<M$	$N<\beta \leqslant 2 N$	$1 \leqslant \gamma \leqslant L$	$\{\alpha+1, \beta, \gamma-1\}$	-+-
$M \leqslant \alpha<2 M$	$1 \leqslant \beta \leqslant N$	$L<\gamma \leqslant 2 L$	$\{\alpha+1, \beta-1, \gamma\}$	--+
$0 \leqslant \alpha<M$	$1 \leqslant \beta \leqslant N$	$L<\gamma \leqslant 2 L$	$\{\alpha+1, \beta, \gamma\}$	-++

(V) $n=4 q^{\mu} r^{\nu}$. This case is disposed of like the previous case since the number 4 has the primitive root 3.
(VI) $n=2^{\lambda} r^{\nu}(\lambda>2)$. This case also is covered by the discussion in the case $n=p^{\lambda} q^{\mu} r^{\nu}$, for the residue class $x\left(\bmod 2^{\lambda} r^{\nu}\right)$ can be represented by $\{\alpha, \beta, \gamma\}$, where α, β, γ are such that

$$
x \equiv 5^{\alpha}(-1)^{\beta}\left(\bmod 2^{\lambda}\right), \quad x \equiv g^{\gamma}\left(\bmod r^{\nu}\right)
$$

g being a primitive root of r^{ν}. This completes all the cases included in the set S, and, as pointed out already, the proof of the theorem is now plain.

Summary

It is known that, if $q>2$ and q is prime, then there do not exist two complete residue sets $r_{1}, r_{2}, \ldots, r_{q}$ and $s_{1}, s_{2}, \ldots, s_{q}$ such that $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{q} s_{q}$ also is a complete residue set $(\bmod q)$. It is pointed out in this note that the same conclusion holds not only for prime values of q but also for all numbers $q>2$. The main result of the note is the theorem

Theorem. If $n>2$ and $\phi(n)=h$, then there exist complete primitive residue sets $r_{1}, r_{2}, \ldots, r_{h}$ and $s_{1}, s_{2}, \ldots, s_{h}$ such that $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{h} s_{h}$ too is a complete primitive residue set if and only if n has no primitive root.

