Substituting the value of 7 from (18) in (17), we get

$$
\begin{aligned}
& \left(4^{8}+8^{8}\right)\left(x^{8}+16 y^{8}\right)^{8}+\left(16^{8}+15^{8}+2^{8}\right)\left\{\left(4 x^{5} y^{3}\right)^{8}+\left(8 x^{3} y^{5}\right)^{8}\right\} \\
& \quad=\left(4^{8}+8^{8}\right)\left\{\left(x^{8}-16 y^{8}\right)^{8}+\left(2 x^{7} y\right)^{8}+\left(16 x y^{7}\right)^{8}\right\}+17^{8}\left\{\left(4 x^{5} y^{3}\right)^{8}+\left(8 x^{3} y^{5}\right)^{8}\right\}
\end{aligned}
$$

Division by 4^{8} now gives

$$
\begin{aligned}
& \left(1^{8}+2^{8}\right)\left(x^{8}+16 y^{8}\right)^{8}+\left(16^{8}+15^{8}+2^{8}\right)\left\{\left(x^{5} y^{3}\right)^{8}+\left(2 x^{3} y^{5}\right)^{8}\right\} \\
& \quad=\left(1^{8}+2^{8}\right)\left\{\left(x^{8}-16 y^{8}\right)^{8}+\left(2 x^{7} y\right)^{8}+\left(16 x y^{7}\right)^{8}\right\}+17^{8}\left\{\left(x^{5} y^{3}\right)^{8}+\left(2 x^{3} y^{5}\right)^{8}\right\}
\end{aligned}
$$

and the proof of (IX) is complete.

LEUDESDORF'S GENERALIZATION OF WOLSTENHOLME'S THEOREM

S. Chowla*.

Theorem $\dagger . \quad$ If $(n, 6)=1$, then \ddagger

$$
\underset{\substack{(m, n)=1 \\ m<n}}{\sum} m^{-1} \equiv 0\left(n^{2}\right) .
$$

Proof§.

$$
\begin{gathered}
\underset{\substack{(m, n)=1 \\
m<n}}{\sum} \frac{1}{m} \equiv 0\left(n^{2}\right) \stackrel{\leftrightarrow}{\leftarrow} \underset{\substack{(m, n)=1 \\
m<n}}{\Sigma} \frac{1}{m(n-m)} \equiv 0(n), \\
\underset{\substack{(m, n)=1 \\
m<n}}{\sum} \frac{1}{m(n-m)}+\underset{\substack{(m, n)=1 \\
m<n}}{\sum} \frac{1}{m^{2}} \equiv 0(n) .
\end{gathered}
$$

It remains to prove that $\| \Sigma^{\prime} m^{-2} \equiv 0(n)$, and this follows from the congruence

$$
\Sigma^{\prime} m^{-2} \equiv \Sigma^{\prime}(a m)^{-2} \quad(\bmod n)
$$

if a is such that $a^{2} \not \equiv 1(p)$ for all prime factors p of n; it is obviously possible to choose a in this way since n is prime to 6 .

[^0]
[^0]: * Received 27 March, 1934; read 26 April, 1934.
 \dagger This is the simplest and most striking case of Leudesdorf's theorem. See Hardy and Wright, Journal London Math. Soc., 9 (1934), 38-41. The theorem was rediscovered by S. S. Pillai.
 $\ddagger a \equiv b(c)$ means $a \equiv b(\bmod c)$.
 § Wo write $A \leftrightarrows B$ when proposition B follows from proposition A and conversely.
 || A dash attached to a Σ indicates that m takes any incongruent set of values prime to n.

