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The Y chromosome-specific gene SRY is one of the key genes involved in human sex determination. The SRY gene encodes a

testis-specific transcription factor that plays a key role in sexual differentiation and development in males and is located on the

distal region of the short arm of the Y chromosome. Mutations in SRY gene result in XY sex reversal and pure gonadal dysgen-

esis. SRY expression initiates a network of gene activity that transforms the undifferentiated gonad, genital ridge into testis.

Mutations in the SRY gene have been considered to account for only 10–15% of 46,XY gonadal dysgenesis cases, whereas the

majority of the remaining cases may have mutation(s) in the SRY regulatory elements or other genes involved in the sex differ-

entiation pathway. Patients both with gonadal dysgenesis and Y-chromosome presence are at high risk of developing gonado-

blastoma. Using PCR, single strand conformational polymorphism (SSCP) and automated DNA sequencing, we analysed the

mutations in the SRY gene in three 46,XY sex reversal patients. Two patients demonstrated nucleotide substitution (A ! G)

within the open reading frame just outside and upstream of the conserved DNA-binding motif called the high-mobility group

(HMG) box, replacing glutamine at codon 57 with arginine. Altered SSCP patterns were also observed in these patients. Histo-

logical examination of gonads in patient 1 revealed the formation of gonadoblastoma. Patient 3 demonstrated A ! T substi-

tution which replaces serine at codon 143 with cysteine, just outside but downstream of the HMG box. Results suggest the

involvement of SRY gene in sex reversal which further supports the relationship between SRY alterations, gonadal dysgenesis

and/or primary infertility.
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Introduction

Sex determination is governed and regulated by a series of genetic

switches that influence cellular differentiation during critical periods

of gonadal development. Interestingly, the primordial fetal gonads

are bipotential and gonadal development provides an excellent

opportunity to identify genes involved in the differential organ-

ogenesis. During mammalian embryogenesis, the presence of the

SRY gene determines whether the gonads develop as testes, which in

turn determines whether the embryo will develop as a male. In the

absence of the SRY gene, the fetal gonads develop as ovaries

(Harley et al., 1992). XY gonadal dysgenesis is the result of an

embryogenic testicular regression event, and can occur in a pure or

partial form. Pure gonadal dysgenesis is defined as 46,XY individ-

uals with no testes but who have fully developed female-type exter-

nal genitalia and normal Müllerian structures but only streak

gonads. In contrast, patients with partial gonadal dysgenesis are

characterized by partial testicular differentiation with genital ambi-

guity. Gonadal histology illustrates hypoplastic testicular tubules

intermixed with ovarian stroma (Marcantonio et al., 1994). These

individuals may have unilateral or bilateral dysgenetic gonads

and/or streak gonads.

Several genetic loci may play important roles in testis-determin-

ing pathways. Male-to-female sex reversal in patients with 46,XY

karyotype results from the failure of testis development, which may

be due to mutations in the SRY gene (Sinclair et al., 1990). This

gene is located on the short arm of the Y chromosome close to the

pseudo-autosomal boundary. It consists of a single exon with a con-

served central motif, termed high-mobility group (HMG) box, and

has DNA-binding as well as DNA-bending activities, suggesting

that it functions as a transcriptional regulator. This gene has been

shown to be essential for initiating testis development and the differ-

entiation of the indifferent and bi-potential gonads into the testicular
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pathway (Sinclair et al., 1990; Marx, 1995). In the presence of SRY,

the supporting cells of the undifferentiated gonad become testicular

Sertoli cells, and without SRY the supporting cells become ovarian

follicular cells (Capel, 2000). This protein has been shown to pos-

sess sequence-specific DNA-binding activity and it is assumed to

regulate other genes involved in the male determination pathways

(Harley et al., 1994). Normal SRY changes the architecture of DNA,

thus allowing access of other factors needed for its expression

(Behlke et al., 1993). SRY gene product stimulates a cascade of

regulatory events, allowing Leydig cell differentiation from steroid

secretory cells, the arrest of mitosis in germ cells and proliferation

and organization of connective tissue into a testicular pattern

(Castineyra et al., 2000). The HMG box is essential for SRY to bind

and bend DNA, as well as for transporting the protein into the

nucleus (Sinclair, 2001).

Different types of mutations in SRY gene have been found to

account for ,15% of these cases with gonadal dysgenesis (Cameron

and Sinclair, 1997;Margarit et al., 1998; Assumpcao et al., 2002).

Table I. Mutations in the SRY gene identified so far

Phenotype SRY mutation Familial history

Outside, upstream HMG box
Partial ovarian function Gln2CAA ! StopTAA 2
Pure GD Tyr4TAT ! StopTAA 2
UTS Tyr4TAT ! 1base del StopTAG 2
Partial GD Ser18AGT ! AsnAAT þ
Pure GD Arg30AGA ! IleATA þ
Pure GD Lys43AAG ! 1 base insertion T Stop TAA 2
Pure GD Glu57CAG ! ArgCGGa 2

Within HMG box
Pure GD Arg59AGA ! GlyGGA 2
Pure GD Val60GTG ! LeuCTG þ
TH Val60GTG ! LeuGCG 2
Pure GD Arg62CGA ! GlyGGA 2

Pure GD Met64ATG ! IleATA 2
Pure GD Met64ATG ! ArgAGG 2
Pure GD Asn65AAC ! HisCAC 2
Pure GD Phe67TTC ! LeuCTC 2
Pure GD Phe67TTC ! ValGTC þ
Pure GD Ile68ATC ! ThrACC 2

Pure GD Trp70TGG ! StopTAG 2
Pure GD Arg72CGC ! GlyGGC 2
Pure GD Glu74GAG ! StopTAG þ
Pure GD Arg75AGG ! AsnAAT 2
Pure GD Arg76CGC ! SerAGC þ
Pure GD Met78ATG ! ThrACG 2
TH Ala79GCT ! AlaGCC 2

Pure GD Arg86CGA ! StopTGA 2
Pure GD Asn87AAC ! TyrTAC 2
Pure GD Ile90ATC ! MetATG þ
Pure GD Ser91AGC ! GlyGGC þ
Pure GD Lys92AAG ! StopTAG 2
Pure GD Gln93CAG ! StopTAG 2

Pure GD Gly95GGA ! ArgCGA 2
Pure GD Gly95GGA ! GluGAA 2
Pure GD Gly97CAG ! StopTAG þ
TH Leu101CTT ! HisCAT 2
Pure GD Lys106AAA ! IleATA 2
Pure GD Trp107TGG ! StopTAG 2
Pure GD Pro108CCA ! 1 base deletion A ProCCT 2

Pure GD Pro108CCA ! ArgCGA 2
Pure GD Phe109TTC ! SerTCC þ
Pure GD Ala113GCA ! ThrACA 2
Pure GD Arg121AGA ! 4 base deltion; frameshift 2
Pure GD Pro125CCG ! leuCTG þ
Pure GD Tyr127TAT ! CysTGT 2

Pure GD Tyr127TAT ! CysTAA 2
Partial GD Tyr129TAT ! AsnAAT 2
Pure GD Tyr129TAT ! StopTAA 2
Pure GD Pro131CCT ! ArgCGT 2
Pure GD Arg132CGT ! GlyGGT 2
Pure GD Arg133CGG ! TrpTGG 2
Partial GD Lys136AAG ! SerAGT 2

Outside, downstream HMG box
Pure GD Ser143AGT ! CysTGTa 2
Pure GD Gln158CAA ! 1 base deletion A; Frameshift 2
Pure GD Leu163TTG ! StopTAG þ

aPresent cases.
GD ¼ gonadal dysgenesis; TH ¼ true hermaphroditism; UTS ¼ Ullrich–Turner syndrome.
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However, the majority of these patients may have mutations in other

genes involved in the sex differentiation pathway or in the regulat-

ory elements of SRY gene. To date, 51 mutations have been ident-

ified within the SRY gene open reading frame (Table I), and most of

these are located in the HMG box, highlighting the crucial but criti-

cal role of this domain (Assumpcao et al., 2002; Fernandez et al.,

2002; IMG; http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.html; Zhou

et al., 2003). Only 10 mutations lie outside and upstream of the

HMG box (eight of which are located in the 50 region) and

the remaining two lie downstream, 30 of the HMG box (IMG, http://

archive.uwcm.ac.uk/uwcm/mg/hgmd0.html; Baldazzi et al., 2003).

The analysis of SRY status in relation to female infertility has been

done in most developed countries, yet to the best of our knowledge

so far there are no reports (except one individual reported from

India where the mutation lies within the HMG box: McElreavey

et al., 1992) of SRY gene mutations outside of the HMG box that

have been documented in correlation with cytogenetic and bio-

chemical anomalies in infertile female patients (46,XY) with gona-

dal dysgenesis from developing countries, particularly India where

reproductive health problems are still considered as a social stigma.

Here we describe two novel point mutations in the SRY gene in

three patients with 46,XY gonadal dysgenesis. An attempt has also

been made to investigate the relationship between SRY mutations

and gonadoblastoma formation in these patients. One mutation is

found just outside, 50 upstream of the HMG box and the other out-

side, 30 downstream of the HMG box; both of these mutations are

associated with variable phenotypes.

Materials and methods

Informed consent was obtained from all patients and control individuals who

participated in the present study. This study was approved by the Ethics

Committees both of the hospital and university.

Subjects

Patient 1, a 28 year old woman born to healthy unrelated parents, presented

with primary amenorrhoea, but was otherwise healthy and had no history of

illness. The patient had no dysmorphic features. The external genitalia and

secondary sexual characteristics of this patient were like those of normal

females. Other features included the presence of Müllerian structure, absence

of Wolffian structures and formation of tubules. Pubic and sparse axillary

hairs were also present. Pelvic ultrasound revealed streak gonads and pre-

sence of Müllerian ducts. Endocrine function studies showed elevated LH

(28.4 mIU/ml) and FSH (69.2 mIU/ml). One atypical feature of the proband

is the presence of secondary sexual characteristics including normal breast

development. Histological examinations of the gonads also revealed prolifer-

ation of atypical germ cells admixed with granulomatous chronic inflam-

mation consistent with gonadoblastoma formation.

Patients 2 and 3 were 22 and 20 year old females respectively born to

healthy unrelated patients and were referred to us because of primary

amenorrhoea. Both these patients had fully developed feminized phenotypes

without any sexual ambiguity. Other features included presence of Müllerian

structures, absence of Wolffian structures and formation of tubules with

sparse axillary hairs. Pubic hair showed characteristic male-like distribution

with clitoromegaly without any labial fusion. Pelvic ultrasound revealed the

presence of streak gonads and presence of Müllerian ducts. The external gen-

italia and secondary sexual characteristics were like those of normal females.

Endocrine function studies showed elevated LH (22.6 and 24.2 mIU/ml) and

FSH (54.0 and 49.7 mIU/ml) respectively. Both patients had not developed

any gonadoblastoma at the time of examination.

Three heparinized blood samples were collected from patients at the

Department of Obstetrics and Gynaecology, Maulana Azad Medical College

and Lok Nayak Hospital, New Delhi-110025 India and transported to the lab-

oratory on ice. All patients and controls who participated in the present study

were non-smokers and non-alcoholics.

Cytogenetic analysis

Chromosomal analyses were performed by conventional techniques on

phytohaemagglutinin-stimulated peripheral blood culture from the infertile

female patients (Husain and Bamezai, 1988). Conventional G-banding tech-

niques were used for chromosome identification.

Hormonal analysis

The hormonal evaluation was conducted by the radioimmunoassay method

using kits supplied by BARC, India (for LH) and Hormone Diagnostics,

India (FSH).

SRY analysis

Genomic DNA from the blood samples was extracted by digestion with Pro-

teinase K (Boehringer) followed by routine phenol chloroform isolation and

precipitation with ethanol or isopropanol and chilled 3 M sodium acetate

(pH 5.2). Vacuum-dried DNA samples were dissolved in TE (Tris–EDTA)

buffer and DNA concentration was determined by gel electrophoresis. Two

sets of oligonucleotide primers (F1 50-CATGAACGCATTCATCGTGT-

GGTC-30; R1 50-CTGCGGGAAGCAACTGCAATTCTT-30, and F2 50-CAG-

TGTGAAACGGGAGAAAACAGT-30; R2 50-GTTGTCCAGTTGCACTTC-

GCTGCA-30) were used in the PCR reactions to amplify fragments of 254

and 351 bp respectively from the open reading frame of the SRY gene. Exon

5 of the p53 gene was amplified as an internal control using oligonucleotide

primers F50-TACTCCCCTGCCCTCAACAA-30 and R50-CATCGCTATCT-

GAGCAGCGC-30 yielding a PCR product of 184 bp. PCR amplification was

performed in 25 ml reaction volume containing 10 mmol/l Tris–HCl (pH

8.4), 50 mmol/l KCl, 1.5 mmol/l MgCl2, 200mmol/l each of dNTP (dATP,

dCTP, dGTP, dTTP), 5 pmol of oligonucleotide primers, 100–500 ng of

DNA and 0.5 IU Taq DNA polymerase (Perkin–Elmer Cetus, USA). PCR

thermal cycling conditions were; a 4 min denaturation period at 958C and

35 cycles of the following: 958C for 30 s, 558C for 30 s and 728C for 30 s,

and a final extension of 7 min at 728C. Every PCR included negative (normal

XX female) and positive (normal XY male) controls. PCR products (7.0ml)

were visualized on 2% agarose gel with ethidium bromide.

Single-strand conformational polymorphism (SSCP)

PCR products were labelled with [a-P32]dCTP by performing an additional

15 cycles of PCR and loaded on 6% non-denaturing polyacrylamide gel con-

taining 5% glycerol. The electrophoresis was carried out overnight at 200 V

at 17 ^ 18C. The dried gel was exposed to X-ray film for 48 h at 2 708C

(Orita et al., 1989).

Automated DNA sequencing

PCR products showing altered band mobility and/or shift in SSCP patterns

were sequenced using an ABI prism 310 automated sequencer. Before

sequencing, PCR products were purified using ammonium acetate–ethanol

precipitation method. The cycle sequencing of the purified PCR products

was performed using BIG Dye terminator sequencing ready reaction mix

with AmpliTaq DNA polymerase FS, on GeneAmp PCR 9700. PCR

conditions were set as: 968C £ 10 s, 568C £ 5 s and 608C £ 4 min for

25 cycles. After cycle sequencing, extension products were purified to

remove any unincorporated dye-labelled terminators using ethanol–sodium

acetate precipitation method. Template suppressor reagent was added and

samples were heat-denatured, chilled on ice and loaded on the 310 sequen-

cer. The sequences were analysed using sequencing analysis software 3.4.1

on a Mac OS 9.1.

Results

Chromosome analysis from peripheral blood lymphocyte cultures

showed a 46,XY karyotype in patients with primary infertility.

Alterations of the investigated biochemical parameters were suffi-

cient to exclude the diagnosis of androgen insensitivity. Based on

these findings, we set up PCR to amplify the SRY gene. PCR pro-

ducts were also scanned for mutations using single strand confor-

mational polymorphism (SSCP) analysis. All three samples showed

SRY mutations and sex reversal

523

 by guest on O
ctober 2, 2010

m
olehr.oxfordjournals.org

D
ow

nloaded from
 

http://molehr.oxfordjournals.org/


aberrant migration in the SSCP assay (Figure 1). By direct sequen-

cing of PCR products, we have identified a point mutation in the

SRY gene in patients 1 and 2. This mutation is an A ! G transver-

sion mutation that results in the replacement of glutamine with an

arginine residue at amino acid 57 in the open reading frame, just

outside and upstream of conserved DNA-binding motif called HMG

box (Figures 2A, B and 3). Gonadal examination revealed the pre-

sence of gonadoblastoma formation in patient 1. However, the third

patient demonstrated A ! T transversion mutation which leads to

the replacement of the serine residue at codon 143 with a cysteine

residue, just outside but downstream of the HMG box sequence

(Figures 2C, D and 3). Neither of the other mutations nor nucleotide

mosaicisms were found in the amplified products of the SRY gene.

No nucleotide substitution mutations were found in our preliminary

SRY sequencing from 25 normal males excluding the possibility of a

polymorphism. It cannot be ascertained whether these mutations are

de novo as paternal DNA was not available for analysis and there-

fore a parental germ cell mosaicism cannot be excluded.

Discussion

All three patients presented with a 46,XY karyotype and had no evi-

dence of mosaicism. They had elevated FSH and LH levels, well-

formed Müllerian structures, no Wolffian structures, streak gonads

and fully formed feminized female genital structures. Patient 1 also

had gonadoblastoma formation. There is evidence that the SRY gene

is essential for sex determination (Sinclair et al., 1990). The assign-

ment of SRY as the testis-determining factor (TDF) is supported

by many studies of human intersex abnormalities (Harley et al.,

1992; McElreavey et al., 1992; Affara et al., 1993; Zeng et al.,

1993; Bilbao et al., 1996; Brown et al., 1998). All these studies

indicate that mutations in the SRY gene are associated with gonadal

dysgenesis. The SRY protein belongs to the SOX family of transcrip-

tion factors, which are further characterized by a HMG domain with

DNA-binding and -bending properties, the ability to mediate pro-

tein–protein interactions, and containing signals for nuclear import

(Südbeck and Scherer, 1997; Wilson and Koopman, 2002). Here, we

describe three females with gonadal dysgenesis and mutations in the

SRY gene at codon Q57R in patients 1 and 2 and S143C in patient

3. Both these mutations lie just outside the highly conserved HMG

box. The polar neutral amino acid, glutamine, is replaced with a

polar charged arginine (with pKa of 12.5) in patients 1 and 2. It is

possible that with this mutation in place, mutated SRY protein may

not be able to enter the nucleus to elicit the male gene expression or

it may have disrupted the nuclear localization signal necessary to

Figure 2. Partial electropherograms of the SRY gene in patients 1 and 2
(A: showing mutation Q57R and B: normal or wild type sequence) and
patient 3 (C: showing a mutation S143C and D: normal or wild type
sequence); Arrows indicate the substituted nucleotides.

Figure 1. PCR-SSCP analysis of single exon of SRY gene in patients with
46,XY, Lanes 1: SRY negative control DNA; 2: SRY positive control DNA
and arrows indiacate 3: SRY with additional band (patients 1 and 2) and 4:
SRY with missing band (patient 3) indicating that these patients carry
mutations in SRY gene.

M.Shahid et al.

524

 by guest on O
ctober 2, 2010

m
olehr.oxfordjournals.org

D
ow

nloaded from
 

http://molehr.oxfordjournals.org/


perform male gene expression. This change may form an electro-

static and hydrophobic interaction with phosphate and sugars

respectively of DNA and could play an important role in altering

the specific orientation and binding to DNA bases in the major

groove. This may have totally or at least partially inhibited the inter-

actions of SRY with DNA (Werner et al., 1995). Patient 1 has also

got normal breast development which is an atypical feature of the

phenotype. The older patient (no. 1) developed gonadal tumours

where as the younger patient (no. 2) did not, which is further sup-

ported by previous studies (Manuel et al., 1976; Schmitt-Ney et al.,

1993; Tajima et al., 1994; Uehara et al., 1999, 2002). It is widely

recognized that dysgenetic gonads possibly due to the SRY

mutations frequently develop gonadoblastoma. However, the mol-

ecular cause of gonadoblastoma formation remains elusive. The

GBY (gonadoblastoma locus, Y chromosome) locus on Yq region is

thought to contain a proto-oncogene involved in the origin of these

tumours (Page, 1987). This is further supported in that mutations in

oncogenes, tumour suppressor genes and DNA repair genes accumu-

late with age and then cause tumour development in the streak

gonads (Knudson, 1971). Although many patients with mutations in

the SRY gene fail to develop secondary sexual characteristics at pub-

erty, a small subset, similar to patient 1, do develop these to varying

degrees (Scully, 1970; Warner et al., 1985). Polar neutral amino

acid serine is found replaced with a neutral and non-polar cysteine

(with pKa 8.4) at codon 143 in patient 3. This change may result in

an altered protein which may have lost some of its stabilizing

potential.

The majority of the mutations detected so far in the SRY gene lie

within the conserved motif, i.e. HMG box, causing alterations in

DNA binding/bending activity, and possibly contributing to the ori-

gin of 46,XY females. To date, only 10 mutations that lie outside

the HMG box have been detected and all have different effects on

the patient phenotype. It is hypothesized that the regions outside the

HMG box might be required to stabilize protein binding and to gen-

erate specificity by helping to discriminate between the protein–

protein interactions (Wilson and Koopman, 2002). Proteins such as

SRY possessing just one HMG box show sequence specificity for

DNA binding by recognizing AT-rich sequences, thus inducing a

bend in the DNA helix. DNA binding and bending capacities by

SRY protein have been demonstrated to be essential in testis devel-

opment (Harley et al., 1992). The strong bending of DNA together

with the lack of a potential transregulation domain in human SRY

has led to the suggestion that protein may modulate transcription by

acting architecturally in the assembly of a nucleoprotein complex

Figure 3. Partial upstream and downstream sequence of HMG box showing the position of mutations (circled amino acids, affected residues).

SRY mutations and sex reversal
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(Pontiggia et al., 1994). However, despite the critical role of SRY in

the cascade of gene regulation leading to maleness, the direct targets

of SRY remain to be positively identified.
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