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Abstract-The theory of melting of molecular crystals developed by Pople 
and Karasz, which takes into account order-disorder processes in both the 
positions and orientations of the molecules, is discussed in a slightly modifled 
form. The theory is an extension of the two-lattice model of Lennard-Jones 
and Devonshire so as to allow the molecules to take up two orientations on 
any site. It is assumed in this paper that the energy required for a molecule 
to diffuse to an interstitial site varies as V-4, as in the original formulation, 
but that the orientational barrier varies as V4, in conformity with recent 
calculations of the orientational potential energy in nematic liquid crystals. 
The thermodynamic properties of the disordered system are evaluated relative 
to those of the perfectly ordered one using the Bragg-Williams approximation. 
For small orientational barriers, the theory predicts two transitions, a solid 
state rotational transition followed by a melting transition. For larger 
orientational barriers, the two transitions coalesce and there is a corresponding 
increase in the entropy of fusion. For even larger orientational barriers, the 
positional melting precedes the rotational melting and there occurs an inter- 
mediate phase, similar to the nematic mesophase, that has orientational order 
but no positional order. The predicted entropies of transition from the liquid 
crystal to the isotropic phase for a certain range of orientational barriers are 
comparable to those observed in nematic compounds. Theoretical curves 
are drawn for the degree of orientational order, the anomalous specific heat and 
thermal expansion as functions of temperature in the liquid crystalline range, 
and for the variation of the transition temperatures with pressure. The curves 
reproduce the trends in the physical properties of nematic liquid crystals. 

1. Introduction 

X-ray studies of the crystal structures of typical nematogenic 
compounds, such as p-azoxyanisole, p-azoxyphenetole and anisalda- 
azine, show that the long, narrow molecules are parallel or nearIy 
parallel and interleave one another to form an imbricated arrange- 
ment.(1-3) The transition from the crystalline to the nematic phase 
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338 MOLECULAR CRYSTALS A N D  L I Q U I D  C R Y S T A L S  

is accompanied by the breakdown of the positional order of the 
molecules, but not of the orientational order. The mesophase is 
fluid because of the facility with which the molecules slide over one 
another whilst still retaining their parallelism. The breakdown of 
the orientational order occurs a t  a higher temperature when the 
liquid crystal transforms into the isotropic liquid. The solid- 
nematic and the nematic-isotropic transitions are both attended 
by changes of entropy and volume, which are about 10-50 times 
larger for the former transition. The degree of orientational order 
of the molecules is defined by the long range order parameter 

-_ 
s = ~ ( 3  cos2 e - 11, 

where 8 is the angle which the long axis of the molecule makes with 
the uniaxial direction of the medium. The limits of s are 1 for a 
perfectly ordered crystalline arrangement and 0 for the completely 
disordered isotropic liquid. Experiments reveal that s decreases 
suddenly at  the solid-nematic transition point, and then falls gradually 
with rise of temperature in the liquid crystalline range. At the 
second transition point T, , there is again a discontinuous change and 
s drops catastrophically to 0. Properties associated with orientational 
order, as for example the specific heat of the liquid crystal, exhibit 
an anomalous increase in the neighbourhood of T, . 

Various types of models have been put forward to characterize 
the basic difference between the solid and liquid states of matter and 
to evaluate the thermodynamic changes involved, but it would be fair 
to say that no theory has yet been constructed that is able to give a 
satisfactory quantitative description of the melting process. (For a 
review of the theories and a critical discussion of the problem, see 
Ubbelohde.(4)) The most successful treatment of the melting of inert 
gas crystals is that of Lennard-Jones and Devon~hire , (~.~)  who 
regarded the mechanism of fusion as a positional order-disorder 
phenomenon. They postulated that the molecules may occupy 
sites on one of two interpenetrating lattices, referred to as A-sites 
and B-sites. The lowest energy configuration is that in which all 
molecules occupy the same kind of sites, say the A-sites. With 
increasing temperature, the number of molecules in the interstitial 
B-sites increases till a critical stage is reached when there is complete 
collapse of the long range order and both kinds of sites become 
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equally populated. The system in which there is an equal number of 
occupied and unoccupied A-sites corresponds to a liquid, for, under 
such circumstances, migration from one site to another beconies 
easily possible. By assuming that the energy of interaction between 
molecules in adjacent A- and B-sites is dependent on volume, 
Lennard-Jones and Devonshire derived a statistical theory of the 
thermodynamics of the melting process whose predictions agree with 
the data for a number of spherical or nearly spherical molecules. 

However, the theory fails for anisotropic molecules where the 
effect of orientational disorder becomes important. The thermo- 
dynamic data suggest that  there are two classes of molecular 
crystals : those which undergo phase transitions associated with 
rotational motions a t  temperatures below the melting point and 
those for which the rotational and melting transitions coalesce. The 
former have entropies o f  fusion lower than the inert gas crystals, 
whereas the latter have much higher entropies of fusion (see 
Ubbelohde(4)). 

Pople and K a r a s ~ ( ~ ~ ~ )  proposed a simple extension of the two- 
lattice model of Lennard-Jones and Devonshire by means of which 
it is possible to  give a reasonable quantitative interpretation of 
the variations in the thermodynamic properties of melting of mole- 
cular crystals. They assumed that the molecule may take up one 
of two orientations on any site, so that it now has four possibilities, 
A,, A,, B,, B,. The perfectly ordered system (which corresponds 
to  the solid a t  zero temperature) may then be regarded as one in 
which all molecules occupy the same configuration, A, or A, or B, or 
B,, and the completely disordered system (or the liquid phase) as 
one having. the four configurations equally populated. Clearly, 
there can also be systems with positional order and no orientational 
order and vice versa. 

When a molecule is turned into an unfavorable orientation, local 
strains are set up and consequently there is an increased tendency 
for the molecules in the vicinity to move to interstitial sites. To 
allow for this, Pople and Karasz made the simple assumption that 
the orientational component of the AB interactions is negligible as 
compared with that of the AA or BB interactions, so that the B-sites 
near a misorientation in an A-lattice (and similarly the A-sites near 
a misorientation in a B-lattice) are favored. Accordingly, the 
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340 M O L E C U L A R  CRYSTALS A N D  LIQUID CRYSTALS 

energy required for a molecule to diffuse to an interstitial B-site in 
an A-lattice (or an interstitial A-site in a B-lattice) is determined 
only by the AB interactions regardless of orientation, and the energy 
required for a molecule to assume an A,-orientation in an A,-lattice 
(or a B,-orientation in a B,-lattice) is determined by the A,A, (or 
BIB,) interactions only. They assumed that both these energies are 
repulsive in origin and vary as V7-4. For small orientational barriers, 
the model predicts two transitions, a rotational transition followed 
by a melting transition. For larger orientational barriers the two 
transitions coalesce and there is n single transition with a much 
larger entropy of fusion. The maximum entropy of fusion predicted 
by the model is about 6 cal/niole deg, whereas, in fact, much higher 
values are often observed. Despite this limitation, which arises 
mainly from the restriction of two possible orientations per site, the 
model does provide a logical basis for interpreting the effects of 
hindered rotation on the thermodynamics of fusion. 

For even larger orientational barriers, the model predicts that the 
positional melting should precede the rotational melting, so that there 
should occur an intermediate phase, similar to the nematic liquid 
crystalline phase, which has orientational order but no positional 
order. However, Pople and Karasz have not investigated this range 
of orientational barriers. We have found that the model in its 
present form leads to very large entropies for the nematic-isotropic 
transition and also fails to reproduce any of the distinctive properties 
of the nematic phase, such as the rapid variation of the degree of 
orientational order with temperature, the anomalous specific heat, etc. 

Recent theoretical studies@) have shown that the orientational 
potential energy of the molecule in a nematic assembly is determined 
mainly by dispersion and repulsion interactions which vary approxi- 
mately as V7-, and VP4 respectively. Based on an inter-molecular 
potential function involving these two types of interactions and 
assuming an average volume dependence of V-3, a statistical theory 
of long range orientational order in nematic liquid crystals has been 
developed which leads to a consistent quantitative explanation of 
the properties of p-azoxyanisole.(lO) In the light of this evidence, it 
would seem more realistic to suppose that the orientational barrier 
in the model varies as T,'+ rather than as V-*, especially since, 
according to the approximations discussed earlier, we are here con- 
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cerned with interactions between molecules on the normal lattice 
sites (i.e. the A,A, or BIB2 interactions) and not between molecules 
on adjacent A- and B-sites. We shall therefore introduce this 
modification in the theory and discuss its applications to liquid 
crystalline transitions. I& turns out that the theory at once gives 
results which arc in agreement with observed trends in the properties 
of nematic liquid crystals. 

2. The Statistical Model 
We define the degree of positional order as q = 2Q - 1, where Q 

is the fraction of molecules occupying the A-sites ; and the degree of 
orientational order as s = 2 s  - 1, where S is the fraction of molecules 
occupying the 1-orientations. Let there be z B-sites adjacent to  
each A-site and zf A-sites closest to each A-site. (This implies, of 
course, that there are also z A-sites adjacent to each R-site and z' 
B-sites closest to  each B-site.) Let W be the repulsive energy of an 
AB interaction and W' the orientational potential energy of an 
A,A, or BIB, interaction. 

Using the Bragg-Williams approximation, the partition function 
for disorder is given by(') 

N-llogQ = -(l+q)log(T) 1 + P  -(l-q)log(?) - L e l o g ( T )  1 + s  
2 

Applying the conditions of equilibrium of the system,(' ) and putting 
W = W,( V,/V)4 and W' = Wg( V , / V ) 3 ,  we obtain 

where v = z'N'~/zW,,  is a measure of the relative barriers for the 
rotation of a molecule and for its diffusion to an interstitial. 
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342 M O L E C U L A R  CRYSTALS AND LIQUID CRYSTALS 

The component of the Helmholtz free energy due to disorder 
F” = - kT log !2 and the pressure due to disorder p“ = - ( a F ’ / a  V ) T .  
Hence from (1)  

where q and s are now the equilibrium values determined by (2) and 
(3). If p’ denotes the contributioii of the ordered system to the 
pressure, the total pressure p = p’ + p”.  The complete isotherm was 
evaluated in the manner described by Pople and Karasz,(’) except 
that the equilibrium values of q and s had to be re-determined for 
every different kT/c ,  so that the calculations were much more 
involved. Here E is the minimum energy of interaction of a pair of 
particles given by the 6-1 2 intermolecular potential. 

Hereafter, q and s will be understood to refer to those values that 
minimize the free energy. 

3. The Thermodynamics of the Phase Transitions 

For low z WIkT, q = s = 0 is the only solution that minimizes the 
free energy for any given kT/c ,  while for very large z W / k T ,  q = s = 1 
is the only solution. The behavior for intermediate z W / k T  depends 
critically on the strength of the orientational barrier. Figure 1 
illustrates the variation of q and s with z W / k T  for three typical values 
of v. For small v, q leaves 0 at  a lower z W / k T  than s (Fig. la). As v 
increases, the separation between the q and s curves decreases till a 
stage is reached when q and s rise suddenly from 0 at  the same 
zW,/kT (Fig. lb). For large v, the situation is reversed and s departs 
from 0 at  a smaller z W / k T  (Fig. lc). 

For v less than about 0.3 the theory predicts two transitions, a 
solid state rotational transition followed by a melting transition. 
For v between 0.3 and 0.8, the two transitions coalesce and there 
occurs a single transition with a much greater entropy of fusion. 
These results are in qualitative agreement with those discussed by 
Pople and Karasz. There are, of course, some quantitative differences, 
but we shall not discuss them in this paper. We shall here consider 
only the liquid crystalline transitions in detail. 

When v is greater than 0.8, there are again two transitions. The 
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1.01 

R71 

9.' 

RM 

a25 

0 

Figure 1. Variation of equilibrium values of q and s with z W / k T ,  (a) v =0.2,  
(b) v - 0 . 6 ,  (c) v=1.2.  
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theoretical isotherm for the first transition temperature is shown in 
Fig. 2 for v = 1.3. The sigmoid portions of the curve correspond to  
phase transitions, i.e. the two phases will be in equilibrium a t  a given 
pressure when the areas enclosed by the curve above and below the 
pressure line are equal. For example, the points A and B in Fig. 2 

1.2 

0.9 

0. f 

5 
t e 

0.3 

- 0.: 

-0.t 

V =1.3 
kT/E -0.678 

Figure 2. Theoretical isotherm for tho solid-nematic transition temperature. 

represent two such states in equilibrium at  zero pressure, A corres- 
ponding to a solid (q = 0.915, s = 1.0) and B to an intermediate phase 
with q = O , $  = 0.796. Evidently, for a higher temperature there will 
be a second transition which is characterized by the breakdown of 
the orientational order. The intermediate phase is therefore similar 
to the nematic mesophase which has orientational order but no 
translational order. (The smectic and cholesteric types of liquid 
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crystal cannot be compared with the intermediate phase predicted 
by this simple model.) 

The sigmoid shape of the isotherm in Fig. 2 signifies a first-order 
transition accompanied by changes of entropy and volume. As v 
decreases, the kink in the isotherm associated with the nematic- 
i3otropic transition becomes less pronounced, with the result that 
A S  and A V  decrease steadily. When v is less than about 1.1  (but 
greater than 0.8), the isotherm loses its sigmoid shape and exhibits 
only a change of slope a t  the transition as shown in Fig. 3. Thermo- 
dynamically, this represents a second-order transition with no change 
of volume or entropy. As far as we are aware, no case has yet been 
observed of a second-order nematic-isotropic transition. The 
positional melting, on the other hand, remains a first-order transition 
for all values of v. 

0.4 

0.2 

I- X 
z 
\ ’: 

0 

-0.2 

- 0.4 

v = 1.0 

Figure 3. 
transition. 

Theoretical isotherm showing second-order nematic-isotropic 
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The entropy of the system due to disorder 

aF" x" = - (-) 
V 

+ (7) log (?)I. 
Hence the entropy of transition AS = AX' +AX" can be found by 
calculating the entropies of the two phases in equilibrium using (5) 
and the tabulated values of S' for the ordered system.(11) The 
theoretical results for a few v are given in Table 1 along with the 
available data for some compounds.(12-16,22) For comparison, we 
also give the values derived from the Pople and Karasz theory. 

As far as the solid-nematic transition is concerned, both theories 
give very nearly the same ASIR and A V / V ,  but the values are 
significantly lower than the observed data. This limitation of the 
theory was also noted by Pople and Karasz. A simple model of this 
type cannot be expected to give an adequate description of the diverse 
kinds of molecular motion that can take place in such structures and 
to account for their contributions to the entropy of transition. For 
the nematic-isotropic transition, there is a striking difference between 
the results of the two theories. A S / R  and A V /  V given by the present 
theory for this transition is only a small fraction of the corresponding 
values for the solid-nematic transition. This is indeed a distinctive 
feature of nematic transitions in general.(ls) Furthermore, the 
theoretical s at the two transition temperatures compare very 
favourably with the experimental data. ( 1 7 s a a )  

In  contrast, the Pople and Karasz equations lead to large ASIR 
and A V / V  for the nematic-isotropic transition, and an s which 
hardly changes between the two transitions. We have also verified 
that the specific heat and thermal expansion calculated from their 
equations are practically independent of temperature in the liquid 
crystalline range. In  point of fact, these quantities are strongly 
temperature dependent in nematic compounds, as we shall see in the 
next section. 
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4. The Properties of the Liquid Crystalline Phase 

By drawing isotherms for different temperatures and noting their 
intersections with the zero pressure line, s and V / V ,  can be deter- 
mined as a function of kT/c From the slopes of the curve for VjVo 
versus kT/E, a quantity proportional to the coefficient of thermal 
expansion can also be found. The results are presented in Figs 4, 6 
and 8, as functions of T / T c ,  where T, is the nematic-isotropic transi- 
tion temperature. 

The contribution of the disorder to the specific heat at  constant 
volume can be evaluated from the general thermodynamic relation 

The coefficients of (aq/aT)v and (as/aT), in (7)  vanish because of the 
equilibrium conditions (2) and (3). Therefore, 

Putting q = 0 in the nematic phase, we have from (6), (7) and (8) 

C V  
R 4k V 4 E  
- =  -__  

= -1.4655 -O vs ~ (9' [ * 

We have already seen that the intersection of the isotherm with 
the zero pressure line gives s and V / V ,  of the liquid crystal at that 
temperature and pressure. The value of s at the same V / V ,  but at a 
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= 1.20 

I 
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I 

1 I I 
0.97 0.98 0.99 1.00 

TIT. 
Figure 4. Theoretical variation of the degree of orientational order with 
temperature in the liquid crystal (at zero pressure) for v = 1 . 2 ,  1.18 and 1.15. 
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0.1 

0.6 

0.5 

S 

0.4 

0.3 

0.2 I I 1 I I I 

0.96 1.00 
T/T= 

0.92 

Figure 5. Degree of orientational order in p-azoxyanisole (PAA) and p- 
azoxyphenetole (PAP) in the nematic phase. The dashed portions of the curves 
represent the supercooled regions (Chandrasekhar and Madhusudana(lS)). 
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Figure 6. 
(at zero pressure). 

Theoretical variation of volume in nematic and isotropic phases 
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Figure 7. Variation of specific volume of p-azoxyanisole in nematic and iso- 
tropic phases (Maier and Saupe(ls)). 
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Figure 8. Theoretical coefficient of thermal expansion in nematic and 
isotropic phases (derived from Fig. 6). 
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Figure 9. Coefficient of thermal expansion of p-azoxyanisole in nematic and 
isotropic phases (Maier and Saupe(ls)). 
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"2 0 .99 1.00 T/Tc 1.01 

Figure 11.  
and isotropic phases (derived from experimental values of C9(12) and Fis(** ) ) .  

Specific heat at constant volume of p-azoxyanisole in nematic 

different kT/E, and hence [as/a(kT/c)]V, can be obtained from an 
isotherm for a slightly different kT/c. The specific heat derived in 
this manner as a function of TITc is shown in Fig. 10. 

The trends exhibited by the theoretical curves can be seen to be 
quite similar to those observed experimentally (Figs. 4-1 1) ; there 
is even a fair measure of quantitative agreement. 

5. Effect of Pressure on the Temperatures of Transition 

Uaing the isotherms drawn for a range of temperatures and apply- 
ing the principle of equal areas, the equilibrium pressures for the 
transitions can be determined as a function of kT/c. Figure 12 
shows the results for v = 1.15. 

The increase of the transition temperatures of p-azoxyanisole with 
pressure has been studied experimentally by Hulett,(l*) by Puschin 
and Grebenschtschikow('9) and by Robberecht (20). The data of 
Robberecht, which agree almost exactly with those of Hulett, are 
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Figure 12. Theoretical variation of the transition temperatures with pressure. 
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Figure 13. 
azoxyanisole with pressure (Robberechdao)). 

Experimental variation of the transition temperatures of p -  

shown in Fig. 13. Qualitatively,' the agreement can be seen to be 
satisfactory. In  particular, the prediction that dT/dp should be 
slightly greater for the second transition than for the first one is 
borne out by experiment. 

As emphasized earlier, a simple model of the type considered here 
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cannot be expected to be applicable in detail to any particular 
substance, but the over-all qualitative agreement confirms that the 
theory does serve to explain broadly the mechanism of formation of 
the liquid crystalline phase and to elucidate some of its important 
physical properties. 
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