THE REPRESENTATION OF A LARGE NUMBER AS A SUM OF 'ALMOST EQUAL' CUBES

By S. CHOWLA (Waltair, India)

[Received 5 November 1934]

1. Wright* has shown that. if $\lambda_{1}, \ldots, \lambda_{s}$ are positive numbers whose sum is 1 and if $k \geqslant 3, s \geqslant(k-2) 2^{k-1}+5$, then every sufficiently large n can be expressed as a sum $n=m_{1}^{k}+\ldots+m_{s}^{k}$ of s positive k th powers such that

$$
\lambda_{i} n-m_{i}^{k}=O\left(n^{1-\beta}\right) \quad(i=1,2, \ldots, s)
$$

with $0<\beta<\alpha$ where α is given as a certain function of k and s; for example, if $k=3$ and $s=9$, then $\alpha=\frac{1}{61}$.

In this paper we prove the following special results in the same direction.

Theorem 1. Every sufficiently large n can be expressed in the form

$$
n=\sum_{i=1}^{8} m_{i}^{3},
$$

where

$$
\frac{1}{8} n-m_{i}^{3}=O\left(n^{1-\beta}\right) \quad(i=1,2, \ldots, 8), \quad 0<\beta<\alpha,
$$

and (i) $\alpha=$ abos (without any hypothesis);
(ii) $\alpha=\frac{1}{4}$, if the 'extended Riemann hypothesis' is true $\dagger \dagger$
(iii) $\alpha=\frac{1}{2 i}$, if hypothesis (P) is true. \ddagger

Theorem 2. Every sufficiently large n can be expressed in the form

$$
n=m_{1}^{3}+m_{2}^{3}+\ldots+m_{9}^{3},
$$

where $\quad{ }^{n} n-m_{i}^{3}=O\left(n^{1-\beta}\right) \quad(i=1,2, \ldots, 9), \quad 0<\beta<\alpha$,
and (i) $\alpha=\frac{1}{42}$, if the e. R.h. is true;
(ii) $\alpha=\frac{1}{2 i}$, if hypothesis (P) is true.

Theorem 2 sharpens a special case of Wright's result (his α is $\frac{1}{51}$), assuming, however, unproved results. Theorem l is new.

[^0]2. In what follows t is a prime such that $t \equiv 17(\bmod 48)$ and p a prime such that $p \equiv 2(\bmod 3)$. We denote by $A(m)$ the assumption* that the number of primes congruent to 2 (to modulus 3) between x and $x+x^{1-1 / m+\delta}$ tends to infinity with x. We shall assume that $A(m)$ is true for some fixed m.

We choose t to be the prime such that $t \equiv 17(\bmod 48)$ which is nearest to $N^{1 /(3 m+1)}$. Then, since $A(m)$ is true, we can find, for sufficiently large N, at least 10 primes congruent to 2 (to modulus 3), and such that

$$
\begin{equation*}
\left(8 t^{3}+3 t^{2}+3 t+2\right) p^{9}<N<\left(8 t^{3}+4 t^{2}+3 t+1\right) p^{9} \tag{1}
\end{equation*}
$$

Since $p^{9}<N$ it follows that \dagger at least one of the ten primes p is prime to N (large). For our further argument we therefore suppose that $(p, N)=1$.

It follows from (1) that

$$
\begin{equation*}
p \sim \frac{N^{m / 3(3 m+1)}}{\sqrt[3]{2}}, \quad \text { since } t \sim N^{1 / 3(3 m+1)} \tag{2}
\end{equation*}
$$

Now $p \equiv 2(\bmod 3),(p, N)=1$; hence we can \ddagger find β such that

$$
\begin{equation*}
N-\beta^{3}=p^{3} M \tag{3}
\end{equation*}
$$

where, further,

$$
\begin{equation*}
t p^{3}<\beta<(t+1) p^{3} \tag{4}
\end{equation*}
$$

From (1), (3), (4),

$$
\begin{equation*}
\left(7 t^{3}+1\right) p^{6}<M<\left(7 t^{3}+4 t^{2}+3 t+1\right) p^{6} . \tag{5}
\end{equation*}
$$

We set

$$
\begin{equation*}
M=6 t^{3} p^{6}+M_{1} \tag{6}
\end{equation*}
$$

Then, from (5),

$$
\begin{equation*}
\left(t^{3}+1\right) p^{6}<M_{1}<\left(t^{3}+4 t^{2}+3 t+1\right) p^{6} . \tag{7}
\end{equation*}
$$

Now, we can§ find γ such that

$$
\begin{align*}
& M_{1}-\gamma^{3}=6 M_{2}, \tag{8}\\
& \text { where } \quad 0 \leqslant \gamma<96, \quad M_{2} \neq 0,7,12,15(\bmod 16) \text {. } \tag{9}
\end{align*}
$$

Since t is a prime and $t \equiv 2(\bmod 3)$ we can $\|$ also find γ^{\prime} such that

$$
\begin{equation*}
M_{1}-\gamma^{\prime 3} \equiv O(t), \quad 0 \leqslant \gamma^{\prime}<t \tag{10}
\end{equation*}
$$

Since, further, $t \equiv 1(\bmod 16)$, it follows from (8), (9), (10) that we can find δ such that

$$
\begin{gather*}
M_{1}-\delta^{3}=6 t M_{3} \tag{11}\\
t p^{2}-96 t \leqslant \delta<t p^{2} \tag{12}\\
M_{3} \neq 0,7,12,15(\bmod 16) . \tag{13}
\end{gather*}
$$

* For every positive δ; naturally, $m>1$.
\dagger See Landau, Primzahlen, 555-9, for similar arguments.
\ddagger See ibid.; Math. Annalen, 68 (1909), 102-5.
§ See Landau, Primvahlen. 556-7. || As in the proof of (3).

From (7), (11), (12) it follows that

$$
\begin{equation*}
\frac{1}{6 t} p^{6}<M_{3}<\frac{4 t^{2}+3 t+1}{6 t} p^{6}+O\left(p^{4} t^{2}\right) \tag{14}
\end{equation*}
$$

From (13) we have

$$
\begin{equation*}
M_{3}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \tag{15}
\end{equation*}
$$

where, from (2) and (14), since $m>1$,

$$
\begin{equation*}
y_{1}, y_{2}, y_{3}=O\left(\sqrt{ } t p^{3}\right) \tag{16}
\end{equation*}
$$

From (3), (6), (11), (15) we obtain

$$
\begin{align*}
N & =\beta^{3}+6 t^{3} p^{9}+(p \delta)^{3}+6 t p^{3}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \tag{17}\\
& =\beta^{3}+(p \delta)^{3}+\sum_{s=1}^{3}\left\{\left(t p^{3}+y_{s}\right)^{3}+\left(t p^{3}-y_{s}\right)^{3}\right\} \tag{18}\\
& =x_{1}^{3}+x_{2}^{3}+\ldots+x_{8}^{3} \tag{19}
\end{align*}
$$

From (4), (12), and (16) it now follows that

$$
\begin{gather*}
x_{1}=t p^{3}+O\left(p^{3}\right), \quad x_{2}=t p^{3}+O(p t) \tag{20}\\
x_{s}=t p^{3}+O\left(\sqrt{ } t p^{3}\right) \quad(3 \leqslant s \leqslant 8) \tag{21}
\end{gather*}
$$

Since, for large $N, \sqrt{ } t p^{3}>p^{3}>\operatorname{tp}(m>1)$, it follows that, for $1 \leqslant 8 \leqslant 8$,

$$
\begin{align*}
x_{s}^{3}-t^{3} p^{9} & =O\left(t^{1} p^{9}\right) \tag{22}\\
& =O\left(N^{1-1(18 m+6)}\right) \tag{23}
\end{align*}
$$

from (2).
But

$$
\begin{equation*}
N-8 t^{3} p^{9}=O\left(t^{2} p^{\vartheta}\right) \tag{24}
\end{equation*}
$$

From (22), (23), (24), for $1 \leqslant s \leqslant 8$,

$$
\begin{equation*}
x_{9}^{3}-\frac{1}{8} N=O\left(N^{1-1(18 m+6)}\right) \tag{25}
\end{equation*}
$$

Theorem 1 is now an immediate consequence of (19) and (25) when we observe that, for arbitrary positive ϵ,
(i) $A(m)$ is true ${ }^{*}$ for $m=250+\epsilon$;
(ii) $A(m)$ is true \dagger for $m=2+\epsilon$, if the e. R. h. is true;
(iii) $A(m)$ is true for $m=1+\epsilon$, if hypothesis (P) is true.

The proof of Theorem 2 is exactly similar. We start with

$$
\begin{equation*}
\left(9 t^{3}+3 t^{2}+3 t+2\right) p^{9}<N<\left(9 t^{3}+4 t^{2}+3 t+1\right) p^{9} \tag{26}
\end{equation*}
$$

instead of (1), and obtain

$$
\begin{equation*}
N=\left(t p^{3}\right)^{3}+\beta^{3}+(p \delta)^{3}+\sum_{s=1}^{3}\left\{\left(t p^{3}+y_{s}\right)^{3}+\left(t p^{3}-y_{s}\right)^{3}\right\} \tag{27}
\end{equation*}
$$

in place of (18).
Theorem 2 is also easily shown to be a consequence of Theorem 1.

* Heilbronn, Math. Zeits. 36 (1933), 394-423.
\dagger This is well known: see, for example, Landau's Primzahlen.

[^0]: * Math. Zeits. 38 (1934), 730-46.
 \dagger 'e. R. h.' =m 'extended Riemann hypothesis' in what follows.
 \ddagger Let $(a, b)=1$. Hypothesis (P) is that for any given positive ϵ the number of primes congruent to b (to modulus a) between x and $x+x^{c}$ tends to infinity with x.

