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Abstract

In (Stochastic Process. Appl. 103 (2003) 293), a pair of dynamic programming inequalities
were derived for the ‘separated’ ergodic control problem for partially observed Markov processes,
using the ‘vanishing discount’ argument. In this note, we strengthen these results to derive a
single dynamic programming equation for the same.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In Borkar (2003), one of us extended the ‘vanishing discount’ argument for dynamic
programming of ergodic control of Markov chains on a discrete state space to the prob-
lem of ergodic control of partially observed Markov processes in a 9nite-dimensional
Euclidean space. Speci9cally, a pair of dynamic programming inequalities is derived.
These in turn yield necessary/su;cient conditions for optimality. The aim of the present
note is to show that under some additional conditions, one can in fact replace these
by a single dynamic programming equation which is the exact counterpart of the cor-
responding equation for completely observed Markov chains on a discrete state space.
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The study of dynamic programming equation for ergodic control under partial obser-
vations goes back to Platzman (1980). This and some of the subsequent works (e.g.,
FernFandez-Gaucherand et al. (1990)) treat the discrete state space case under somewhat
nontransparent conditions, e.g., involving reachable sets of probability measures for the
nonlinear 9lter. Also, discreteness of the state space is crucial. (FernFandez-Gaucherand
et al. (1990) also includes a comparison of various results available till that point.)
A major development was (Stettner, 1993; Runggaldier and Stettner, 1994), where the
dynamic programming equations were derived under more transparent conditions. But
even those conditions (see, e.g., assumption (A.6), Runggaldier and Stettner, 1994,
p. 151) are rather restrictive. To illustrate this point, consider an (uncontrolled) system

Xn+1 = aXn + �n+1; n¿ 0;

where |a|¡ 1 (for stability) and {�n} are i.i.d. normal with zero mean and unit vari-
ance. Let ’(·) denote the Gaussian probability density with zero mean and unit vari-
ance. One of the implications of the aforementioned condition (A.6) from Runggaldier
and Stettner, 1994, (if true) would be that for a suitable �¿ 0,

sup
x;x′

∫
[−1;1] ’(y − ax) dy∫
[−1;1] ’(y − ax′) dy

¿�:

This is clearly impossible, as the l.h.s. → 0 as ‖x‖ → ∞ while x′ is kept 9xed. Thus
it seems that this condition is reasonable only for a compact state space.

For the 9nite state case, these results were improved upon in Borkar (2000), which
managed to derive these equations in a more general set-up. (The ‘aperiodicity’ condi-
tion in Borkar (2003) can in fact be dropped with a slight modi9cation of the proof.)
These results used a coupling argument as a key ingredient to show the bounded-
ness of renormalized discounted value functions in the vanishing discount limit. Thus
it depended critically on the 9niteness of the state space. The article Borkar (2003)
mentioned above managed to extend this to a general state space by using the Athreya–
Ney–Nummelin construction of a ‘pseudo-atom’ described in Meyn and Tweedie (1993),
Chapter 5. In a general state space, however, boundedness of the renormalized dis-
counted value functions is not enough, one also needs their equicontinuity to enable an
application of the Arzela–Ascoli theorem. In absence of an equicontinuity result, Borkar
(2003) could establish only a pair of dynamic programming inequalities rather than
a single dynamic programming equation. The present note 9lls in this lacuna by pro-
viding this last step, so that the result is now complete. To compare with Runggaldier
and Stettner (1994) again, while we do assume a density w.r.t. an underlying probabil-
ity measure for the controlled transition kernel (see, however, a possible generalization
pointed out at the end of Section 4), this appears less restrictive than assumption (A.6)
of Runggaldier and Stettner (1994).

The next section recalls the problem framework and the underlying assumptions.
Section 3 recalls the vanishing discount argument of Borkar (2003). Section 4 de-
scribes the key step in the vanishing discount limit that facilitates the above, viz., an
equicontinuity result for the renormalized discounted value function. This leads to the



V.S. Borkar, A. Budhiraja / Stochastic Processes and their Applications 112 (2004) 79–93 81

dynamic programming equation we seek. Section 5 states the implications to ergodic
control of partially observed diKusions along the lines of Borkar (2003).

2. The control problem

Let Polish spaces S;W;U denote respectively, the state, observation and control
spaces with the additional restrictions that S be a 9nite-dimensional Euclidean space
and U compact. We shall denote by P(· · ·) the Polish space of probability measures
on the Polish space ‘· · ·’ with the Prohorov topology (Borkar, 1995, Chapter 2). Let
{Xn} be an S-valued controlled Markov chain with associated U -valued control process
{Zn} and W -valued observation process {Yn}. The controlled transition kernel is given
by the map

(x; u) ∈ S × U → p(x; u; dz; dy) ∈P(S ×W );

assumed to be continuous. Let � denote the Lebesgue measure on S. We assume the
existence of an �∈P(W ) and ’∈Cb(S × U × S × W ) such that p(x; u; dz; dy) =
’(x; u; z; y)�(dz)�(dy) with ’(·)¿ 0. Thus

P(Xn+1 ∈A; Yn+1 ∈A′=Xm; Zm; Ym; m6 n)

=
∫
A′

∫
A
’(Xn; Zn; z; y)�(dz)�(dy) (1)

for Borel A ⊂ S; A′ ⊂ W . Let M’(x; u; z) ,
∫
’(x; u; z; y)�(dy). Note that M’(x; u; z)¿ 0.

Call {Zn} strict sense admissible if it is adapted to �(Ym; m6 n); n¿ 0. The ergodic
control problem under partial observations in its original form is to minimize over all
such {Zn} the ‘ergodic cost’

lim sup
n→∞

1
n

n−1∑
m=0

E[k(Xm; Zm)] (2)

for a prescribed k ∈Cb(S × U ). As in Borkar (2003), we shall consider a relaxation
of this problem that allows for a larger class of controls, the so-called wide sense
admissible controls. (This is an adaptation to the discrete time set-up of a notion
originally introduced in the context of controlled diKusions in Fleming and Pardoux
(1982).) To de9ne these, we consider {Xn} as being generated by a recursion

Xn+1 = f(Xn; Zn; �n+1); n¿ 0; (3)

where {�n} are i.i.d., uniformly distributed on [0; 1]. This is always possible on a
possibly augmented probability space by the results of Borkar (1993). We may then
view all the above processes as being realized on the ‘canonical’ path space (!;F; P).
(See Borkar, 2003, for a detailed construction.) De9ne a new probability measure
P0 on (!;F) by: If Pn; P0n denote restrictions of P; P0, respectively, to (!;Fn),
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Fn , �(Xm; Ym; Zm; �m; m6 n), n¿ 0; then Pn�P0n with

"n ,
dPn
dP0n

=
n−1∏
m=0

’(Xm; Zm; Xm+1; Ym+1)
M’(Xm; Zm; Xm+1)

; n¿ 0: (4)

We assume that∫
M’(x; u; x′)

(
’(x; u; x′; y)

M’(x; u; x′)

)1+#0

�(dx′)�(dy)¡∞ (5)

for some #0¿ 0. This ensures the uniform integrability of the ratio above w.r.t.
M’(x; u; x′)�(dx′)�(dy), a fact we use later. W.l.o.g., we may suppose that F = ∨nFn,
whence the above de9nes a probability measure on (!;F) as desired. Note that if {Zn}
is strict sense admissible then, under P0, {Yn} are i.i.d. with law �, ({Ym}; {�m}; X0) is
an independent family, and for each n, Yn is independent of Xm; m6 n;Ym; Zm; m¡n.
This motivates our de9nition of ‘wide sense admissibility’. The sequence {Zn} is said
to be wide sense admissible if, under P0, for each n, (Zm; Ym; m6 n) is independent of
{�m}; X0; {Ym; m¿n}. Clearly this includes the strict sense admissible controls. Also, a
wide sense admissible control is speci9ed by specifying the joint law of ({Yn}; {Zn}).
Thus we may identify the set of wide sense admissible controls with a subset $ of
P(U∞ ×W∞) such that if %∈$ is the law of ({Zn}; {Yn}), then {Yn} are i.i.d. with
law � and for each n, Ym; m¿n; is independent of (Zm; Ym; m6 n). Since both these
conditions are preserved under convergence in P(U∞ ×W∞), $ is a closed set. Since
U and therefore U∞ is compact and the marginal on P(W∞) of %∈P(U∞ ×W∞)
is 9xed at �∞, $ is also tight and hence compact.

Letting &n denote the regular conditional law of Xn given Ym; Zm; m6 n; for n¿ 0,
{&n} is given recursively by the nonlinear 9lter

&n+1(dz) =
(
∫
&n(dx)’(x; Zn; z; Yn+1))�(dz)∫ ∫
&n(dx)�(dz′)’(x; Zn; z′; Yn+1)

, F(&n; Zn; Yn+1); n¿ 0: (6)

Also, (2) can be written as

lim sup
n→∞

1
n

n−1∑
m=0

E[ Mk(&m; Zm)]; (7)

where Mk((; u) ,
∫
k(x; u)((dx) for (∈P(S); u∈U . This allows us to consider the

equivalent, so-called ‘separated’ control problem of controlling the P(S)-valued con-
trolled Markov process {&n} described by (6) over wide sense admissible {Zn} with
the objective of minimizing (7).

We make the following assumption: There exist #0¿ 0; V∈C(S) satisfying:
lim‖x‖→∞V(x) = ∞, and under any wide sense admissible {Zn},

E[V(Xn+1)|Fn] − V(Xn)6− #0 + CIB(Xn); (8)

where C¿ 0 and B, {x∈ S : ‖x‖6R} for some R¿ 0. We strengthen this by further
assuming that there exists V̂∈C(S) satisfying lim‖x‖→∞V̂(x) = ∞, and under any
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wide sense admissible {Zn},

E[V̂(Xn+1)|Fn] − V̂(Xn)6−V(Xn) + ĈIB̂(Xn); (9)

lim sup
n→∞

E[V̂(Xn)]
n

= 0; (10)

where Ĉ ¿ 0 and B̂, {x∈ S : ‖x‖6 R̂} for some R̂¿ 0.

Remark. (i) Note that this is slightly more restrictive than the ‘Liapunov condition’ (8)
assumed in Borkar (2003). (8) is the usual ‘stochastic Liapunov’ condition that ensures
bounded mean hitting time of B. It does not, however, guarantee anything about the
higher moments of this hitting time. Condition (9) ensures the square-integrability of
this stopping time and thereby helps establish the uniform integrability of the ‘coupling
time’ we discuss later. The condition is weaker than geometric ergodicity which ensures
9niteness of certain exponential moments of the 9rst hitting time of B (Meyn and
Tweedie, 1993, Chapter 15). This would be true, e.g., if we replace (8), (9) with a
single condition (9) with aV̂(·)(a¿ 0) replacing V on the right. See Tuominen and
Tweedie (1994) for some related developments and additional insights. As an example,
consider the scalar system

Xn+1 = aXn + G(Xn; Zn) + �n+1; n¿ 0;

where |a|¡ 1, {�n} are i.i.d. normal with zero mean and unit variance and G is
bounded continuous. The choice V(x) = V̂(x) = |x| + 1 will do (implying in fact the
stronger geometric ergodicity).

(ii) It will become clear (cf. the Appendix) that the strict positivity condition on ’
can be replaced by the requirement that the same hold on B ∪ B̂ only. In this context,
note that M’(x; u; z)=0 implies ’(x; u; z; y)=0 for a.e. y, hence for all y by continuity,
thus the likelihood ratio of the latter w.r.t. the former is well-de9ned.

Let

P0(S) ,
{
&∈P(S) :

∫
V̂d&¡∞

}
:

As observed in Borkar (2003), &0 ∈P0(S) implies &n ∈P0(S) a.s. for all n, enabling
us to view {&n} as a process in P0(S).

We shall denote by

- : (&; u) ∈P0(S) × U → -(&; u; d&′) ∈P(P0(S))

the transition probability kernel of the controlled Markov chain {&n}, de9ned by∫
g(&′)-(&; u; d&′) =

∫∫
g(F(&; u; y))’(x; u; S; y)&(dx)�(dy) (11)

for g∈Cb(P0(S)), where we write
∫
S ’(x; u; z; y)�(dz) as ’(x; u; S; y) with a slight

abuse of notation.
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3. The vanishing discount limit

As in Borkar (2003), we view the ergodic control problem as the vanishing discount
limit of the discounted cost control problem that seeks to minimize

E

[ ∞∑
m=0

/mk(Xm; Zm)

]
= E

[ ∞∑
m=0

/m Mk(&m; Zm)

]
; (12)

where /∈ (0; 1) is the discount factor. De9ne the discounted value function V/(&) as
the in9mum of (12) over all wide sense admissible controls when &0 =&. This satis9es
the dynamic programming equation (Borkar, 1989, Chapter V)

V/(&) = min
u

[
Mk(&; u) + /

∫
-(&; u; d&′)V/(&′)

]
; &∈P(S): (13)

The renormalized value function MV/(&) is de9ned as MV/(&)=V/(&)−V/(&∗) for a 9xed
&∗ ∈P(S). Then by a simple algebraic manipulation from (13), we obtain

MV/(&) = min
u

[
Mk(&; u) − (1 − /)V/(&∗) + /

∫
-(&; u; d&′) MV/(&′)

]
;

&∈P(S): (14)

In Borkar (2003), it is shown that MV/(&) remains bounded ∀& as / → 1. This al-
lows one to pass to the lim sup, respectively, lim inf , as / → 1 along a subsequence
{/(n)} in (14) to obtain a pair of ‘dynamic programming inequalities’ for the ergodic
control problem, satis9ed respectively, by V ∗(·) , lim supn→∞ MV/(n)(·) and V∗(·) ,
lim inf n→∞ MV/(n)(·). See Borkar (2003) for details.

A key step in this procedure is the following: Given a quintuplet {X̂ n; Ŷ n; Zn; �̂n; &̂n}
(with &̂0 = &) as above with a wide sense admissible {Zn} and another initial dis-
tribution &′ (say), we construct on a common probability space another quintuplet
{X̃ n; Ỹ n; Zn; �̃n; &̃n} with a common control process {Zn} that is wide sense admissible
for both, and with &̃0 =&′. Furthermore, on a possibly larger 9ltered probability space,
there exist copies {X̃ ∗

n ; X̂
∗
n ; Z

∗
n } of {X̃ n; X̂ n; Zn} and a stopping time 1 (see (A.6) in

the Appendix for de9nition of 1) such that E[1] satis9es a bound

E[1]¡K
(∫

Vd&+
∫

Vd&′
)
; (15)

for some K ¿ 0, uniformly w.r.t. the choice of {Zn} and furthermore, the regular
conditional laws of X̂ ∗

1+m; X̃
∗
1+m; m¿ 1; given F1 coincide, where {Ft} is the under-

lying 9ltration. The construction is given in Borkar (2003), however, for the sake of
completeness we provide the details in the Appendix. For notational ease we will
suppress ∗ from the superscript for the processes {X̃ ∗

n ; X̂
∗
n ; Z

∗
n }. We need the fol-

lowing additional fact facilitated by (9): Suppose &; &′ are Dirac measures at x; x′

respectively.
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Lemma 3.1. 1 is uniformly integrable as x; x′ vary over a compact set and the control
process varies over all wide sense admissible controls.

Proof. Let X̂ 0 = x; X̃ 0 = x′. Recall from Borkar (2003) (see also Appendix A below)
that 1 is in fact the 9rst hitting time of the so called ‘pseudo-atom’. As in Lemma 3.3
of Borkar (2003, p. 300) one can then show that

E[1]6K1(V(x) + V(x′));

E

[
1−1∑
m=0

(V(X̂ m) + V(X̃ m))

]
6K2(V̂(x) + V̂(x′));

for suitable constants K1; K2¿ 0. Together these imply (see, e.g., Borkar, 1991,
pp. 66–67) that

E[12]6K3(V̂(x) + V̂(x′)): (16)

This implies the claim.

Recall that &̂0 = & and &̃0 = &′. As in Borkar (2003), we then have

| MV/(&) − MV/(&′)| = |V/(&) − V/(&′)|

6 sup

∣∣∣∣∣
∑
m

/mE[ Mk(&̂m; Zm)] −
∑
m

/mE[ Mk(&̃m; Zm)]

∣∣∣∣∣
6 sup

∣∣∣∣∣
∑
m

/mE[k(X̂ m; Zm)] −
∑
m

/mE[k(X̃ m; Zm)]

∣∣∣∣∣
= sup

∣∣∣∣∣E
[

1∑
m=0

/m(k(X̂ m; Zm) − k(X̃ m; Zm))

]∣∣∣∣∣
6 supE

[∣∣∣∣∣
1∑

m=0

/m(k(X̂ m; Zm) − k(X̃ m; Zm))

∣∣∣∣∣
]
;

where the supremum throughout is over all wide sense admissible {Zm} and the second
equality follows from the earlier observation regarding regular conditional laws of
{X̂ 1+m}; {X̃ 1+m} given F1. Using the boundedness of k and (15), we conclude the
boundedness of the l.h.s. uniformly in / as / → 1.

In the next section we stretch this argument a little further and show that MV/; /∈(0; 1),
is in fact an equicontinuous family. Since it is pointwise bounded, the Arzela–Ascoli
theorem implies that it is relatively compact in C(P0(S)).
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4. Main results

From the above calculation, we have for M¿ 1,

| MV/(&) − MV/(&′)|6 sup

∣∣∣∣∣E
[

1∑
m=0

/m(k(X̂ m; Zm) − k(X̃ m; Zm))

]∣∣∣∣∣
6

M∑
m=0

sup|E[k(X̂ m; Zm)] − E[k(X̃ m; Zm)]|

+K4 supE[(1−M)+]; (17)

for a suitable constant K4¿ 0. As before, each supremum is over all wide sense
admissible controls. Fix 5¿ 0 and take M large enough such that the second term on
the right is less than 5=2. This is possible by Lemma 3.1. In fact, (16) leads to

E[12]6K3

(∫
V̂(x)&(dx) +

∫
V̂(x)&′(dx)

)
;

which ensures the required uniform integrability. We claim that the 9rst term on the
right in (17) can then be made smaller than 5=2 if &; &′ are close enough w.r.t. the
Prohorov metric 6(· ; ·) on P(S) (Borkar, 1995, Chapter 2). For this purpose, consider
;xed {Yn}; {Zn}; {�n} on (!;F; P0) and {Xn} generated by (3) with the law of X0 =&.
Fix n, 06 n6M , and de9ne

g(&;%) , E&;%[k(Xn; Zn)];

where E&;%[·] denotes expectation when the law of X0 is & and the law of ({Zm}; {Ym})
(i.e., the wide sense admissible control) is %∈$.

Lemma 4.1. g is bounded and continuous.

Proof. |g(·)| is clearly bounded by any bound on |k|. For j = 1; 2; : : : ;∞, let %j ∈$,
&j ∈P(S), such that

%j → %∞;

&j → &∞;

as j ↑ ∞. Let ({Zjn}; {Y jn}) be processes with laws %j, respectively, on some probabil-
ity spaces. By enlarging the latter if necessary, construct on them also the independent
random variables {�jn}; X 0

n independent of ({Zjn}; {Y jn}), such that {�jn} are i.i.d. uni-
formly distributed on [0; 1] and X 0

n has law &j for j=1; 2; : : : ;∞. Let {X j
n} be speci9ed

by (3) for each j. By a standard monotone class argument, (1) translates into

E0

[(
h(X j

m+1; Y
j
m+1) −

∫
M’(X j

m; Z
j
m; z)h(z; y)�(dz)�(dy)

)

g((X j
0 ; Y

j
0 ; Z

j
0); : : : ; (X

j
m; Y

j
m; Z

j
m))"m+1

]
= 0; (18)
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for all h∈Cb(S×W ); g∈Cb((S×W×U )m+1). From the continuity of ’, it follows that
the laws of (X j

m; Y
j
m; Z

j
m; m¿ 0) remain tight as the law of X j

0 varies over any tight fam-
ily (in particular, over {&j; j¿ 1}) and the law of ({Zm}; {Ym}) varies over $. Also,
"m for each m remains uniformly integrable thanks to (5). Hence (18) is preserved
under convergence in joint law of the processes involved. It follows that any limit
point in law of the joint law of (X j

m; Y
j
m; Z

j
m; m¿ 0) as j → ∞ satis9es (18), therefore

(1), with the initial law = &∞. That is, the joint law of (X j
m; Y

j
m; Z

j
m; m¿ 0) converges

to that of (X∞
m ; Y∞

m ; Z∞
m ; m¿ 0) as j → ∞. Thus the joint law of (Xm; Ym; Zm; m¿ 0)

varies continuously with the law of X0; ({Zm}; {Ym}), as the latter vary over P(S)×$.
The claim follows.

Corollary 4.1. g(· ; %); %∈$, is an equicontinuous family.

In particular, this implies that we can make the 9rst term on the r.h.s. of (17) less
than 5=2 by making 6(&; &′) small enough. Thus we have:

Corollary 4.2. MV/; /∈ (0; 1), is an equicontinuous, pointwise bounded family in
C(P0(S)).

Thus by the Arzela–Ascoli theorem, it is relatively compact in C(P0(S)). Note
that the term (1 − /)V/(&∗) is bounded uniformly in /∈ (0; 1). Thus we may take a
subsequence /(n) → 1 in (14) such that

MV/(n) → V ∗ in C(P0(S));

(1 − /(n))V/(n)(&∗) → 9 in R:

From our continuity assumption on ’ and ScheKe’s theorem (Borkar, 1995, Theorem
2.3.3, p. 26), it follows that the map

(&; u) →
(∫

’(x; u; S; y)&(dx)
)
�(dy)

is continuous w.r.t. the total variation norm. A standard argument then shows that the
expression in square brackets on the r.h.s. of (14) converges to[

Mk(&; u) − 9 +
∫
-(&; u; d&′)V ∗(&′)

]
uniformly in u. Thus passing to the limit in (14), one has the dynamic programming
equation for ergodic control of the separated control problem:

V ∗(&) = min
u

[
Mk(&; u) − 9 +

∫
-(&; u; d&′)V ∗(&′)

]
: (19)

By a standard measurable selection theorem (Wagner, 1977), there exists a measurable
v :P0(S) → U such that v(&) attains the minimum on the r.h.s. for each &. Then we
have:

Theorem 4.1. (i) The dynamic programming equation (19) has a solution (V ∗(·); 9) ∈
C(P0(S)) × R where 9 is the optimal cost regardless of the initial law.
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(ii) Zn = v(&n); n¿ 0; for v(·) as above is optimal. Conversely, if (&n; Zn; n¿ 0)
is an optimal stationary pair, then

Zn ∈Arg min
(

Mk(&n; ·) +
∫
-(&n; · ; d&′)V ∗(&′)

)

a.s. w.r.t. the law of &n.

This is proved exactly as in Borkar (2000, pp. 680–1).

Remark. The following simple generalization of the foregoing is worth noting: Suppose
we replace (1) by

P(Xn+1 ∈A; Yn+1 ∈A′=Xm; Zm; Ym; m6 n)

=
∫
A′

∫
A
;(Xn; Zn; y; dz)�(dy)

for a suitable probability kernel

(x; z; y) → ;(x; z; y; dz′) ∈P(S)

and assume that for M;(x; z; dz′) ,
∫
;(x; z; y; dz′)�(dy), we have

;(x; z; y; dz′)� M;(x; z; dz′) ∀y
and

<(x; z; y; z′) ,
d;(x; z; y; dz′)
d M;(x; z; dz′)

is continuous in its arguments and satis9es:∫∫
(<(x; z; y; z′))1+#0 M;(x; z; dz′)�(dy)¡∞

for some #0¿ 0. (This replaces (5).) The nonlinear 9lter then becomes

&n+1(dz) =

∫
&n(dx);(x; Zn; Yn+1; dz)∫ ∫
&n(dx);(x; Zn; Yn+1; dz′)

, F(&n; Zn; Yn+1); n¿ 0:

The rest of the development goes through exactly as before, except for the pseudo-atom
construction described in Appendix A. The latter needs an additional ‘minorization
condition’ along the lines of Meyn and Tweedie (1993, p. 102).

5. Controlled di$usions

In this section we state without proof the implications to ergodic control of partially
observed diKusions. The details exactly mimic those of Borkar (2003) and are there-
fore omitted. See Borkar (1989) for general background on controlled diKusions and
partially observed controlled diKusions.
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The controlled diKusion X (·) = [X1(·); : : : ; Xd(·)]T, assumed to be controlled by a
P(U )-valued ‘relaxed’ control process Z(·), and the associated Rr-valued observation
process Y (·), are described by the stochastic diKerential equations

X (t) = X0 +
∫ t

0
m(X (s); Z(s)) ds+

∫ t

0
�(X (s)) dB1(s); (20)

Y (t) =
∫ t

0
h(X (s))ds+ B2(t); (21)

where

• m(· ; ·) :Rd × P(U ) → Rd is of the form

m(x; () =
∫
m̃(x; u)d((u); x∈Rd ; (∈P(U );

(componentwise integration) for some m̃(· ; ·) :Rd × U → Rd which is bounded
continuous and Lipschitz in its 9rst argument uniformly w.r.t. the second,

• �(·) :Rd → Rd×d is bounded Lipschitz with the least eigenvalue of �(·)�T(·) uni-
formly bounded away from zero,

• X0 has a prescribed law &0 ∈P(Rd),
• B1(·); B2(·) are independent, respectively, d- and r-dimensional standard Brownian

motions such that (B1(·); B2(·); X0) are independent,
• Z(·) is a U -valued control process wide sense admissible in the sense of Fleming

and Pardoux (1982); Borkar (1989, Chapter V) or Borkar (2003),
• h :Rd →Rr is bounded continuous and twice continuously diKerentiable with

bounded 9rst and second partial derivatives.

The aim is to minimize the ergodic cost

lim sup
t→∞

1
t

∫ t

0
E[k(X (s); Z(s))] ds; (22)

where k ∈Cb(Rd × P(U )) is of the form

k(x; () =
∫
k̃(x; u) d((u)

for some k ∈Cb(Rd ×U ). We also assume the stability condition: There exist #0¿ 0,
V; V̂∈C2(Rd), such that

lim
‖x‖→∞

V(x) = ∞;

LuV(x)6−#0 + CIB(x) ∀u;

LuV̂(x)6−V(x) + ĈIB̂(x) ∀u;

lim
t→∞

E[V̂(X (t))]
t

= 0;
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where C; B; Ĉ; B̂, are as before, the expectation E[ · ] is under any arbitrary wide sense
admissible control, and

Luf(x) ,
∑
i

mi(x; u)
@f
@xi

(x) +
1
2

∑
i; j; k

�ik(x)�jk(x)
@2f
@xi@xj

(x)

for f∈C2(Rd).
As before, one considers the equivalent separated control problem of controlling

the P(Rd)-valued process {&t} of regular conditional laws of X (t) given Gt , the
right-continuous completion of �(Y (s); Z(s); s6 t) for t¿ 0. This evolves according
to the Fujisaki–Kallianpur–Kunita equation

&t(f) = &0(f) +
∫ t

0
&s(LZ(s)(f)) ds

+
∫ t

0
〈&s(hf) − &s(f)&s(h); dŶ (s)〉;

where

• f∈C2
b (R

d) and &(g) ,
∫
gd& for g∈Cb(Rd) and &∈P(Rd),

• the ‘innovations process’ Ŷ (t) , Y (t) − ∫ t
0 &s(h) ds; t¿ 0; is an r-dimensional

Brownian motion independent of X0; B1(·).

The cost (22) is written in the more convenient form

lim sup
t→∞

1
t

∫ t

0
E[&s(k(· ; Z(s)))] ds:

As in Borkar (2003), we observe that &0 ∈P0(Rd) implies &t ∈P0(Rd) a.s. for t¿ 0
and thus we may view {&t} as a P0(Rd)-valued process. Our main result is:

Theorem 5.1. There exist V ∗ ∈C(P0(Rd)); B∈Rd, such that B is the optimal cost
regardless of the initial law and for all t ¿ 0,

V ∗(&) = inf E
[∫ t

0
(&s(k(· ; Z(s))) − B) ds+ V ∗(&t)|&0 = &

]
;

where the in;mum is over all wide sense admissible controls. In particular, (V ∗(&t)+∫ t
0 (&s(k(· ; Z(s))) − B) ds;Gt) is a submartingale and if it is a martingale, (&t; Z(t);
t¿ 0) is an optimal pair. Conversely, it is a martingale if (&t; Z(t); t¿ 0) is an
optimal stationary pair.

This follows exactly as in Theorem 5.1 of Borkar (2003) via an embedded discrete
problem, the latter being handled as in the preceding section.
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Appendix A

Here we brieSy sketch the pseudo-atom construction which was referred to just
before Lemma 3.1. Note that the control sequence {Zn} corresponds to some <(dy∞;
du∞) ∈$ ⊂ P(U∞ ×W∞). De9ne

M! := ([0; 1]∞ × S) × ([0; 1]∞ × S) × U∞ ×W∞ ×W∞

and let MF be the natural product �-9eld. Let MP0 be a probability measure on ( M!; MF)
de9ned as

MP0((dũ∞ × dx̃) × (dû∞ × dx̂) × dz∞ × dỹ ∞ × dŷ ∞)
:= ‘∞(dũ∞)&̃(dx̃)‘∞(dû∞)&̂(dx̂)<(dỹ ∞; dz∞)�∞(dŷ ∞):

Here ‘ denotes the Lebesgue measure. On ( M!; MF; MP0) de9ne canonical processes
{�̃n}; {�̂n}; {Zn}; {Ỹ n}; {Ŷ n} and variables X̃ 0; X̂ 0 as follows. For ! = (ũ∞; x̃; û∞;
x̂; z∞; ỹ ∞; ŷ ∞)

�̃n(!) := ũ n; �̂n(!) := û n; Zn(!) := zn; Ỹ n(!) := ỹ n;

Ŷ n(!) := ŷ n; n¿ 0

and X̃ 0(!) := x̃, X̂ 0(!) := x̂. De9ne {X̃ n}; {X̂ n} recursively by

X̃ n+1
:= F(X̃ n; Zn; �̃n+1); X̂ n+1

:= F(X̂ n; Zn; �̂n+1); n¿ 0:

Then by a change of measure technique one can obtain a measure MP on ( M!; MF) (see
Borkar, 2003, for details) such that {X̃ n} and {X̂ n} de9ned on ( M!; MF; MP) are controlled
Markov chains with the desired transition kernel and with initial laws &̃ and &̂, respec-
tively, and are driven by a common control sequence {Zn} that is wide sense admissible
for both, with the corresponding observation processes {Ỹ n}; {Ŷ n}. Let MY n

:= (Ỹ n; Ŷ n)
and MX n

:= (X̃ n; X̂ n). Then { MX n} is a H := S2 valued controlled Markov chain with
U valued control {Zn} and W 2 valued observation sequence { MY n}. Denote the corre-
sponding controlled transition kernel by Mp(x; u; dx′×dy′) ∈P(S2×W 2); (x; u) ∈H×U .
Let G := (B ∪ B̂)2 and de9ne F∈P(H) by

F(A) :=
(�× �)(A ∩ G)

�(B ∪ B̂)2
; A∈B(H):

Let

5 :=
1
2

(
inf

x∈B∪B̂;u∈U;y∈B∪B̂
M’(x; u; y)�(B ∪ B̂)

)2

:

Note that by our assumption on ’, we have 5¿ 0. Also,

Mp(x; u; A×W 2)¿ 5IG{x}F(A); A∈B(H); (x; u) ∈H × U:

We are now ready for the pseudo-atom construction. Let H∗ := H × {0; 1} endowed
with its Borel �-9eld.
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For a set A∈B(H), we let A0
:= A × {0} and A1

:= A × {1}. For every (∈P(H)
we de9ne a (∗ ∈P(H∗) as follows. For A∈B(H),

(∗(A0)
:= (1 − 5)((AG) + ((A(G)c);

(∗(A1)
:= 5((AG):

(A.1)

Clearly, (∗(A0) + (∗(A1) = ((A) and if A ⊂ (G)c then (∗(A0) = ((A). Similarly, for
(∈P(H ×W 2) we de9ne a (∗ ∈P(H∗ ×W 2) as follows. For A∈B(H); D∈B(W 2),

(∗(A0 × D) := (1 − 5)((AG × D) + ((A(G)c × D)

(∗(A1 × D) := 5((AG × D):
(A.2)

Clearly, (∗(A0×D)+(∗(A1×D)=((A×D) and if A ⊂ (G)c then (∗(A0×D)=((A×D).
Given f :H × U → R, de9ne f∗ :H∗ × U → R as

f∗((x1; x2; i); u) := f((x1; x2); u); (x1; x2) ∈H; i∈ {0; 1}; u∈U: (A.3)

In a similar way we de9ne the extension of f :Hn × Un → R to a function from
(H∗)n × Un → R and denote it by f∗.

On a suitable probability space (!∗;F∗; P∗), de9ne an H∗-valued controlled Markov
chain: In ≡ (X ∗

n ; i
∗
n ), where X ∗

n ≡ (X̃ ∗
n ; X̂

∗
n), with a U -valued control process Z∗

n and
W 2-valued observation process {Y ∗

n } so that:
(1) The controlled transition kernel of (In; Y ∗

n ) is given as follows. For Mz≡(z; i) ∈H∗

and u∈U
q( Mz; u; dx′ × dy)

=




Mp∗(z; u; dx′ × dy) if Mz ∈H0\G0

1
1 − 5

( Mp∗(z; u; dx′ × dy) − 5F∗(dx′)�2(dy)) if Mz ∈G0

F∗(dx′)�2(dy) if Mz ∈H1;

(A.4)

where x′ ≡ (x′
0; j) ∈H∗.

(2) The initial distributions are given as follows:

P∗(I0 ∈A0; Y ∗
0 ∈A′; Z∗

0 ∈A′′) := (1 − 5)P( MX 0 ∈AG; MY 0 ∈A′; Z0 ∈A′′)

+P( MX 0 ∈A(G)c; MY 0 ∈A′; Z0 ∈A′′)

P∗(I0 ∈A1; Y ∗
0 ∈A′; Z∗

0 ∈A′′) := 5P( MX 0 ∈AG; MY 0 ∈A′; Z0 ∈A′′);

for A∈B(H); A′ ∈B(W 2); A′′ ∈B(U ).
(3) The control sequence {Z∗

n } is given as follows. For n∈N; A′ ∈B(U ) and
(zm; im; ym; /m) ∈H × {0; 1} ×W 2 × U

P∗(Z∗
n ∈A′|(Im; Y ∗

m) = (zm; im; ym); Z∗
m−1 = /m−1; m6 n)

=P(Zn ∈A′|( MXm; MYm) = (zm; ym); Zm−1 = /m−1; m6 n): (A.5)
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The above construction ensures that the probability laws of the processes {X ∗
n ; Y

∗
n ;

Z∗
n }n∈N0 and {( MX n; MY n); Zn}n∈N0 are the same. Furthermore, G1 is an accessible atom

of {Zn} in the sense of Meyn and Tweedie (1993). (See Borkar, 2003, for details.)
Finally, de9ne the hitting time of the “pseudo-atom” G1 as

1 := min{n¿ 0 :In ∈G1}: (A.6)

Properties of 1 and the processes {X̃ ∗
n ; X̂

∗
n ; Y

∗
n ; Z

∗
n }n∈N0 stated above Lemma 3.1 are

proved in Lemmas 3.1–3.3 of Borkar (2003).
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