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Abstract. Suppose
{

R
(L)
n (F ) : n ≥ 1

}
is the sequence of lower

records from a distribution F where F is continuous with inf{x ∈
supp(F )} = 0. We derive conditions under which logarithm of the
tail sum of records,

∑∞
j=n R

(L)
n (F ), properly centred and scaled,

converge weakly. We also prove two results on Π-varying and reg-
ularly varying functions, which are of independent interest.

1. Introduction

Let F be a distribution on [0,∞) with only possible discontinuity at 0.
Further, we assume that inf{x ∈ supp(F )} = 0. Let {X1, X2, . . . } be
i.i.d. observations from F . Let us define L1 = 1 and set, for n ≥ 2,

Ln = inf{k > Ln−1 : Xk ≤ XLn−1}.

Then {R(L)
n (F ) := XLn : n ≥ 1} is called the sequence of lower records

from the distribution F . We will drop F from R
(L)
n (F ) whenever there

is no chance of confusion. Similarly, we may define upper records from
a distribution F . The n-th upper record from the distribution F will

be denoted by R
(U)
n (F ). We also define the infinite sums

SF :=
∞∑

n=1

R(L)
n and Tn(F ) :=

∞∑
k=n

R
(L)
k ,

whenever they are finite.

Under the assumption on F , it is clear that R
(L)
n (F ) converges almost

surely to 0. It was proved by Bose et al. (2003), (see also Iksanov

(2004)) that
∑∞

n=1R
(L)
n <∞ a.e. if and only if∫ 1

0

x
F (dx)

F (x)
<∞. (1)
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In such a case, the Laplace transform of the sum SF is given by

E
(
e−tSF

)
= exp

(∫ ∞

0

e−tu−1

F (u)
F (du)

)
for t > 0. It is clear that the random variable SF is infinitely divisible
with its Lévy measure LF given by the relation

LF (dx) =
F (dx)

F (x)
.

Further, it is the case that, all infinitely divisible distributions sup-
ported on [0,∞) with Lévy measure L, such that hL(x) = L([x,∞)) is
a continuous function of x on (0,∞), must arise in this way. For more
detailed discussions on infinitely divisible distributions supported on
[0,∞), we refer the reader to Sato (1999) or Bondesson (1992).

The above result is useful in simulation of infinitely differentiable laws
(see Bose et al., 2002, for a discussion on this topic.) Indeed, given the
Lévy measure, we can easily construct the corresponding distribution
function F by the formula F (x) = exp(−L([x,∞))) for x ≥ 0. If the
Lévy measure has finite total mass, i.e., L([0,∞)) < ∞, then F has

a jump at 0 and after a finite random time, say N , R
(L)
N becomes 0,

and then records after that remains at 0. Therefore, we have that∑∞
n=1R

(L)
n =

∑N
n=1R

(L)
n and it can be exactly evaluated.

In case, L([0,∞)) = ∞, we have that F (0) = 0. As a consequence,

R
(L)
n > 0 for all n ≥ 1. In such a case, we can simulate the random

variables {R(L)
n : 1 ≤ n ≤ N} where N is a large constant (fixed or

random), using the fact that {R(L)
n : n ≥ 1} is a Markov chain with

initial distribution F and transition kernel P (x, dy) given by P (x, dy) =
1{y ≤ x}F (dy)/F (x) and approximate the infinite sum SF by the finite

sum
∑N

n=1R
(L)
n . Hence, in this case, it is important to estimate how

much error is made in this approximation. In other words, we would

like to investigate the behaviour of
∑∞

n=N+1R
(L)
n as N →∞.

A crucial observation in the study of record values is the following: Let
G be a given distribution function and {Yi : i ≥ 1} be a sequence of
i.i.d. random variables with exponential distribution having mean 1.
For a nondecreasing function φ, define the (left continuous) inverse of
φ as

φ←(y) = inf{s : φ(s) ≥ y}.
Also define

ψG(x) = G←
(
1− e−x

)
, (2)
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and

HG(x) = 1− exp
[
−

[
− log

(
1−G(x)

)]1/2
]
. (3)

Then, the joint distribution of {ψG(Y1), ψG(Y1 + Y2), . . . , ψG(
∑n

i=1 Yi)}
is the same as that of the first n upper records from the distribution G,

namely,
{
R

(U)
1 (G), R

(U)
2 (G), . . . , R

(U)
n (G)

}
, (see, for example, Resnick,

1973). Using this representation, Resnick (1973) has shown that if the
limiting distribution function G̃, of the properly centered and scaled

sequence of records (R
(U)
n (G)− an(G))/bn(G) (where an(G) and bn(G)

are suitable sequences of constants) exists, then it must be one of the
three distributions, given in Cases (i)–(iii) below.

In the following N(x) denotes the standard normal distribution func-
tion. For a distribution function J , we say that J belongs to max-
domain of attraction of K and denote J ∈ D(K) if for some normaliz-
ing constants an and bn,

Jn(bnx+ an) ⇒ K(x)

at all continuity points x of K. Resnick (1973) showed that only one
of the following is possible:

• Case (i) The limiting distribution is G̃(x) = N(x). This happens if
and only if HG ∈ D(Λ) where Λ(x) = exp

(
− e−x

)
. In this case, it turns

out that

a(1)
n (G) = ψG(n) and b(1)

n (G) = ψG(n+
√
n)− ψG(n). (4)

• Case (ii) The limiting distribution is

G̃(x) = N1,α(x) =

{
0 if x < 0,

N(α log x) if x ≥ 0
(5)

where α > 0. This happens if and only if HG(x) ∈ D(Φα/2) where

Φα/2(x) =

{
0 if x < 0

exp(−x−α/2) if x ≥ 0.

In this case, we have

a(2)
n (G) = 0 and b(2)n (G) = ψG(n). (6)

• Case (iii) The limiting distribution is

G̃(x) = N2,α(x) =

{
N

(
−α log(−x)

)
if x < 0,

1 if x ≥ 0
(7)
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where α > 0. This happens if and only if HG ∈ D(Ψα/2) where

Ψα/2(x) =

{
exp

(
−(−x)α/2

)
if x < 0

1 if x ≥ 0.

In this case,

a(3)
n (G) = x0 and b(3)

n (G) = x0 − ψG(n)

where x0 is the (necessarily finite) supremum of support of G, i.e.,
G(x0) = 1 and G(x0 − ε) < 1 for any ε > 0. We shall drop G from the
above notations whenever there is no chance of confusion.

From now on we will assume that F (0) = 0. Then, F is continuous

everywhere. Further, we assume that
∫ 1

0
xF (dx)/F (x) < ∞. Hence,

the tail part of the sum Tn(F ) converges to 0. In this article, we
study conditions under which

(
log Tn(F )−αn

)
/βn converges to a proper

random variable in distribution for suitable choices of constants αn and
βn.

We define Wk = − logXk, for k ≥ 1. Then, {Wk : k ≥ 1} is a sequence
of i.i.d. random variables. Let G be the distribution function of W1.
Then, G is given by

G(x) := 1− F
(
e−x

)
. (8)

The support of G has upper endpoint ∞. Since x 7→ − log x is a
monotone decreasing function, the k-th upper record generated from
the sequence {Wk : k ≥ 1} is given by

R
(U)
k (G) = − logR

(L)
k (F ). (9)

Corresponding to this distribution function G, there will be the associ-
ated distribution HG (see (3)). We will drop the subscript G from HG.
Let us set

H(x) := 1−exp
[
−

(
− log(1−G(x)

)1/2]
= 1−exp

[
−

[
− logF

(
exp(−x)

)]1/2
]
.

(10)

The following function which is important for the characterization of
domain of attraction will also be useful for our purpose. Let us define

U(x) :=
( 1

1−H

)←
(x) = − logF←

(
exp(− log2 x)

)
. (11)

The relation between U(·) and ψG(·), defined in (2) is given by

ψG(x) = U
(
e
√

x
)
. (12)

As F
(
e−x

)
> 0 for all x ∈ R, we have G(x) = 1 − F

(
e−x

)
< 1.

Therefore, using Resnick’s result, only two cases, viz., case (i) that is,
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H ∈ D(Λ) and case (ii) that is, H ∈ D(Φα/2) for some α > 0, are
possible here.

The next section contains the two main theorems along with two results
(Propositions 2 and 3) on Π-varying and regularly varying functions.
Proofs of the main theorems are given in Section 3 and the proofs of
the propositions are given in Section 4.

2. Main Results

We study each of the above mentioned cases separately.

Case (i) H ∈ D(Λ): It is well known (see Resnick, 1987, page 28,
Proposition 0.10) that, equivalently U(·) is Π-varying, that is, there
exists an auxiliary function a(·) such that

U(tx)− U(x)

a(x)
→ log t as x→∞.

A choice of the function a(·) is given by a(x) = U(ex)− U(x). In this
case, we have the following result:

Theorem 1. Assume that F is continuous. If U(·) is Π-varying with
auxiliary function a(·) satisfying (log log t)/a(t) → 0 as t→∞, then

log Tn(F ) + a
(1)
n

b
(1)
n

⇒ ξ1

where ξ1 follows a standard normal distribution, i.e., P (ξ1 ≤ x) =

N(x). Moreover, we may choose a
(1)
n and b

(1)
n as in (4).

The relation between the conditions imposed on U(·) and its auxiliary
function a(·) in the above theorem and the finiteness of SF is given
below.

Proposition 1. If U(x) = − logF←(exp(− log2 x)) is Π varying with
an auxiliary function a(·) satisfying (log log x)/a(x) → 0, then F (0) =

0 and
∫ 1

0
xF (dx)/F (x) <∞.

Proof. First note that for any u > 0, F (F←(u)) = u since F is con-
tinuous. Thus, from the definition of U(·), we have that, for all x ≥
0, F

(
e−U(x)

)
= exp(− log2 x). Observe that since U(·) is Π-varying,

U(x)/a(x) → ∞ (see Resnick, 1987, Page 35, Exercise 0.4.3.1) and
a(x)/ log log x → ∞ as x → ∞. Thus, we have that, U(x) → ∞ as
x → ∞. Therefore, letting x → ∞ in the formula for F above and
using the right continuity of F at 0, it follows that F (0) = 0.
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Now define θ0 = 1 and for n ≥ 1, define θn = F←(F (θn−1)/ e). Then,
we have

F (θn) = F (F←(F (θn−1)/ e)) = F (θn−1)/ e = · · · = F (1)/ en . (13)

Since F (u) > 0 for all u > 0, we get that θn ↓ 0. This implies that∫ 1

0

xF (dx)

F (x)
=

∞∑
n=0

∫ θn

θn+1

xF (dx)

F (x)
≤

∞∑
n=0

θn

∫ θn

θn+1

F (dx)

F (x)

=
∞∑

n=0

θn

[
logF (θn)− logF (θn+1)

]
=
∞∑

n=0

θn,

since, from (13), we have logF (θn)− logF (θn+1) = 1.

Now, from the definition of U(·) and (13), we have θn = F←(F (θn−1)/ e) =

F←(F (1)/ en) = exp
(
−U

(
exp(

√
n− logF (1))

))
.

Let δ > 0. Since U(x)/a(x) →∞ and a(x)/ log log x→∞, as x→∞,
we get

U
(
exp(

√
n− logF (1))

)
log log

(
exp(

√
n− logF (1))

) =
2U

(
exp(

√
n− logF (1))

)
log(n− logF (1))

≥ 4

for all n sufficiently large. Thus, we have that

U
(
exp(

√
n− logF (1))

)
≥ 2 log(n− logF (1))

for all n sufficiently large. Therefore, we have, for all n sufficiently
large,

θn ≤ exp
(
−2 log

(
n− logF (1)

))
=

(
n− logF (1)

)−2
.

Hence,
∑∞

n=0 θn <∞. 2

Remark 1. In Theorem 1, we can replace b
(1)
n (G) by a

(
exp(

√
n)

)
/2. To

see this, let tn = exp(
√
n+

√
n)/ exp(

√
n) = exp(

√
n+

√
n−

√
n) →

exp(1/2) as n→∞. Therefore,

b
(1)
n (G)

a
(
exp(

√
n)

) =
U

(
exp(

√
n+

√
n)

)
− U

(
exp(

√
n)

)
a
(
exp(

√
n)

)
=

U
(
tn exp(

√
n)

)
− U

(
exp(

√
n)

)
a(exp(

√
n)

) → 1/2

as
[
U(tx) − U(x)

]
/a(x) → log t as x → ∞ uniformly on compact sets

of (0,∞).

Further observe that, a(·) being an auxiliary function of a Π-varying
function, is slowly varying (see Proposition 0.12 of Resnick, 1987).
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Also, exp (
√
n−

√
n− 1) → 1. Hence, a(e

√
n) ∼ a(e

√
n−1) and b

(1)
n−1(G) ∼

b
(1)
n (G).

Example 1. The powers of uniform distribution satisfy the conditions
of the theorem. Let F be a distribution function defined by

F (x) =


0 if x ≤ 0

xα if 0 < x < 1

1 if x ≥ 1.

Then, we have, for 0 < x < 1, F←(x) = x1/α. Therefore, we have
U(x) = log2 x/α. In this case, a(x) = 2 log x/α. Clearly, we have
log log x/a(x) → 0 as x→∞.

It may be mentioned that if F is the uniform distribution then the n-th
lower record has the representation RL

n =
∏n

i=1 Ui where Ui are iid uni-
form random variables. Hence the partial sum of Rn is a sum of product
of iid random variables. More general quantities have been considered
in the literature, for example by taking other random variables instead
of uniform Ui and replacing the product operation by other suitable op-
erations. For the interested reader, some relevant references are Rachev
and Samorodnitsky (1995), Goldie and Maller (2000).

Case (ii) H ∈ D(Φα/2): Again it is well known that an equivalent
condition in this case is that U(·) is regularly varying with index 2/α
(follows from Propositions 1.11 and 0.8 of Resnick, 1987). We denote
this by U(·) ∈ RV2/α. We then have the following result:

Theorem 2. If U(·) is regularly varying with index 2/α > 0, then

log Tn(F )

b
(2)
n (G)

⇒ ξ2

where ξ2 has distribution N2,α given by (7), same as that of the nega-

tive of the α-th root of lognormal distribution and b
(2)
n (G) = ψG(n) =

U
(
e
√

n
)

is as in (6).

Remark 2. As in Proposition 1, the condition that U(·) is regularly
varying with an index 2/α > 0, implies that the basic conditions on F
for finiteness of SF are automatically satisfied. To see this, note that
F

(
e−U(x)

)
= exp(− log2 x). Since U(·) ∈ RV2/α, we have U(x) →∞ as

x→∞. Hence, we conclude that F (0) = 0.

Further, using the same notations and following the same computations
as in Proposition 1, we can prove that

∫ 1

0
xF (dx)/F (x) ≤

∑∞
n=0 θn.
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Since U(·) ∈ RV2/α, we have for all n sufficiently large,

U
(
exp(

√
n− logF (1))

)
≥ exp

(√
n− logF (1)/α

)
≥ n.

Therefore, we have here also,
∑∞

n=0 θn <∞.

Remark 3. As in Remark 1, since U(·) is regularly varying and exp(
√
n−

√
n− 1) →

1, we have b
(2)
n−1(G) ∼ b

(2)
n (G).

We end this section with an example of Theorem 2.

Example 2. As an example of an F which satisfies the conditions of
Theorem 2, take U(x) = x2/α. Easy computations show that we can
define F as follows:

F (u) =


0 if u ≤ 0

exp
(
−α2 log2(− log x)

4

)
if 0 < x < e−1

1 if x ≥ e−1 .

The proofs of the main theorems will require the following two results
on Π-varying and regularly varying functions. These are of independent
interest.

Proposition 2. Let U(·) be an eventually non-decreasing Π-varying
function with a(·) as the auxiliary function such that (log log x)/a(x) →
0 as x→∞. Then, for any κ > 0,

1

a(x)
log

[
eU(x)

∫ ∞

x

e−U(u) logκ u

u
du

]
→ 0

and hence

U(ex) + log

∫ ∞

x

e−U(u) logκ u

u
du ∼ a(x).

The analogue of the above proposition for regularly varying functions
is given below.

Proposition 3. Let U(·) ∈ RVβ for β > 0. Then, for any κ > 0,

1

U(x)
log

[
eU(x)

∫ ∞

x

e−U(u) logκ u

u
du

]
→ 0

and hence

− log

∫ ∞

x

e−U(u) logκ u

u
du ∼ U(x).

The proofs of the above propositions are given in Section 4.



CONVERGENCE OF TAIL SUM FOR RECORDS 9

3. Proof of the Main Theorems

In order to prove the theorems, we note that, for any two sequences
{αn} and {βn}, we have, using (9),

log Tn(F ) + αn

βn

=
logR

(L)
n (F ) + αn

βn

+
log Tn(F )− logR

(L)
n (F )

βn

= −R
(U)
n (G)− αn

βn

+
log

[
Tn(F )/R

(L)
n (F )

]
βn

.

Using conditions of Theorem 1, if αn = a
(1)
n (G) and βn = b

(1)
n (G), then

the first term converges to ξ1. Similarly, from the condition of Theorem

2, with αn = 0 and βn = b
(2)
n , the first term converges to ξ2.

Hence, in order to prove Theorems 1 and 2, it is enough to show that
the second term in the above expression converges to 0 in probability
in either case. The rest of this section is devoted towards proving this.

Denote Σi =
∑i

j=1 Yj and Zi := e
√

Σi . Also we can write R
(L)
i (F ) =

exp
(
−

(
− logR

(L)
i (F )

))
= exp

(
−R(U)

i (G)
)
. Using the representation of

the upper records, for i ≥ 1, we have

R
(U)
i (G) = ψG

(∑i
j=1Yj

)
= U(Zi).

This implies that

Tn(F )

R
(L)
n (F )

=
∞∑

i=n

R
(L)
i (F )

R
(L)
n (F )

=
∞∑

i=n

e−U(Zi)+U(Zn) = eU(Zn)

∞∑
i=n

e−U(Zi) .

Now we define a random function V , which is a linear interpolation of
the Σi’s. Let

V (u) =

[u]∑
j=1

Yj + (u− [u])Y[u]+1 = Σ[u] + (u− [u])
(
Σ[u]+1 − Σ[u]

)
. (14)

Since almost surely each Yi > 0, V is almost surely strictly increasing.
Further, since F is continuous, from the definition of U(·), see (11), it
follows that U(·) is also strictly increasing. Hence,

e−U(Zi) ≤
∫ i

i−1

exp
(
−U

(
e
√

V (z)
))
dz.

Thus,

Tn(F )

R
(L)
n (F )

≤ eU(Zn)

∫ ∞

n−1

exp
(
−U

(
e
√

V (z)
))
dz
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= eU(Zn−1)

∫ ∞

n−1

exp
(
−U

(
e
√

V (z)
))
dz × eU(Zn)

eU(Zn−1)
.

Now, taking logarithm and dividing by βn, we conclude that it is enough
to show that

log
[
eU(Zn)

∫∞
n

exp
(
−U

(
e
√

V (z)
))
dz

]
βn

P−−→ 0 (15)

and
U(Zn)− U(Zn−1)

βn

P−−→ 0, (16)

since βn/βn−1 → 1 by Remarks 1 and 3.

We will first estimate the above integral. The following lemma shows
that the above integral could be bounded by deterministic integrals.

Lemma 1. Given any δ > 0, on a set of probability 1,
∫∞

n
exp

(
−U

(
e
√

V (z)
))
dz

is bounded from both above and below, eventually (in n), by expressions
of the form 2

∫∞
e
√

Σn

1
u

e−U(u) logκ u du, where κ is 3 + δ and 1− δ for the
upper and the lower bound respectively.

Proof. On the interval (i, i + 1), the function V is linear and strictly
increasing. So on each of the pieces (Σi,Σi+1), the inverse function is
well defined and is actually linear. Suppose g is the inverse function of
V . The exact expression of g is also easy to obtain:

g(u) = i+
u− Σi

Σi+1 − Σi

= i+
u− Σi

Yi+1

if Σi < u < Σi+1.

Thus, substituting, u = e
√

V (z) or z = g(log2 u), we obtain that∫ i+1

i

exp
(
−U

(
e
√

V (z)
))
dz = 2

∫ e
√

Σi+1

e
√

Σi

e−U(u) g′(log2 u) log u

u
du

= 2

∫ e
√

Σi+1

e
√

Σi

e−U(u) log u

u Yi+1

du (17)

since g′(u) = 1/Yi+1 for Σi < u < Σi+1.

Now let us fix δ1 > 0 such that 2(1 + δ1)/(1 − δ1) < 2 + δ and

2δ1/(1−δ1) < δ. Consider the event E
(1)
n = {Yn+1 < n−1−δ1}∪{Yn+1 >

nδ1}. Then, P
(
E

(1)
n

)
≤ 1 − exp(−n−1−δ1) + exp(−nδ1) ≤ n−1−δ1 +

exp(−nδ1), which is summable. Hence P
(
lim supn→∞E

(1)
n

)
= 0. Let
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E
(2)
n = {Σn < n1−δ1}. Since Σn/n → 1 with probability 1, we have,

P
(
lim supn→∞E

(2)
n

)
= 0.

Define E throughEc = lim supn→∞E
(1)
n

⋃
lim supn→∞E

(2)
n . Then clearly

P (E) = 1. From now on, we will concentrate only on the set E. For any
sample point ω ∈ E, there exists N ≡ N(ω), such that for all n ≥ N ,
we have Σn ≥ n1−δ1 and n−1−δ1 ≤ Yn ≤ nδ1 . Now, let n ≥ N be given.
Then for i ≥ n ≥ N and u ∈ (Zi, Zi+1), we have log u ≥

√
Σi ≥ i(1−δ1)/2

and hence, by choice of δ1, we have

1

Yi+1

≤ i1+δ1 ≤
(
log u

)2(1+δ1)/(1−δ1) ≤ log2+δ u

and
1

Yi+1

≥ i−δ1 ≥
(
log u

)−2δ1/(1−δ1) ≥ log−δ u.

The bounds are then obtained by putting these estimates in (17) and
summing over i ≥ n. 2

The following Lemma about regularly varying functions will be useful
in the proof of the Theorems.

Lemma 2. Let f ∈ RVβ for β ∈ R. Then, f(Zn)

f
(
e
√

n
) converges weakly to

a random variable with distribution N1,(2/|β|), given by (5).

Note that, when β = 0, i.e., the function is slowly varying, the limiting
random variable with distribution N1,∞ is interpreted to be degenerate

at 1 and hence f(Zn)/f
(
e
√

n
)

converges to 1 in probability.

Proof. Observe that the functions hn(x) = f(e
√

n x)/f(e
√

n), for n ∈ N
converge to the function h(x) = xβ uniformly on compact sets of (0,∞).
The result then follows easily from Theorem 5.5 of Billingsley (1968)
and the fact that

e−
√

n Zn = exp

(
Σn − n√

n
· 1

1 +
√

Σn/n

)
⇒ e

1
2
ζ

where ζ is a standard normal random variable. 2

Now we are ready to prove the theorems and we begin with the first
one.
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Proof of Theorem 1. The expression on the left side of (15) can be
written as

log
[
eU(Zn)

∫∞
n

exp
(
−U

(
e
√

V (z)
))
dz

]
a(Zn)

× a(Zn)

a
(
e
√

n
) × a

(
e
√

n
)

b
(1)
n (G)

.

We have already shown that b
(1)
n (G)/a

(
exp(

√
n)

)
→ 1/2 as n→∞ (see

Remark 1). The second factor converges in probability to 1 by Lemma
2, since a(·), being the auxiliary function of a Π-varying function, is
slowly varying (see Proposition 0.12 of Resnick, 1987). We shall now
show that the first factor converges to 0 with probability 1. Consider

any ω such that Zn →∞ and the bounds for
∫∞

n
exp

(
−U

(
exp(

√
V (z))

))
dz

in Lemma 1 holds eventually in n. Since Zn → ∞, by Proposition 2,
each bound for the first factor converges to 0. So the first factor con-
verges to 0 on the set of all such ω, which has probability 1, by Lemma 1
and the fact Zn →∞ almost everywhere. This shows (15).

Now we concentrate on the left side of (16). Replacing b
(1)
n (G) by

a
(
e
√

n
)
, we have,

U(Zn)− U(Zn−1)

a
(
e
√

n
) =

U(Zn)− U(Zn−1)

a(Zn−1)
× a(Zn−1)

a
(
e
√

n−1
) × a

(
e
√

n−1
)

a
(
e
√

n
) .

We have already shown that the second factor above converges to 1 in
probability by Lemma 2. As shown in Remark 1, the last factor also
converges to 1. We now show that the first factor converges to zero
almost surely. Given η > 0, we can choose 0 < ε < 1 and M so large
that for all x ≥M ,

sup
{∣∣∣U(tx)− U(x)

a(x)

∣∣∣ : t ∈ [1− ε, 1 + ε]
}
< η.

Let θn = Zn/Zn−1 = exp(
√

Σn −
√

Σn−1). Then, θn → 1 almost surely
as log θn =

√
Σn −

√
Σn−1 = Yn/(

√
Σn +

√
Σn−1) → 0 almost surely.

Also, Zn → ∞ almost surely. Then for almost all ω, we can choose
N ≡ N(ω), such that for n ≥ N , we have θn ∈ [1 − ε, 1 + ε] and
Zn−1 > M . Then, for all n ≥ N , we have∣∣∣U(Zn)− U(Zn−1)

a(Zn−1)

∣∣∣ =
∣∣∣U(θnZn−1)− U(Zn−1)

a(Zn−1)

∣∣∣ < η.

So,
∣∣(U(Zn)− U(Zn−1)

)∣∣/a(Zn−1) → 0 almost everywhere. This com-
pletes the proof. 2

Next, we prove Theorem 2.
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Proof of Theorem 2. The expression on the left side of (15) can be
written as

log
[
eU(Zn)

∫∞
n

exp
(
−U

(
e
√

V (z)
))
dz

]
U(Zn)

× U(Zn)

U
(
e
√

n
) .

It can be shown that the first factor converges to 0 with probability 1,
using Proposition 3 and Lemma 1, in exactly the same way as in the
proof of Theorem 1. We omit the details. The second factor converges
weakly to N1,α by Lemma 2, since U(·) ∈ RV2/α. This proves (15).

Next, we concentrate on the left side of (16). We have,

U(Zn))− U(Zn−1)

U
(
exp(

√
n)

) =
U(Zn)− U(Zn−1)

U(Zn−1)
× U(Zn−1)

U
(
e
√

n−1
) × U

(
e
√

n−1
)

U
(
e
√

n
) .

By Lemma 2, the second factor above converges in distribution to N1,α.
By Remark 3, the third factor converges to 1. We now show that the
first factor converges to zero almost everywhere. Given η > 0, we can
choose 0 < ε < 1 and M so large that for all x ≥M ,

sup
{∣∣∣U(tx)− U(x)

U(x)

∣∣∣ : t ∈ [1− ε, 1 + ε]
}
< η

for all x ≥ N . Then arguing as before that θn = Zn/Zn−1 → 1 and
Zn → ∞ almost surely, for almost all ω, we can choose N ≡ N(ω),
such that for all n ≥ N , we have θn ∈ [1 − ε, 1 + ε] and Zn > M , so
that ∣∣∣U(Zn)− U(Zn−1)

U(Zn−1)

∣∣∣ =
∣∣∣U(θnZn−1)− U(Zn−1)

U(Zn−1)

∣∣∣ < η.

So,
∣∣(U(Zn)− U(Zn−1)

)∣∣/U(Zn−1) → 0 almost everywhere. This com-
pletes the proof. 2

4. Proof of Propositions 2 and 3

Finally we give the proofs of Propositions 2 and 3.

Proof of Proposition 2. Let η > 0 be given. Then choose K so large
that U(·) is non-decreasing beyond eK and

2κ

∞∑
i=K

[
(i− 2)!

]−κ
< 1. (18)
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Next, using the facts that U(·) is Π-varying, powers of logarithm are
slowly varying and (log log x)/a(x) → 0, choose large enough N such
that the following holds for all x ≥ N :

sup

{∣∣∣∣U(tx)− U(x)

a(x)
− log t

∣∣∣∣ : t ∈
[
1, eK

]}
≤ η, (19)

1− η ≤ sup

{
logκ(tx)

logκ x
: t ∈

[
1, eK

]}
≤ 1 + η, (20)

a(x) ≥ κ log log x, (21)

sup

{
j + 1 + log x

j − 1 + log x
: j ≥ 0

}
=

log x+ 1

log x− 1
≤ 2 (22)

and

e−Ka(x) ≤ 1

2
. (23)

Now

eU(x)

∫ ∞

x

e−U(t) logκ t

t
dt = eU(x)

∫ ∞

1

e−U(tx) logκ(tx)

t
dt

=

∫ eK

1

e−[U(tx)−U(x)] logκ(tx)

t
dt+

∫ ∞

eK

e−[U(tx)−U(x)] logκ(tx)

t
dt,

(24)

where K is the constant chosen above in (18). We will estimate each
of the above integrals separately.

For the first integral, for t ∈
[
1, eK

]
, we have from (19), for all x ≥ N ,

U(tx)−U(x) =

[
U(tx)− U(x)

a(x)
−log t

]
a(x)+a(x) log t ≥ −ηa(x)+a(x) log t.

Thus, we have, also using (20), for all x ≥ N ,∫ eK

1

e−[U(tx)−U(x)] logκ(tx)

t
dt

≤ (1 + η) logκ x

∫ eK

1

eηa(x) t−a(x)−1 dt ≤ (1 + η) eηa(x) logκ x

a(x)
.

For the second integral, we have, using the fact that U(·) is non-
decreasing beyond eK ,∫ ∞

eK

e−[U(tx)−U(x)] logκ(tx)

t
dt
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=
∞∑

j=K

∫ ej+1

ej

e−[U(tx)−U(x)] logκ(tx)

t
dt

≤
∞∑

j=K

exp
(
−

[
U(ej x)− U(x)

])
logκ(ej+1 x)

=
∞∑

j=K

exp
(
−

[
U(ej x)− U(x)

]
+ κ log log(ej+1 x)

)
. (25)

Using the fact that a(·) can be taken to be a(x) = U(ex)−U(x), we see

that U(ej x) − U(x) =
∑j−1

l=0 U(el+1 x) − U(el x) =
∑j−1

l=0 a(e
l x). Now,

for x ≥ N , we have, using (21) and (22),

j−1∑
l=0

a(el x)−κ log log(ej+1 x) ≥ κ

j−1∑
l=0

log log(el x)− κ log log(ej+1 x)

≥ κ

j−2∑
l=1

log l − κ
[
log log(ej+1 x)− log log(ej−1 x)

]
= κ

j−2∑
l=1

log l − κ

[
log

(j + 1 + log x)

(j − 1 + log x)

]
≥ κ

j−2∑
l=1

log l − κ log 2.

Therefore, we obtain, using (25),∫ ∞

eK

e−[U(tx)−U(x)] logκ(tx)

t
dt

≤ 2κ

∞∑
j=K

exp
(
−κ

∑j−2
l=1 log l

)
= 2κ

∑∞
j=K

[
(j − 2)!

]−κ ≤ 1

from the choice of K in (18).

Putting the estimates in (24) together, taking logarithm and dividing
by a(x), we have

1

a(x)
log

[
eU(x)

∫ ∞

x

e−U(t) logκ t

t
dt

]
≤ 1

a(x)
log

[
1 +

(1 + η) eηa(x) logκ x

a(x)

]
∼ η +

log(1 + η)

a(x)
+ κ

log log x

a(x)
− log a(x)

a(x)
,
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since (1 + η) eηa(x) logκ x/a(x) → ∞. Then using log log x/a(x) → 0,
we have,

lim sup
x→∞

1

a(x)
log

[
eU(x)

∫ ∞

x

e−U(t) logκ t

t
dt

]
≤ η.

On the other hand, using (24) and then (19), (20) and (23), we have

eU(x)

∫ ∞

x

e−U(t) logκ t

t
dt ≥

∫ eK

1

e−[U(tx)−U(x)] logκ(tx)

t
dt

≥ (1− η) logκ x e−ηa(x)

∫ eK

1

t−a(x)−1dt

=
(1− η) logκ x e−ηa(x)

(
1− e−Ka(x)

)
a(x)

≥ (1− η) logκ x e−ηa(x)

2a(x)
.

Then taking logarithm, dividing by a(x) and taking limit as x → ∞,
we have arguing as before

lim inf
x→∞

1

a(x)
log

[
eU(x)

∫ ∞

x

e−U(t) logκ t

t
dt

]
≥ −η.

Since η > 0 is arbitrary, we have

1

a(x)
log

[
eU(x)

∫ ∞

x

e−U(u) logκ u

u
du

]
→ 0.

Further conclusion follows since U(ex)− U(x) ∼ a(x). 2

Proof of Proposition 3. Let η ∈ (0, 1) be given. First we may choose
N > e so that for all x ≥ N , we have, logκ u ≤ u and

(1− η)tβ−ηU(x) ≤ U(tx) ≤ (1 + η)tβ+ηU(x) for all t ≥ 1. (26)

The set of inequalities (26) is Potter’s bound for regularly varying func-
tions (see Resnick, 1987, page 22, Proposition 0.8). Thus, we have, for
x ≥ N ,

Ix =

∫ ∞

x

e−U(u) logκ u

u
du ≤

∫ ∞

x

e−U(u) du = x

∫ ∞

1

e−U(tx) dt

≤ x

∫ ∞

1

exp
(
−(1− η)tβ−ηU(x)

)
dt

=
x

(β − η)(1− η)U(x)

∫∞
(1−η)U(x)

e−t t1/(β−η)−1dt[
(1− η)U(x)

]1/(β−η)−1
.
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Now, using L’Hôpital’s rule, it is easy to check that∫ ∞

x

e−t tθdt ∼ e−x xθ (27)

as x→∞. Thus, we can choose K ≥ N so that for all x ≥ K,∫ ∞

x

e−U(u) logκ u

u
du ≤ (1 + η)x

(β − η)(1− η)U(x)
e−(1−η)U(x) .

Therefore, multiplying Ix by eU(x), taking logarithm and dividing by
U(x), we have,

lim sup
x→∞

1

U(x)
log

[
eU(x)

∫ ∞

x

e−U(u) logκ u

u
du

]
≤ lim sup

x→∞

(
η +

1

U(x)
log

[ (1 + η)x

(β − η)(1− η)U(x)

])
= η

using the fact that U(·) ∈ RVβ for β > 0.

On the other hand, using (26), for all x ≥ N , we have,∫ ∞

x

e−U(u) logκ u

u
du ≥

∫ ∞

x

e−U(u)

u
du =

∫ ∞

1

e−U(tx)

t
dt

≥
∫ ∞

1

exp
(
−(1 + η)tβ+ηU(x)

)
t

dt

=
1

β + η

∫ ∞

(1+η)U(x)

e−s s−1ds.

Then, again using (27), we can choose K ′ ≥ N so that for all x ≥ K ′,
we have ∫ ∞

x

e−U(u) logκ u

u
du ≥ (1− η)x e−(1+η)U(x)

(β + η)(1 + η)U(x)
.

Then, arguing as before,

lim inf
x→∞

1

U(x)
log

[
eU(x)

∫ ∞

x

e−U(u) logκ u

u
du

]
≥ −η.

Since η ∈ (0, 1) is arbitrary, the results follow. 2
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