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“Whenever a theory appears to you as the only possible one,

take this as a sign that you have neither understood the theory

nor the problem which it was intended to solve.”

– Sir Karl Raimund Popper

Objective Knowledge: An Evolutionary Approach (1972)



Abstract

Online advertising, a form of advertising that reaches consumers through the World

Wide Web, has become a multi-billion dollar industry. Using the state of the art com-

puting technologies, online auctions have become an important sales mechanism for

automating transactions in online advertising markets, where advertisement (shortly

ad) inventories, such as impressions or clicks, are able to be auctioned off in millisec-

onds after they are generated by online users. However, with providing non-guaranteed

deliveries, the current auction mechanisms have a number of limitations including: the

uncertainty in the winning payment prices for buyers; the volatility in the seller’s rev-

enue; and the weak loyalty between buyer and seller. To address these issues, this

thesis explores the methods and techniques from finance to evaluate and allocate ad

inventories over time and to design new sales models. Finance, as a sub-field of mi-

croeconomics, studies how individuals and organisations make decisions regarding the

allocation of resources over time as well as the handling of risk. Therefore, we believe

that financial methods can be used to provide novel solutions to the non-guaranteed de-

livery problem in online advertising. This thesis has three major contributions. We first

study an optimal dynamic model for unifying programmatic guarantee and real-time

bidding in display advertising. This study solves the problem of algorithmic pricing

and allocation of guaranteed contracts. We then propose a multi-keyword multi-click

ad option. This work discusses a flexible way of guaranteed deliveries in the sponsored

search context, and it’s evaluation is under the no arbitrage principle and is based on

the assumption that the underlying winning payment prices of candidate keywords for

specific positions follow a geometric Brownian motion. However, according to our data

analysis and other previous research, the same underlying assumption is not valid em-

pirically for display ads. We therefore study a lattice framework to price an ad option

based on a stochastic volatility underlying model. This research extends the usage of

ad options to display advertising in a more general situation.
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Notation

The following mathematical notations are used throughout the thesis. For the reader’s

convenience, in addition to their definitions here, they are also described in their first

occurrences in each chapter. Other notations used in Chapters 3-5 are further described

in Tables 3.1, 4.1 and 5.1, respectively.

Notation Description
BIN(n, p) Binomial distribution for n trials with probability p ∈ [0, 1], n ∈ Z∗
A, F, M Collection of sets or σ-fields
cov[X,Y ], Σ Covariance, correlation matrix
f(x) or fX(x) Density function
|Σ| Determinant of Σ
∅ Empty set
E[·], E[· | F] Expectation, conditional expectation on F

exp{·} Exponential function
fX,Y (x, y) Joint density function
LN(µ, σ2) Log-normal distribution with mean µ and variance σ2, µ ∈ R, σ ∈ R
max{·} Maximum function
ln{·} Natural logarithm function
N(µ, σ2) Normal distribution with mean µ and variance σ2, µ ∈ R, σ ∈ R
N (x) Cumulative distribution function of a standard normal, x ∈ R
P, Q Probability measure
X, X Random variables, vector or matrix
Z, Z∗ Set of integers {. . . ,−1, 0, 1, . . .}, non-negatives integers {0, 1, . . .}
R, R+ Set of real numbers (−∞,∞), non-negative real numbers [0,∞)
Ω Sample space
W (t), W(t) Standard Brownian motion
σ[·], var[·] Standard deviation, variance
Σ, Π Sum, product
s.t. Subject to
XT Transpose of X
U[a, b] Uniform distribution on closed interval [a, b], a ∈ R, b ∈ R



Chapter 1

Introduction

The rapid growth of the Internet and the World Wide Web has transformed the way

that information is being accessed and used. They have also transformed the business

of advertising. Traditional advertising reaches consumers through televisions, radios,

newspapers, magazines, etc. Today, many marketing messages are delivered through

the Internet and the World Wide Web to online users [Evans, 2009].

By most accounts, the very first online ad was an email sent by Gary Thuerk on

3rd May 1978, who was a marketing manager at the Digital Equipment Corporation

(DEC) and also known as the father of spam [Templeton, 2008]. The recipient list

was about 400 ARPANET1 users on the west coast of the United States. This email

was an invitation to users to the demonstrations of the DEC’s new product. Although

some users were happy about the notification, the majority felt annoyed. Despite the

generally negative reactions at the beginning, online advertising grew rapidly.

Online advertising has now become a multi-billion dollar industry and a signif-

icant source of revenue for many Web based businesses, such as Google, Facebook,

Yahoo! and AppNexus. According to the Interactive Advertising Bureau (IAB)2, the

US-only online advertising annual revenues for 2013 totalled $42.8 billion, $6.2 bil-

lion (or 17.0%) higher than in 2012. In Europe, the region’s online ads spending rose

by 11.9% in 2013 to total e27.3 billion (equivalent to $36.4 billion) and the major

Western European countries were with 5%-18% annual growth rates respectively3. The

1The Advanced Research Projects Agency Network (ARPANET) was one of the world’s first opera-
tional packet switching networks, the first network to implement TCP/IP, was then decommissioned on
28th February 1990.

2http://www.iab.net
3http://www.emarketer.com

http://www.iab.net
http://www.emarketer.com/Article/Online-Ad-Spending-Europe-Topped-euro27-Billion-2013/1010870
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UK has the biggest digital market size in Western Europe4, whose online advertising

market grew 15.6% in 2013, to £6.3 billion (equivalent to $9.23 billion), and has been

estimated to account for more than 1/3 of the total revenue of Western Europe in 2014.

The above numbers reveal the fact that online advertising has become one of most fast-

growing industries, which also means there is emerging demand of the high-quality

research in this field.

In fact, online advertising are becoming a new scientific sub-discipline in com-

puter science, bringing the gap among the areas of information systems, data min-

ing, artificial intelligence, machine learning, economics, marketing science, opera-

tions research, etc. It arises many interdisciplinary challenges, such as advertising

auction mechanism design, re-targeting models, programmatic bidding strategies and

risk-aware advertising technologies. Good and timely solutions to those challenges can

feed back into a better product or market design that will generate more economic value

and produce more benefits to people and businesses associated with it.

1.1 Major Types of Online Ads
It is difficult to use the Internet without seeing online ads. They can be found in almost

all types of Web pages, ranging from an online newspaper, to a search engine results

page (SERP), to a Facebook homepage, etc.

Display advertising is one of the most popular types of online advertising. It

is graphical information that appears next to content on Web pages, pop-up videos,

emails, etc. These ads, often referred to as banners, come in standardized ad sizes,

and can include text, logos, pictures, or more recently, rich media [IAB, 2013, Jansen,

2011]. Figure 1.1 presents an example of display ads. On the Yahoo! Cars Web page,

there are three ad slots (shown in dotted blue line boxes) and Yahoo! can display these

three ads together at a same time if a user visits the site. Therefore, display ads are

usually sold on the basis of 1000 views of display. Each display is called an impression

and the cost for 1000 impressions is called the cost per mille (CPM).

Sponsored search, also called search advertising, is another popular type of adver-

tising. As the name implies, the advertising is triggered by a search behaviour [Jansen,

2011]. In Figure 1.2, within the search box is one term that a user submitted to the

4http://www.iabuk .net

http://www.iabuk.net
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search engine. The term is collectively known as the query. Along with the click on

the search button, the query term is what triggers the results on the SERP to appear.

The shown SERP (see Figure 1.1) has two types of result listings in response to the

submitted query: organic results and paid results. Organic search results are the Web

page listings that most closely match the user’s search query based on relevance. Paid

results are basically ads – the websites have paid to have their Web pages display for

certain keywords, so these listings show up when someone runs a search query con-

taining those keywords. In sponsored search, the value of an ad is not measured by

impressions, instead, it is measured if the user clicks on it. The cost of each valid click

is called the cost per click (CPC).

Many ad inventories, such as display impressions and clicks, are auctioned off

in real time. In display advertising, auctions are normally run in ad exchanges and

each auction can target to a single impression from a specific group of users, called

the real-time bidding (RTB) [Google, 2011, Yuan et al., 2013]. In sponsored search,

auctions are mainly run by search engines. These auctions are slightly different to

RTB because ad inventories are keyword-based (therefore, called keyword auctions)

and the search engine also needs to consider the position effects on the probability of

clicks [Edelman et al., 2007, Varian, 2007, Lahaie and Pennock, 2007, Börgers et al.,

2013]. These topics are not discussed here, instead, a detailed review on advertising

sales mechanisms are provided in Section 2.1.1.

1.2 Market Participants
Participants in online advertising markets can be divided into three groups: users, sell-

ers and buyers. They are also called interactive entities [Evans, 2009, Jansen, 2011].

Online users can be anyone who use the Internet and the World Wide Web. Nor-

mally, a user issues ad-hoc topics to express his information needs, such as searching

on Google or surfing Yahoo! Cars.

Sellers in online advertising include publishers, search engines, and supply-side

platforms (SSPs). A publisher is an individual or organisation that prepares, issues,

and disseminates content for public distribution [IAB, 2013]. Simply, publishers are

those who have the space for ads to be displayed. A search engine is a company that

indexes documents and then attempts to match documents by relevancy to the users’
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Figure 1.1: Display ads (in dotted blue line box) on the Yahoo! Cars Web page.

Mainline

paid results

Sidebar

paid results

Organic 

results

Search query

Figure 1.2: Organic search results (in blue line box) and paid search results (in dotted blue line
box) on the Google Sponsored search results page (SERP).
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search queries. A supply-side platform (SSP) is an intermediary company with the

single mission of enabling publishers to manage their display impressions and max-

imise revenue. In the display advertising market, sellers refer to publishers or SSPs; in

sponsored search, sellers normally refer to search engines.

Buyers include advertisers and demand-side platforms (DSPs). An advertiser is

the one who requires places or slots to place marketing messages–online ads–in order

to attract the attention of particular online users [Jansen, 2011]. In display advertis-

ing, advertisers sometimes join an automated bidding platform to get better or more

impressions at low cost and such a platform is called the demand-side platform (DSP).

1.3 Fundamental Challenges
Despite the strong growth of online advertising, the following fundamental challenges

are worth of investigation:

1. In either keyword auction or RTB, the highly volatile bid prices make it difficult

for online buyers to predict their campaign costs and returns, and thus further

complicate their budget planning for advertising. This can be regarded as the

price risk inherited from the spot market because bid prices reflect the changes

of supply and demand of ad inventories, and the price risk cannot be avoid in an

auction mechanism.

2. Guaranteed contracts are a solution to reducing the price risk because they spec-

ify the ad inventories and their delivery prices in advance for online buyers. How-

ever, they are mostly still sold through private human negotiations (particularly

in display advertising) and therefore only a small number of inventories can be

sold. According to eMarketer [2013], only 20% display ad inventories in 2012

were sold in terms guaranteed contracts, even through which generated 75% of

publishers’ revenue. This shows the current problem while great potential of

selling guaranteed inventories programmatically.

3. The evolution of online advertising sales mechanisms (see Section 2.1.1) shows

that online buyers always require more certainty and more control of their in-

vested ad inventories. “They want more data to inform their bids, exposure

to inventory not currently available to them, and preferred access to inven-
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tory” [OpenX, 2013]. The current auction mechanisms and guaranteed contracts

can partially fulfil the needs on the buyer side. For example, RTB allows adver-

tisers to bid for their targeted users; guaranteed contracts allows advertisers to

reserve the inventories that will be created in the future period. However, in gen-

eral, online buyers have less flexibility and control of advertising in the process,

which motivates us to design new ad products that can provide flexible guaran-

teed deliveries for advertisers.

4. Creating a loyal buyers’ base is one important task that online sellers

face [OpenX, 2013]. The “pay-as-you-go” attribute of auction mechanisms

allows buyers to switch from one seller to another in the next bidding without

paying any cost. If the sellers’ ad inventories are similar to each other (also

called substitutable in economics [Mankiw, 2006]), their revenues are difficult

to be stable over time and to be optimised. This is because buyers rationally

choose to advertise on the lower cost advertising placement and dynamically ad-

just their strategies across different sellers. This will be more obvious when the

programmatic trading becomes more popular as algorithms can give the fastest

feedback to buyers to choose the ad inventories with better effectiveness and

profit conversion. Hence, sellers must take multiple issues into account in order

to maintain their buyers on the long run and one possible solution is to establish

contractual relationships with buyers.

The first and fourth statements explain why we study the non-guaranteed prob-

lem; the second and third statements describe how challenging the problem is. The

first statement tells there is price risk inherent from auction mechanisms which makes

online advertising difficult for advertisers. That is one motivation because we want to

make advertisers satisfied. The fourth statement describes our second motivation and

which is from the seller’s perspective. Guaranteed deliveries allow a seller to expand

and maintain his loyal advertisers so that his long-term revenues can be increased or

stabilised. The second statement reveals the fact that most of profitable guaranteed

contracts nowadays are not programmatically sold; therefore, there is much room for

improvement on automating the selling of guaranteed inventories. The third statement

indicates, apart from automation, offering more flexibility to advertisers is another chal-
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lenge in providing guaranteed deliveries.

1.4 Proposed Solutions Using Financial Methods
The research carried out through this thesis focuses on using financial models to pro-

vide solutions to the non-guaranteed delivery problem in online advertising. Specifi-

cally, we consider how can online sellers, such as publishers, search engines and SSPs,

develop novel computational algorithms or automated systems to provide guaranteed

advertising deliveries for online buyers such as advertisers and DSPs.

By its very nature, advertising is a prominent feature of economic life [Bagwell,

2001]. Economic models contribute to online advertising on many aspects. Marketing

researchers use the social choice theory to explore the effectiveness of advertising types

and users’ engagement. Computer scientists and economists employ the applied game-

theoretical models to design online auctions, such as the Generalised Second-Price

(GSP) auction [Edelman et al., 2007]. However, finance, as a sub-field of microeco-

nomics, has received surprisingly little attention in online advertising. Two features can

distinguish financial studies from other economic resource allocation decisions. First,

financial decisions are spread out over time. Second, they are usually not known with

certainty in advance by either the decision makers or anybody else [Bodie et al., 2009].

These two features make financial methods particularly suitable and interesting to solve

the non-guaranteed delivery problem in online advertising.

This thesis contributes to the field of online advertising both methodologically

and algorithmically: the former is supported by mathematical models and statistical

analysis; and the latter is validated by empirical experiments. There are three major

contributions of this thesis, which are discussed in Chapters 3-5:

1. We study an optimal dynamic model for a publisher or SSP who engages in

RTB and wants to provide the guaranteed delivery of display impressions. The

model mimics the advanced booking system in the airline industry, and considers

both allocation and pricing of estimated future impressions. This work will be

introduced in Chapter 3 [Chen et al., 2014b].

2. We propose a multi-keyword multi-click ad option for sponsored search. The

proposed option allows an advertiser to: (i) target a set of ad keywords for a cer-
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Figure 1.3: Differences and relationships of the contributions in Chapters 3-5.

tain number of clicks; (ii) multiply exercise the option at any time prior to or on

the contract expiration date; and (iii) switch the guaranteed delivery request from

one keyword to another without paying any cost. We discuss the option evalua-

tion models based on the assumption that the underlying winning payment prices

of targeted keywords follow an univariate (or multivariate) geometric Brownian

motion (GBM) [Samuelson, 1965a, Wilmott, 2006]. This work will be described

in Chapter 4 [Chen et al., 2014a].

3. We discuss a display ad option for display advertising and study a lattice frame-

work for evaluation. The proposed option allows an advertiser to pay a fixed

CPM or CPC for an impression or click that is same or different to its under-

lying measurement model from real-time auctions. The display ad option can

be priced for those situations where the GBM assumption is not valid empir-

ically. We use the stochastic volatility (SV) model to describe the underlying

price movement and construct a censored binomial lattice to approximate the un-

derlying SV model. This work will be discussed in Chapter 5 [Wang and Chen,

2012, Chen and Wang, 2014].

Figure 1.3 shows the structural relationships of studies in Chapters 3-5. Overall,
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our three studies provide novel solutions to the non-guaranteed delivery problem in

online advertising via contract mechanisms (i.e., guaranteed contracts in Chapter 3

and option contracts in Chapters 4-5). Therefore, each chapter discusses the contract

pricing models depending on different advertising environments and the pricing can

algorithmically adapt to the changes of supply and demand of inventories in auction

mechanisms.

Chapters 4-5 are also uniquely different to each other. Chapter 3 focuses on bring-

ing automation into selling premium impressions in display advertising apart from RTB

and discusses both optimal allocation and pricing. The guaranteed contracts are as

same as those sold through human direct negotiations: advertisers are guaranteed with

needed deliveries at the pre-specified price in the pre-specified future period, therefore,

they need to pay the full amount of reservation in advance. Chapter 4 moves several

steps further and introduces a flexible guaranteed contract (i.e, ad option) into spon-

sored search. The flexibility contains non-obligatory exercise right, multiple keywords

targeting, multiple clicks exercising, etc. The contract pricing is based on the GBM

underlying model as it is suitable for the search ad inventories according to our data

analysis and other previous research. Chapter 5 extends the option idea into display

advertising and proposes an option contract which allows its buyer to have different

payment schemes to the underlying ad format. In addition, as the GBM underlying

model is not suitable for display advertising, we study the SV underlying model for

more general situations.

1.5 Structure of the Thesis
The rest of the thesis is organized as follows:

Chapter 2 reviews the related literature in online advertising and financial theory.

Section 2.1 gives a chronological review of the development of online advertising sales

mechanisms and discusses the related work of guaranteed advertising deliveries. Sec-

tion 2.2 introduces the basic financial concepts that will be used for the research of this

thesis, reviews the related work of revenue management (with special focus on dynamic

pricing models in airline industry), and discusses financial options and their evaluation

methods.
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Chapter 3 proposes an optimal dynamic model for unifying programmatic guar-

antee (PG) and real-time bidding (RTB) in display advertising. Section 3.1 introduces

the background and the overview of this study. Section 3.2 formulates the problem,

discusses our assumptions and provides a solution. Section 3.3 presents the results of

our experimental evaluation and Section 3.4 summarises the chapter.

Chapter 4 discusses an ad option tailored for the unique environment of spon-

sored search, where multiple ad keywords and certain number of required clicks are

considered. Chapter 4.1 introduces the background and indicates the problem. Sec-

tion 4.2 introduces option structure, and the process of buying, selling and exercising.

Section 4.3 discusses the option pricing methods. Section 4.4 analyses the effects on

search engine’s revenue. Section 4.5 presents our experimental evaluation and Sec-

tion 4.6 summarises the chapter. The mathematical results used throughout the chapter

are provided in Section 4.7.

Chapter 5 studies an ad option for display advertising. Section 5.1 introduces the

background and indicates the problem. Section 5.2 investigate several lattice methods

for pricing a display ad option with the GBM underlying model. Section 5.3 discusses

our lattice method for pricing a display ad option with the SV underlying model. Sec-

tion 5.4 presents our experimental results. Section 5.5 summarises the chapter. The

mathematical results used throughout the chapter are provided in Section 5.6.

Chapter 6 sums up what has been learned in this endeavor and suggests the direc-

tions for future research.

Appendix A provides a brief summary of the technical terms that are used through-

out the thesis. Appendix B lists the publications and submissions that have been com-

pleted during my PhD study at University College London.



Chapter 2

Background

This chapter reviews the literature on online advertising and introduces the prelimi-

naries of modern financial theory. The mathematical content of the chapter is kept to

the minimum necessary to achieve a proper understanding of important concepts and

models in these two fields. Detailed mathematical modelling and data analysis will be

discussed in Chapters 3-5.

2.1 Literature Review on Online Advertising
The following is a chronological review of the development of online advertising sales

mechanisms, and then a review of the research related to guaranteed advertising deliv-

eries.

2.1.1 Evolution of Online Advertising Sales Mechanisms

The first banner ads were introduced on 27th October 1994, when HotWired (today

Wired News, part of Lycos) signed fourteen banner ads with AT&T, Club Med and

Coor’z Zima [Bruner, 2005, Evans, 2009]. These banner ads were largely sold on the

number of impressions – individuals who saw the ads – which was the model used

by most traditional media for brand advertising [Evans, 2009]. Many online ads were

subsequently sold based on 1000 viewers per ad. This is also referred to as the cost-per-

mille (CPM) measurement (or payment) model. In early online advertising, advertisers

paid flat fees to show their ads a fixed number of times. Advertisements were negotiated

on a case-by-case basis, minimum contracts for purchases were large and entry was

slow [Edelman et al., 2007].

In 1994, search engine InfoSeek introduced the concept of targeting ads to key-
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word search queries, albeit against display banners not text ads [Bruner, 2005]. How-

ever, paying by the number of viewers remained the norm until Procter & Gamble

negotiated a deal with Yahoo! in 1996. Procter & Gamble was allowed to pay for ads

only on the cost-per-click (CPC) basis – Yahoo! was paid only when an online user

clicked on the ad [Lahaie and Pennock, 2007, Evans, 2009]. This was the Web version

of paying for direct response commonly used by advertisers for things such as mail

and telephone solicitations [Bruner, 2005]. Search engine OpenText first tried to put

together targeted search queries with paid listings in 1996, but it met with considerable

outcry from users [Bruner, 2005, Jansen, 2011].

On 21st February 1998, GoTo.com (then Overture Services, now owned by Ya-

hoo!) launched a sponsored search business model in which the search engines ranked

the Web sites based on how much the sites are willing to pay to be placed at the top of

the search results under a real-time competitive bidding process [Edelman et al., 2007,

Lahaie and Pennock, 2007, Jansen, 2011].

In the original design of GoTo.com’s auction, each advertiser submitted a bid re-

porting his willingness to pay on a per-click basis for a particular search keyword.

Advertisers can: (i) target their ads instead of paying for a banner ad that would be

shown to everyone visiting a Web site; (ii) specify which keywords were relevant to

their products and how much each of those keywords was worth to them based on

the users’ clicks. Also, ads were sold on the CPC basis. Every time a user clicked

on a sponsored link, an advertiser’s account was automatically billed the amount of

the advertiser’s most recent bid. The sponsored links to advertisers were arranged in

descending order of bids, making highest bids the most prominent. The GoTo’s auc-

tion is actually a generalised first-price (GFP) auction [Edelman et al., 2007, Jansen,

2011]. The ease of use, the very low entry costs, and the transparency of the mecha-

nism quickly led to the success of GoTo’s paid search platform. Yahoo! and MSN soon

adopted the GoTo’s concept and implemented the GFP auction model on their adver-

tising platforms. However, the underlying auction mechanism itself was far away from

perfect. Under the GFP auction framework, the advertiser who can react to competi-

tors’ moves fastest had a substantial advantage. The mechanism therefore encouraged

inefficient investments in gaming the system, causing volatile prices and allocative in-

efficiencies [Edelman et al., 2007].
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Google provided its solution to these problems by launching its own sponsored

search platform, Google AdWords, in February 2002 [Edelman et al., 2007]. Google

AdWords adopted many of GoTo.com’s concepts but introduced some significant

changes. First, Google continued the sales-by-impression model in parallel before fi-

nally dropping it altogether in favour of the CPC measurement model [Jansen, 2011].

Second, Google changed the auction model from the GFP auction to a more stable gen-

eralised second-price (GSP) auction. In the simplest GSP auction, suppose there are n

ad positions, an advertiser in position i pays a CPC equal to the bid of an advertiser in

position i + 1 plus a minimum increment. This second-price structure makes the mar-

ket more user friendly and less susceptible to gaming [Varian, 2007, Edelman et al.,

2007]. Third, Google also changed the standard allocation rule. Instead of ranking ads

by bid price alone, the platform computed a quality score derived from the bid amount

and click-through rate (CTR). CTR measures the rate at which the searchers click on

an ad’s link. These factors were later enhanced with other factors such as keyword

relevancy and landing-page quality. Google’s approach ensured that no advertiser can

just buy their way to the top search results while getting no clicks. Recognizing these

advantages, Yahoo!, Microsoft and other major search engines subsequently switched

their sponsored search platforms from GFP auctions to GSP auctions.

It is worth mentioning that the GSP auction is similar but different to another

famous second-price auction mechanism, called the Vickrey-Clark-Groves (VCG) auc-

tion [Vickrey, 1961, Clarke, 1971, Groves, 1973], which was recently implemented by

Facebook [Varian and Harris, 2013]. The VCG auction has the same allocation rule as

the GSP auction. In its simplest version, ad slots are allocated to advertisers by ranking

their bids in decreasing order. However, winning advertisers are charged differently to

the GSP auction. For the position i, the winning advertiser pays for the externalities

that he imposes on others rather than the highest bid next to him.

From a mechanism design perspective, the GSP and VCG auctions have their

own advantages and disadvantages. Here we simply compare the two auction mod-

els along the following four dimensions: incentive compatibility, solution equilibrium,

revenue maximisation and allocative efficiency. Incentive compatibility (also called

truth-telling) essentially refers to offering the right incentives that make advertisers re-

veal their value truthfully [Narahari et al., 2009]. Truth-telling is a dominant strategy
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under VCG auctions but not under GSP auctions. In a GSP auction, advertisers may

shade their bids to maximise their expected utilities. Varian [2007] and Edelman et al.

[2007] proved there is a special equilibrium under GSP auctions, called the symmetric

Nash equilibria (SNE) (or the locally Envy-free equilibrium). In the SNE, the expected

revenue of a GSP auction is at least as same as a VCG auction. However, the SNE does

not always hold in front of random bids. Allocative efficiency is achieved when the so-

cial utility (i.e., the sum of utilities) of all winning advertisers is maximised. Allocative

efficiency ensures that the inventories are allocated to the advertisers who value them

most. VCG auctions satisfy allocative efficiency while GSP auctions do not satisfy

this property. Even though VCG auctions offer more economic properties, most of the

current advertising platforms still use GSP auctions. Edelman et al. [2007] pointed out

several possible reasons. First, in many situations, GSP auctions are more profitable for

a publisher or search engine. Second, switching from GSP auctions to VCG auctions

may generate substantial transition costs. Third, the payment rules of GSP auctions are

simple and easy to explain to advertisers.

The introduction of ad networks was another milestone in online advertising. The

original ad networks were set up in 1997 to address the problem for advertisers who

want to advertise across many different websites [OpenX, 2010]. By aggregating in-

ventory across multiple sites, ad networks offered advertisers the ability to reach the

size of audience that they had come to expect from traditional channels like televisions.

However, there are several limitations of ad networks. First, there are many intermedi-

aries in the value chain between publishers and advertisers, each taking a slice of “profit

cake”. For example, an ad network who cannot sell some particular inventories may

offer them at a cheaper price to another ad network. Second, advertisers may spend

much time and effort on exploring which network is the best one to purchase invento-

ries. Third, to maximise revenue, publishers may spend much time and effort on the

allocation of inventories among ad networks.

Ad exchanges came up to improve the limitations of ad networks, which are the

technology platforms that facilitate the buying and selling of ad inventories from mul-

tiple ad networks [Muthukrishnan, 2009, OpenX, 2010]. Three major exchanges were

acquired in 2007: Yahoo! bought Right Media in April, Google bought DoubleClick

in May and Microsoft bought AdECN in August. Each company quickly made vast
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pools of ad inventories, which greatly improved the experience for many participants

to transact centrally.

The arrival of ad exchanges and ad networks brought another innovative sale

mechanism to online advertising (mainly for display advertising) – real-time bidding

(RTB) – a programmatic trading technique designed to help advertisers take advantage

of increased data and inventory liquidity [PubMatic, 2010]. Before RTB, buying from

multiple exchanges was time-consuming and inefficient for advertisers. They had to

use a different system to access each exchange. And since a typical campaign would

pull inventories from more than one exchange, there was no easy way to achieve de-

duplicated reach or to cap the number of impressions that audiences would receive

from any given campaign [Google, 2011]. RTB therefore was originally conceived as

an advertiser-focused solution and many DSPs provided services based on it.

2.1.2 Guaranteed Advertising Deliveries

In the following discussion, the research related to guaranteed advertising deliver-

ies is reviewed. As described in Section 2.1.1, guaranteed contracts appeared in the

early stages of online advertising but were negotiated by advertisers and publishers

privately [Edelman et al., 2007]. Each negotiation contains an amount of needed in-

ventories over a certain period of time and a pre-specified guaranteed price. Hence, in

discussing the guaranteed delivery, the following issues must be considered: allocation

and pricing. Many studies discussed the two issues separately. Allocation models will

be explored first, and then pricing models.

Feldman et al. [2009] studied an ads selection algorithm for a publisher whose ob-

jective is not only to fulfil the guaranteed contracts but also to deliver the well-targeted

display impressions to advertisers. This research was more relevant to a service match-

ing problem. The allocation of impressions between the guaranteed and non-guaranteed

channels was first discussed by Ghosh et al. [2009], where a publisher was considered

to act as a bidder who bids for guaranteed contracts. This modelling setting was rea-

sonably good as the publisher acts as a bidder who would allocate impressions to online

auctions only when other winning bids are high enough. Balseiro et al. [2011] inves-

tigated the same allocation problem but used some stochastic control models. Simply,

they considered, for a given price of an impression, the publisher can decide whether to
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send it to ad exchanges or assign it to an advertiser with a fixed reserve price. The deci-

sion making process aims to maximise the expected total revenue. Roels and Fridgeirs-

dottir [2009] proposed a similar allocation framework to Balseiro et al. [2011], where

the publisher can dynamically select which guaranteed buy requests to accept and to

deliver the guaranteed impressions accordingly. However, compared to Balseiro et al.

[2011], the uncertainty in advertisers’ buy requests and the traffic of website were ex-

plicitly modelled under the revenue maximisation objective. Recently, a lightweight

allocation framework was proposed by Bharadwaj et al. [2012]. They used a simple

greedy algorithm to simplify the computations of revenue maximisation.

Bharadwaj et al. [2010] discussed two algorithms for pricing the guaranteed dis-

play contracts. Each contract contains a bulk of impressions and the proposed algo-

rithms solved the revenue optimisation problem for the given number of users’ visits

(i.e., the demand level). However, their work did not consider the auction effects on

the contract pricing, and the developed algorithms were purely based on the statistics

of users’ visits.

Consider if the online advertising market is bulling (i.e., the winning payment

prices of specific ad inventories from online auctions increase) and the non-guaranteed

selling looks more profitable for publishers, they may want to cancel the sold guar-

anteed contracts before the time that the targeted inventories will be created. Online

auctions with cancellations were recently discussed by Babaioff et al. [2009] and Con-

stantin et al. [2009]. They both considered a design that a publisher can cancel the sold

guaranteed contracts but needs to pay a penalty to advertisers. The proposed auctions

with cancellations enjoyed some economic properties, such as allocative efficiency and

equilibrium solution. However, there may exist speculators who pursue the cancella-

tion penalty only. In fact, the discussed cancellation penalty is very similar to the over-

selling booking of flight tickets. Several over-selling booking models were discussed

by Talluri and van Ryzin [2005].

Up to this point, the reviewed guaranteed contracts are all for display advertising.

Salomatin et al. [2012] studied a framework of guaranteed deliveries for sponsored

search, under which advertisers are able to send their guaranteed requests to a search

engine. Each guaranteed request includes the needed number of clicks and the ad bud-

get. The search engine then decides the guaranteed delivery according to search queries
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and available positions. Since the allocation decision is based on the joint revenue max-

imisation from guaranteed deliveries and keyword auctions, some advertisers may not

receive all their demanded clicks. In such cases, the search engine pays a penalty. How-

ever, advertisers still have less control of the ad exposure time and the position of the

ad. In addition, with the number of guaranteed advertisers increasing, it is less likely

that advertisers will meet their business needs in such a mechanism.

The ad option concept was initially introduced by Moon and Kwon [2010] (even

though Meinl and Blau [2009] discussed the possibility of Web service derivatives, their

proposal was not intended for online advertising). The ad option buyer can be guaran-

teed the right to choose the minimum payment between CPM and CPC once CTR is

realized. This option contract was similar to a paying the worst and cash option [Zhang,

1998]. Moon and Kwon [2010] suggested an evaluation of the option under the frame-

work of a Nash bargaining game. Simply, they considered two utility functions: one

for advertiser and one for publisher. The objective function is the product of these two

utilities and each utility function is restricted by a negotiation power. The option price

is the optimal solution which maximises the negotiated joint utility. The work of Moon

and Kwon [2010] motivates the research in Chapters 4-5. However, in this study, the

proposed ad options differ from theirs in contract structure and evaluation methods.

2.2 Preliminaries on Financial Methods
Finance mainly studies how people make decisions regarding the allocation of re-

sources over time and the handling of risk [Mankiw, 2006]. In this section, an in-

complete sketch of financial models is presented. First, some basic concepts, such as

uncertainty, risk and time value of money are introduced. Then, revenue management

models for airline industry are discussed, which lays the foundation for the research in

Chapter 3. Financial options and their evaluation techniques are explored, which form

the prelude for the research in Chapters 4-5.

2.2.1 Uncertainty, Risk and Time Value of Money

Uncertainty and risk are manifestations of the same underlying force – random-

ness [Schmid, 2012]. They are closely related but slightly different concepts. Un-

certainty is lack of certainty. Therefore, an uncertain environment is one in which the
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individual decision maker is not absolutely sure of the consequences of any particular

actions. Individuals make decisions according to some rules but the outcomes of those

decisions are not known with certainty at the time the decision is taken. Therefore,

uncertainty is a non-quantifiable form of randomness. Its application to real-world

situations is not well-charted. Risk is randomness in which events have measurable

probabilities [Knight, 1921, Schmid, 2012]. Probabilities may be attained either by de-

duction using theoretical models or induction using the observed frequency of events.

This notion implies that a choice sometimes has an influence on the outcome. We may

simply distinguish between the two concepts as follows: “uncertainty exists whenever

one does not know for sure what will occur in the future. Risk is the uncertainty that

‘matters’ because it affects people’s welfare. Thus, uncertainty is a necessary but not a

sufficient condition for risk. ” [Bodie et al., 2009].

There is a time dimension in an uncertain world, since decisions and outcomes are

separated in time. Time value of money refers to the fact that money in hand today is

worth more than the expectation of the same amount to be received in the future. There

are three reasons why this is true [Sundaresan, 2000, Bodie et al., 2009]: the first is that

one can invest it, earn interest, and end up with more in the future; the second is that

the purchasing power of money can change over time because of inflation; the third is

that the receipt of money expected in the future is, in general, uncertain.

2.2.2 Revenue Management

Revenue management (RM) investigates specific resource allocation problems within

finance. The following three types of decisions faced by a seller of products or ser-

vices are considered to be the RM research [Talluri and van Ryzin, 2005]: structural

decisions, price decisions and quantity decisions. Structural decisions refer to the sales

mechanism design. For example, that method a seller uses to deliver his products or

services to consumers, such as posted prices, private negotiations, auctions and so on.

Price decisions are means of evaluating a seller’s products or services under a specific

market structure. This includes, how to set posted prices, how to set reserve prices

in auctions, how to price products across different categories, and how to adjust price

over time. Quantity decisions refer to the capacity problem. For example, whether to

accept or reject a purchase request for a given stock level, or how to allocate products
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to different types of consumers.

In the following discussion, several RM models that were used in the airline in-

dustry are briefly reviewed as the situation of selling a given stock of flight tickets by

a deadline is similar to selling future ad inventories in advance. Talluri and van Ryzin

[2005] introduced the basic mathematical settings of both price-based RM models and

capacity-based RM models for pricing flight tickets. Price-based RM models aim at

maximizing the seller’s expected revenue by setting the optimal dynamic prices over

time; capacity-based RM models aim at maximizing the seller’s expected revenue by

allocating the remaining tickets effectively. In fact, most of these two types of mod-

els consider both pricing and allocation problems for the estimated level of supply and

demand. The main difference between them is which variable (i.e., price or capacity)

is the control variable in optimisation. Anjos et al. [2004] studied a dynamic model

which finds the optimal price to charge for flight tickets under one-way pricing. Their

model was based on two underlying assumptions of the consumer’s behaviour. The first

assumption stated that consumers are price sensitive. If the ticket price increases, con-

sumers are less willing to buy. The second assumption stated that consumers are time

sensitive. Their needs to purchase the tickets increase when approaching to the flight

departure time. Anjos et al. [2005] then discussed a general framework and examined

several pricing policies under various formulations of consumer behaviour. Malighetti

et al. [2009] analysed the pricing policy adopted by Ryanair, a main low-cost carrier in

Europe. They examined several preference choice functions for one-way pricing using

a wide range of actual prices on all of Ryanairs routes, thus validating assumptions

made by Anjos et al. [2004, 2005]. Chapter 3 considers the sale of identical future ad

inventories in advance, which are based on the economic settings discussed by Anjos

et al. [2004, 2005] and Malighetti et al. [2009]. However, our work is more sophisti-

cated because the salvage value of ad inventories on the delivery date is not zero, which

is determined by the level of competitions in future real-time auctions.

2.2.3 Options and Option Pricing Methods

Options have been widely used in many fields: financial options are an important

derivative to speculate profits as well as to hedge risk [Wilmott, 2006]; real options

are an effective decision-making tool to evaluate business projects and corporate risk
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management [Boer, 2002]. The research carried our throughout Chapters 4-5 is closely

related to financial options, whose evaluation is regarded as one of the most impor-

tant application areas of mathematics today. Sundaresan [2000], Constantinides and

Malliaris [2001] and Hobson [2004] provided good surveys on financial options and

option pricing models. In the following discussion, the basic option concepts are intro-

duced and the studies related to the research in Chapters 4-5 are reviewed.

2.2.3.1 Standard Options

A standard option (or vanilla option) is a contract in which the seller grants the buyer

the right, but not the obligation, to enter into a transaction with the seller to either buy

or sell the underlying asset at a fixed price on or prior to a fixed date [Wilmott, 2006].

The underlying asset can be a stock, bond, foreign currency, or index such as S&P-

100, FTSE-100 etc. The market price of the underlying asset is called the underlying

price; the fixed price is called the strike price; and the fixed date is called the expiration

date (or maturity date). The seller grants this right in exchange for a certain amount of

money, called the option price.

An option is called the call option if its buyer has the right to buy the underlying

asset in the future. Another case is called the put option where the option buyer has

the right to sell. The simplest standard option is the European option [Wilmott, 2006],

which can be exercised only on the expiration date. This differs from an American

option [Wilmott, 2006], which can be exercised at any time during the contract period.

Both European and American options are standard options.

2.2.3.2 Exotic Options

In the beginning of the 1980s, standard options became more widely understood and

their trading volume exploded. Financial institutions began to search for alternative

forms of options, known as exotic options [Zhang, 1998], to meet their new business

needs. Among them, two types of options, multi-asset options and multi-exercise op-

tions, are particularly relevant to our research.

Multi-asset options are options written on at least two underlying assets [Zhang,

1998]. These underlying assets can be stocks, bonds, currencies and indices in either

the same category or different markets. Several types of multi-asset options are worth

mentioning, such as basket options, dual-strike options, rainbow options, paying the
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best and cash options, and quotient options. Table 2.1 provides a brief summary of

these multi-asset options, and compares them to standard options and our proposed

multi-keyword multi-click ad options (see Chapter 4) along the following seven di-

mensions: payoff function, underlying variable, exercise opportunity, early exercise

opportunity, strike price and application area. This comparison indicates that our pro-

posed ad options are more complex than others and are, therefore, more difficult to

evaluate.

In Table 2.1, it is worth emphasising basket options and dual-strike options. Bas-

ket options are those options whose payoff is determined by the weighted sum of un-

derlying asset prices [Wilmott, 2006]. This structure can be extended to the keyword

broad match scenario, where the weights are the probabilities that sub-phrases occur in

search queries. Dual-strike options are the options with two different strike prices for

two different underlying assets [Zhang, 1998]. The simplest version of our proposed ad

options is a dual-strike call option, which allows an advertiser to switch his targeted two

ad keywords during the contract lifetime. However, in sponsored search, the number of

candidate ad keywords to choose from is usually more than two, so the two keywords

are extended to higher dimensions (see Chapter 4). In addition, as an advertiser usually

needs more than a single click for guaranteed delivery, the dual-strike call option is

extended to a multi-exercise option.

Multi-exercise options are a generalisation of American options, which provide

a buyer with more than one exercise right and sometimes control over one or more

other variables [Villinski, 2004], such as the amount of the underlying asset exercised

in certain time periods. Multi-exercise options have become more prevalent over the

past decade, particularly, in the energy industry, such as electricity swing options and

water options. Contributors to the multi-exercise options include Deng [2000], Deng

and Oren [2006], Clewlow and Strickland [2000], Villinski [2004], Weron [2006], Mar-

shall et al. [2011] and Marshall [2012]. Their work is not discussed further here as our

proposed ad options in Chapter 4 are simple examples of multi-exercise options. Com-

pared to the energy industry, the multi-exercise opportunity in sponsored search is more

flexible. Ad options are proposed that can allow advertisers to exercise options at any

time in the option lifetime, i.e. the exercise time is not pre-specified, and no minimum

number of clicks is required for each exercise. Therefore, there is no penalty fee if the
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advertiser does not exercise the minimum clicks. In addition, there is no transaction fee

for the ad option in sponsored search.

2.2.3.3 Option Pricing Methods

Motivated by an attempt to model the fluctuations of asset prices, Brownian motion

(i.e., the continuous-time random walk process [Shreve, 2004]) was first introduced

by Bachelier [1900] to price an option. However, the impact of his work was not

recognised by financial community for many years. Sixty five years later, Samuelson

[1965b] replaced Bachelier’s assumptions on asset price with a geometric form, called

the geometric Brownian motion (GBM). In the GBM model, the proportional price

changes are exponentially generated by a Brownian motion, thereby solving the prob-

lem of negative asset prices in option pricing. While the GBM model is not appropriate

for all financial assets in all market conditions, it remains the reference model against

which any alternative dynamics are judged.

The research of Samuelson highly affected Black and Scholes [1973] and Merton

[1973], who then examined the option pricing based on the GBM underlying model.

They constructed a portfolio from risky and risk-less underlying assets to replicate the

value of a European option. Risky assets can be stocks, foreign currencies, indices,

and so on; risk-less assets can be bonds. Once the value of the replicated portfolio

is estimated, the option value can be obtained accordingly. The pricing methods pro-

posed by Black and Scholes [1973] and Merton [1973] were based on the assumption

that investors on the market cannot obtain arbitrage. Therefore, the replicated portfolio

is treated as a self-adjusting process whose least expectation of returns increase at the

same speed as the constant bank interest rate. If considering the constant bank interest

rate as a discount factor, the discounted value of the replicated portfolio would be a

Martingale [Björk, 2009], whose probability measure is called the risk-neutral proba-

bility measure. Since a closed-form pricing formula can be obtained from the settings

of Black and Scholes [1973] and Merton [1973], we normally call their work as the

Black-Scholes-Merton (BSM) option pricing formula.

The BSM option pricing formula spurred research in option evaluation. Various

numerical procedures have appeared in this field, including lattice methods, finite dif-

ference methods, Monte Carlo simulations, and so on. These numerical procedures are
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capable of evaluating more complex options when the closed-form solution does not

exist. In the following discussion, lattice methods for pricing options with a parametric

underlying process are reviewed. This provides literature for the research in Chapter 5.

Sharpe [1978] initiated the concept of pricing a call option written on an asset with

simple up and down two-state price changes. We call it the one-step binomial lattice

method and use it as a pedagogical framework to explain the continuous-time option

pricing model without reference to stochastic calculus. Cox et al. [1979] then devel-

oped a multi-step binomial framework, called the Cox-Ross-Rubinstein (CRR) model,

which can converge with the BSM pricing formula if the length of the time step is suf-

ficiently small. Boyle [1986] proposed a trinomial lattice, whereby the asset price can

either move upwards, downwards, or stay unchanged in a given time period. Boyle

also discussed the pricing for an option with two underlying assets via two correlated

trinomial lattices [Boyle, 1988] and investigated how a multinomial lattice can be de-

veloped to price an option with a single asset [Boyle et al., 1989]. Other contributors to

lattice methods include Kamrad and Ritchken [1991], Tian [1993] and Haahtela [2010].

The mathematical results of these lattice methods are presented in Table 2.2, where the

movement scale is the ratio of the price in the next state to the current one, and the

transition probability is the risk-neutral probability that the asset price moves from the

current state to the next one.

As discussed above, lattice methods adopt Samuelson’s GBM assumption for the

underlying asset price. However, the GBM assumption may not always be empirically

valid. This motivates a general Ornstein-Uhlenbeck (OU) diffusion process for option

pricing. Nelson and Ramaswamy [1990] discussed the conditions under which a se-

quence of binomial processes converges weakly to an OU diffusion process and inves-

tigated its application to pricing an option written on an asset with constant volatility.

Primbsa et al. [2007] then proposed a pentanomial lattice method that incorporates the

skewness and kurtosis of the underlying asset price and found that the limiting dis-

tribution is compounded Poisson. Nelson and Ramaswamy [1990] and Primbsa et al.

[2007] only solved the lattice pricing for the non-GBM underlyings which have a con-

stant volatility. Florescu and Viens [2008] proposed a lattice method that deals with the

stochastic volatility (SV) underlying model. However, their method is not very practi-

cal in terms of computational efficiency as the transition probabilities are restricted by
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Table 2.2: Summary of the relevant lattice methods for pricing a call option with the GBM
underlying model: ∆t is the length of each time step; r is the continuous-time compounding
risk-less interest rate; σ1, σ2 are the volatilities for the underlying asset price and ρ is the corre-
lation; u,m, d are the state transition scale of underlying asset price in upward, unchanged and
downward movements; q1, q2, . . . , qn are the risk-neutral transition probabilities from upward
movement to downward movement.

Model Movement scales Transition probabilities
u, d (or u,m, d) q1, q2, · · · qk

Binomial lattice (one factor)
CRR u = eσ

√
∆t, d = 1/u. q1 = er∆t−d

u−d , q2 = 1− q1.
Tian-BIN u = γζ

2 (ζ+1+
√
ζ2 + 2ζ − 3), q1 = er∆t−d

u−d , q2 = 1− q1.
d = γζ

2 (ζ+1−
√
ζ2 + 2ζ − 3),

γ = er∆t, ζ = eσ
2∆t.

Haahtela-BIN u = e
√
eσ2∆t−1+r∆t, q1 = er∆t−d

u−d , q2 = 1− q1.

d = e−
√
eσ2∆t−1+r∆t.

Trinomial lattice (one factor)

Boyle-TRIN u = eλσ
√

∆t, q1 = (ζ+γ2−γ)u−(γ−1)
(u−1)(u2−1) , γ = er∆t,

m = 1, q2 = 1− q1 − q3,
d = e−λσ

√
∆t, q3 = (ζ+γ2−γ)u2−(γ−1)u3

(u−1)(u2−1) .

KR-TRIN u = eλσ
√

∆t, q1 = 1
2λ2 +

(r− 1
2σ

2)
√

∆t

2λσ ,
m = 1, q2 = 1− 1

λ2 ,

d = e−λσ
√

∆t. q3 = 1
2λ2 −

(r− 1
2σ

2)
√

∆t

2λσ ,
ζ = e2r∆t

(
eσ

2∆t − 1
)
.

Tian-TRIN u = $ +
√
$2 −m2, q1 = md−γ(m+d)+γ2ζ

(u−d)(u−m) ,

m = γζ2, γ = er∆t, ζ = eσ
2∆t, q2 = γ(u+d)−ud−γ2ζ

(u−m)(m−d) ,

d = $ −
√
$2 −m2, q3 = um−γ(u+m)+γ2ζ

(u−d)(m−d) .
$ = γ

2 (ζ4 + ζ3).
Quadrinomial lattice (two factors)

Boyle-TRIN2 u1 = eσ1

√
∆t, d1 = e−σ1

√
∆t, q1 = 1

4

(
1 + ρ+

√
∆t
(
r− 1

2σ
2
1

σ1
+

r− 1
2σ

2
2

σ2

))
,

m1 = 1, m2 = 1, q2 = 1
4

(
1− ρ+

√
∆t
(
r− 1

2σ
2
1

σ1
− r− 1

2σ
2
2

σ2

))
,

u2 = eσ2

√
∆t, d2 = e−σ2

√
∆t. q3 = 1

4

(
1− ρ+

√
∆t
(
− r− 1

2σ
2
1

σ1
+

r− 1
2σ

2
2

σ2

))
,

q4 = 1
4

(
1 + ρ+

√
∆t
(
− r− 1

2σ
2
1

σ1
− r− 1

2σ
2
2

σ2

))
.

Pentanomial lattice (two factors)

KR-TRIN2 u1 = eλσ1

√
∆t, d1 = e−λσ1

√
∆t, q1 = 1

4

(
1
λ2 +

√
∆t
λ

(
r− 1

2σ
2
1

σ1
+

r− 1
2σ

2
2

σ2
+ ρ

λ2

))
,

m1 = 1, m2 = 1, q2 = 1
4

(
1
λ2 +

√
∆t
λ

(
r− 1

2σ
2
1

σ1
− r− 1

2σ
2
2

σ2
− ρ

λ2

))
,

u2 = eλσ2

√
∆t, d2 = e−λσ2

√
∆t. q3 = 1

4

(
1
λ2 +

√
∆t
λ

(
− r− 1

2σ
2
1

σ1
− r− 1

2σ
2
2

σ2
+ ρ
λ2

))
,

q4 = 1
4

(
1
λ2 +

√
∆t
λ

(
− r− 1

2σ
2
1

σ1
+
r− 1

2σ
2
2

σ2
− ρ
λ2

))
,

q5 = 1− 1
λ2 .

Note: CRR [Cox et al., 1979]; Tian-BIN, Tian-TRIN [Tian, 1993]; Haahtela-BIN [Haahtela, 2010];
Boyle-TRIN [Boyle, 1988]; Boyle-TRIN2 [Boyle et al., 1989]; KR-TRIN, KR-TRIN2 [Kamrad and
Ritchken, 1991].
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many conditions and need to be estimated independently before building up the price

lattice. For the purpose of this study, a direct censor on transition probabilities of each

node would be more efficient, as proposed by Nelson and Ramaswamy [1990]. Our

suggested pricing method in Chapter 5 is based on this concept.



Chapter 3

Optimal Pricing and Allocation of

Display Inventories

This chapter discusses an optimal dynamic model for unifying programmatic guaran-

tee (PG) and real-time bidding (RTB) in display advertising. Section 3.1 introduces

the background and the overview of this study. Section 3.2 formulates the problem,

discusses our assumptions and provides a solution. Section 3.3 presents the results of

our experimental evaluation and Section 3.4 summarises the chapter.

3.1 Introduction
Over the last few years, the demand for automation, integration and optimisation has

been the key driver for making online advertising one of the fastest advancing indus-

tries. In display advertising, a significant development is the emergence of RTB, which

allows buying and selling display impressions in real-time and even a single impression

at a time [Google, 2011, Yuan et al., 2013]. Yet, despite the strong growth of RTB, ac-

cording to eMarketer [2013], 75% of publishers’ revenue in 2012 still came from 20%

guaranteed inventories, which were mainly sold through direct sales by negotiation.

Guaranteed inventories stand for the guaranteed contracts sold by top tier websites.

Generally, they are [Dunaway, 2012, OpenX, 2013]:

• Highly viewable because of good position and size;

• Rich in the first-party data for behaviour targeting;

• Flexible in format, size, device, etc.;

• Audited content for brand safety.
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Advertiser or DSP 

Publisher or SSP 

    RTB  

in        .   1[ , ]n nt t 

Guaranteed  

contracts in          .     0[ , ]nt t

Estimated impressions in             .      1[ , ]n nt t 

Allocation  

Pricing 

PG 

Figure 3.1: Systematic view of PG and RTB in display advertising, where [t0, tn] is the time
period that a publisher (or SSP) sells the guaranteed impressions which will be created in future
period [tn, tn+1].

Therefore, it is not surprising that guaranteed inventories are normally sold in bulk at

high prices in advance than those sold on the spot market (i.e., RTB).

Programmatic guarantee (PG), sometimes called programmatic reserve or pro-

grammatic premium [Dunaway, 2012, OpenX, 2013], is a new concept that has gained

much attention recently. Notable examples of some early services on the market are

iSOCKET.com, BuySellAds.com and ShinyAds.com. It is essentially an al-

location and pricing engine for publishers or SSPs that brings the automation into the

selling of guaranteed inventories apart from RTB. Figure 3.1 illustrates how PG works

for a publisher (or SSP) in display advertising. For a specific ad slot or user tag, the

estimated total impressions in a future period can be evaluated and allocated algorith-

mically at the present time between the guaranteed market and the spot market. Impres-

sions in the former are sold in advance via guaranteed contracts until the delivery date

while in the latter are auctioned off in RTB. Unlike the traditional way of selling guar-

anteed contracts, there is no negotiation process between publisher and advertiser. The

guaranteed price (i.e., the fixed per impression price) will be listed in ad exchanges dy-

namically like the posted stock price in financial exchanges. Advertisers (or DSPs) can

see a guaranteed price at a time, monitor the price changes over time and purchase the

needed impressions directly at the corresponding guaranteed prices a few days, weeks
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or months earlier before the delivery date.

Developing a revenue maximisation model for the programmatic guarantee is so-

phisticated and challenging. We need to solve the problem of selling unstorable im-

pressions in advance. Similar problems have been studied in many other industries.

Examples include retailers selling fashion and seasonal goods and airline companies

selling flight tickets [Talluri and van Ryzin, 2005]. However, in display advertising,

impressions are with uncertain salvage values because they can be auctioned off in

real-time on the delivery date. The combination with RTB makes our work interesting

and novel.

Several economic assumptions are made in our study. We consider that future sup-

ply and demand of impressions from an ad slot (or user tag) can be well estimated and

assume that advertisers’ purchase behaviour of guaranteed contracts are determined by

both the guaranteed price and the time interval between the purchase time and the im-

pression delivery date. For RTB, we consider the sealed-bid second price auction and

discuss both probabilistic and empirical distributions of advertisers’ bids. Under the

above assumptions, an algorithmic framework is developed which gives out a func-

tional form of the dynamic optimal price and computes the optimal amount of future

impressions to sell in advance.

The development of this chapter is evaluated with two RTB datasets. Advertis-

ers bidding behaviours in RTB are investigated and we find that the developed model

adopts different strategies in pricing and allocation of impressions according to the

level of competition on the spot market. If the spot market in future is less competitive,

a small amount of impressions would be sold via guaranteed contracts at low prices.

The maximised revenue is mainly contributed by the spot market because there is a sig-

nificant growth in the expected price of auctions in the future. In a highly competitive

market, the model allocates more future impressions into guaranteed contracts at high

prices and the maximised revenue mainly comes from guaranteed selling. Under either

situation, the revenue can be maximised successfully.

3.2 The Model
We consider there is a premium ad slot on a publisher’s webpage. If there is a user

comes to this webpage, the ad slot can generate a chance of ad view, usually referred
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Table 3.1: Summary of key notations in Chapter 3.

Notation Description
t0, . . . , tn+1 Discrete time points: [t0, tn] is the period to sell the guaranteed impres-

sions; [tn, tn+1] is the period that the estimated impressions should be cre-
ated, auctioned off (in RTB) and delivered.

t ∈ [0, T ] Continuous time where t0 = 0, tn = T .
τ ∈ [0, T ] Remaining time to the impression delivery period, where τ = T − t.
Q Estimated total demanded impressions for the ad slot in [tn, tn+1].
S Estimated total supplied impressions for the ad slot in [tn, tn+1].
p(τ) Guaranteed price to sell an impression when the remaining time till the

delivery period is τ.
θ(τ, p(τ)) Proportion of those who want to purchase an impression in advance at τ

and at p(τ).
f(τ) Density function so that the number of those who want to purchase in ad-

vance in [τ, τ + dτ] is f(τ)dτ.
ω Probability that the publisher fails to deliver a guaranteed impression in the

delivery period.
κ Size of penalty: if the publisher fails to deliver a guaranteed impression

that is sold at p(τ), he needs to pay κp(τ) penalty to the advertiser.
ξ Number of advertisers who need an impression in RTB.
φ(ξ) Expected payment price of an impression in RTB for the given ξ.
ψ(ξ) Expected risk of an impression in RTB for the given ξ.
λ Level of risk aversion for advertisers.
π(ξ) Expected winning bid of an impression in RTB for the given ξ.

to as an impression. In RTB, an impression is auctioned off simultaneously once a

user comes and the winning bidder (i.e., the advertiser) has his ad displayed to the

user [Google, 2011, Yuan et al., 2013]. Suppose that the publisher can estimate supply

and demand of impressions from an ad slot (or user tag1) from historical transactions

and plan to sell some of the future impressions via guaranteed contracts in advance

in order to maximise the revenue. We consider an environment that is risk-averse and

both publisher and advertiser make their strategies by maximizing their expected util-

ities [Bhalgat et al., 2012]. In other words, the advertiser is willing to pay a higher

price for a fixed number of future impressions if the delivery is guaranteed. This gives

the publishers an additional possibility of increasing their revenue by pre-selling some

future impressions, apart from the price discrimination over time.

1Group of ad slots which target specific types of users.



3.2. The Model 49

3.2.1 Problem Formulation

The optimisation problem can be expressed as follows:

max

{ ∫ T

0

(1− ωκ)p(τ)θ(τ, p(τ))f(τ)dτ︸ ︷︷ ︸
G = Expected total revenue from guaranteed selling minus

expected penalty of failling to delivery

+

(
S −

∫ T

0

θ(τ, p(τ))f(τ)dτ

)
φ(ξ)︸ ︷︷ ︸

H = Expected total revenue from RTB

}
, (3.1)

s.t. p(0) =

{
φ(ξ) + λψ(ξ), if π(ξ) ≥ φ(ξ) + λψ(ξ)

π(ξ), if π(ξ) < φ(ξ) + λψ(ξ),
(3.2)

where

ξ =
Remaining demand in [tn, tn+1]

Remaining supply in [tn, tn+1]
=
Q−

∫ T
0
θ(τ, p(τ))f(τ)dτ

S −
∫ T

0
θ(τ, p(τ))f(τ)dτ

.

The notations are given in Table 3.1. The publisher’s expected total revenue con-

tains: the expected revenue from guaranteed impressions sold during [0, T ]; the ex-

pected penalty of failing to delivery guaranteed impressions in [tn, tn+1]; the expected

revenue from RTB in [tn, tn+1]; and the price constraint that ensures the advertisers’

willingness to buy guaranteed impressions. Eq. (3.2) shows that an advertiser’s deci-

sion of buying either a guaranteed or non-guaranteed impression depends on the ex-

pected payment price and his level of risk-aversion. For simplicity and without loss of

generality, each guaranteed impression is considered as a single guaranteed contract.

This setting can be extended to a bulk sale in practice.

The solution to the above optimisation problem appears a bit complicated as it

needs to answer how many future impressions to sell and at what prices to sell. Before

discussing the solution, several assumptions, such as the distribution of bids in RTB

and the advertisers’ purchase behaviour in advance, have to be made.
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3.2.2 Distribution of Bids in RTB

Advertisers bid for individual impressions separately in RTB [Google, 2011, Yuan

et al., 2013]. Therefore, the following second-price auction is considered: for a sin-

gle impression from a specific ad slot (or user tag), advertisers submit sealed bids to

the publisher (or SSP), and the highest bidder wins the impression but finally pays at

the bid next to him.

Either probabilistic or empirical distribution of bids in RTB can be discussed.

Bidders are assumed to be symmetric in probabilistic method. Therefore, advertisers

would reveal their preference and truthfully offer bids [Edelman et al., 2007, Varian,

2007, Narahari et al., 2009]. In this research, we adopt the settings used by Lahaie

and Pennock [2007] and Ostrovsky and Schwarz [2011], where bids are assumed to

follow a log-normal distribution, denoted by X ∼ LN(µ, σ2). Then, the expected per

impression payment price from a second-price auction is

φ(ξ) =

∫ ∞
0

xξ(ξ − 1)g(x)
(

1− F (x)
)(
F (x)

)ξ−2

dx, (3.3)

where g(x) and F (x) are the log-normal density function and its cumulative distribution

function, respectively, given by

g(x) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 , (3.4)

F (x) =
1

2
+

1√
π

∫ ln(x)−µ√
2σ

0

e−z
2

dz, (3.5)

so that ξ(ξ−1)g(x)(1−F (x))(F (x))ξ−2 represents the probability that if an advertiser

is the second highest bidder, then one of the ξ − 1 other advertisers must bid at least

as much as he does and all of the ξ − 2 other advertisers have to bid no more than he

does. We can check if the bids follow the log-normal distribution by the Kolmogorov-

Smirnov (K-S) [Smirnov, 1948] and the Jarque-Bera (J-B) [Jarque and Bera, 1980]

statistics (see Table 3.6). Once the log-normal distribution is met, φ(ξ) can be estimated

numerically because the values of g(x) and F (x) in each integration increment can be

calculated.

If the bids do not follow the log-normal distribution, empirical methods can be

used to compute φ(ξ). Simply, for an ad slot (or user tag), the winning payment prices
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Algorithm 3.1 Estimation of φ(ξ) by using the robust locally weighted regression
(RLWR) method [Cleveland, 1979].

function RLWRSOLVE(ξ)
// (ξj , φj), j = 1, . . . ,m, are the learning data with size m.

β̂(ξ)← argmin
∑m

j=1$j(ξ)(φj − β0 − β1ξj − . . .− βdξdj )2,

where $j(ξ)←

{ (
1−

∣∣∣ ξ−ξjh(ξ)

∣∣∣3)3
, if

∣∣∣ ξ−ξjh(ξ)

∣∣∣ < 1,

0, if
∣∣∣ ξ−ξjh(ξ)

∣∣∣ ≥ 1.

// h(ξ) is the distance from ξ to the most distant neighbour of ξ within the span
// we choose d = 2.
φ̂←

∑d
k=0 β̂k(ξ)ξ

k.
loop i← 1 to n̂ // repeat the update in n̂ iterations
ε← φ− φ̂, χ(ε)← median(| ε |).
for j ← 1 to m do

$j(ξ)←
{ (

1−
( ej

6χ(ε)

)2)2
, if | εj |< 6χ(ε),

0, if | εj |≥ 6χ(ε).
end for

β̂(ξ)← argmin
∑m

j=1$j(ξ)(φj − β0 − β1ξj − . . .− βdξdj )2.

φ̂←
∑d

k=0 β̂k(ξ)ξ
k.

end loop
return φ(ξ)← φ̂.

end function

are trained to develop a regression model that explains their correlation to the level of

demand. Here we use the robust locally weighted regression (RLWR) method [Cleve-

land, 1979] (see Algorithm 3.1 and an empirical example in Section 3.3.4). Other

statistical learning and forecasting methods can be developed to estimate φ(ξ), but they

are not further discussed here.

3.2.3 Risk Aversion and Purchase Behaviour

Eq. (3.2) tells that at time T an advertiser’s decision between guaranteed and non-

guaranteed channels are indifferent. In this research, the advertisers’ arrival is not

modelled as a stochastic process [Gallego and van Ryzin, 1994], instead, we consider

that the total demand for future impressions is deterministic but can be shift from future

to present. The possibility of this shift is because advertisers are assumed to be risk-

averse.

Under our risk aversion settings, π(ξ) and ψ(ξ) can be estimated by the RLWR

method, and λ can be set as any non-negative number. First, the estimation of π(ξ) is

as same as Algorithm 3.1 while we consider the highest bids (per transaction) rather

than the payment prices (per transaction). Second, the estimation of ψ(ξ) is slightly
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different. We compute a series of standard deviations of daily winning payment prices

and use Algorithm 3.1 to compute ψ(ξ) for the given demand level. Third, advertis-

ers’ risk-averse preference are not same; therefore, λ can be regarded as the average

risk-aversion level of all advertisers or of key advertisers (we consider the former in

the experiments). The larger λ the more risk-averse advertisers are. More detailed

discussion about the estimation of π(ξ), ψ(ξ) and λ is given in Section 3.3.4.

Similar to flight tickets booking [Anjos et al., 2004, 2005, Malighetti et al., 2009],

we have the following two economic assumptions on demand:

Assumption 3.1 Demand is negatively correlated with guaranteed price as advertisers

would buy less impressions if price increases. Given τ and 0 ≤ p1 ≤ p2, then θ(τ, p1) ≥

θ(τ, p2), subject to the boundary condition θ(τ, 0) = 1.

Assumption 3.2 Demand is negatively correlated with the time interval between pur-

chase and delivery because more advertisers’ would want to buy impressions when the

delivery date is approached. Given p and 0 ≤ τ2 ≤ τ1, then θ(τ2, p) ≥ θ(τ1, p).

We adopt the functional forms of demand proposed by Anjos et al. [2004] (which

were used in flight tickets booking):

θ(τ, p(τ)) = e−αp(τ)(1+βτ), (3.6)

f(τ) = ζe−ητ, (3.7)

where α is the level of price effect, β and η are the levels of time effect, and the demand

density rises to a peak ζ on the delivery date. Therefore, f(τ)dτ is the number who

would like to purchase in advance, and θ(τ, p(τ)) is the proportion of those who want

to purchase an impression in advance at time T − τ and at price p(τ).

3.2.4 Optimal Dynamic Prices

The optimisation problem in Eq. (3.1) can be solved by Algorithm 3.2. We simulate

many values of γi ∈ [0, 1], i = 1, . . . ,m. For each given γi, we solve the optimisation

problem in Eq. (3.8), find the optimal series of guaranteed prices, and calculate the

optimal total revenue Ri. Then, in the global comparison, we can find the optimal γ∗

that generates the maximum value of total revenue.
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Algorithm 3.2 Solution to Eq. (3.1).
function PGSOLVE(α, β, ζ, η, ω, κ, λ, S,Q, T )
t← [t0, · · · , tn], 0 = t0 < t1 < · · · < tn = T .
τ← T − t, m← 500.
loop i← 1 to m

γi ← RandomUniformGenerate([0, 1])∫ T
0 θ(τ, p(τ))f(τ)dτ← γiS
ξi ← (Q− γiS)/(S − γS)
Hi ← (1− γi)Sφ(ξi)

Gi ←
∫ T

0 (1− ωκ)p(τ)θ(τ, p(τ))f(τ)dτ

pi ←arg max Gi, (3.8)

s.t.
∫ T

0
θ(τ, p(τ))f(τ)dτ = γiS, (3.9)

p(0) =

{
φ(ξi) + λψ(ξi), if π(ξi) ≥ φ(ξi) + λψ(ξi),
π(ξi), if π(ξi) < φ(ξi) + λψ(ξi).

(3.10)

Ri ←maxGi +Hi

end loop
γ∗ ← arg maxγi∈Ω(γ){R1, . . . , Rm}
p∗ ← arg maxpi∈Ω(p){R1, . . . , Rm}
return γ∗,p∗

end function

Let us discuss how to solve the optimisation problem in Eq. (3.8). We consider

the following Lagrangian:

L(λ̃, p(τ)) =

∫ T

0

(1− ωκ)p(τ)θ(τ, p(τ))f(τ)dτ + λ̃

(
γiS −

∫ T

0

θ(τ, p(τ))f(τ)dτ

)
,

(3.11)

where λ̃ is the Lagrange multiplier. The Euler-Lagrange condition is ∂L/∂p = 0. For

τ ∈ (0, T ], we have

(1− ωκ)θ(τ, p(τ)) +
(

(1− ωκ)p(τ)− λ̃
)∂θ(τ, p(τ))

∂p(τ)
= 0. (3.12)

Substituting Eq. (3.6) into Eq. (3.12) then gives the formula of the optimal guar-

anteed price:

p(τ) =
λ̃

1− ωκ
+

1

α(1 + βτ)
. (3.13)

Consider a small time step dτ̃, then in [0, 0 + dτ̃], there are θ(0, p(0))f(0)dτ̃ de-
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mand fulfilled. Therefore, we have

∫ T

dτ̃

θ(τ, p(τ))f(τ)dτ = γiS − θ(0, p(0))f(0)dτ̃ (3.14)

By substituting Eqs. (3.2) and Eqs. (3.6)-(3.7) into Eq. (3.14), we have

−ζ(1− ωκ)e−
(

αλ̃
1−ωκ+1

)
αλ̃β + (1− ωκ)ζ

(
e−
(
αλ̃β
1−ωκ+η

)
T − e−

(
αλ̃β
1−ωκ+η

)
dτ̃

)
= γiS − e−αp(0)dτ̃.

(3.15)

Eq. (3.15) shows that the value of λ̃ is dependent on γjS and other parameters.

However, the explicit solution of λ̃ cannot be deduced. The value of λ̃ can be estimated

by using numerical methods, e.g. the Newton-Raphson method. Eq. (3.13) can then be

rewritten as follows

p(τ) =
λ̃(α, β, ζ, η, ω, κ, γiS)

1− ωκ
+

1

α(1 + βτ)
. (3.16)

The notation λ̃(α, β, ζ, η, ω, κ, γiS) represents the dependency relationship among

λ̃ and other parameters. Figure 3.2 gives a numerical investigation on the relationships

between p(τ) and model parameters. Recall that in Eqs. (3.6)-(3.7) a large value of α

means advertisers are price sensitive; therefore, p(τ) decreases if α increases. Similar

negative correlations are with β and η. These two parameters describe the time effect

on advertisers’ willingness to purchase. The model thus encourages advertisers to pur-

chase in advance by selling guaranteed contracts at low prices. Conversely, the optimal

price is positively correlated with ζ because the parameter shows the maximum num-

ber of advertisers that would be willing to buy guaranteed impressions at a time point.

More advertisers means more competition; therefore, more advertisers would purchase

in advance in order to secure the targeted impressions. In such a situation, the model

gives out high guaranteed prices and allocates more impressions to guaranteed con-

tracts. While the expected penalty ωκ has less effect on price, the larger ωκ the higher

p(τ). It is worth noting that ω and κ are considered as given parameters because: (i) κ

can be set by negotiation between publisher and advertiser; (ii) ω can be estimated2 and

2ω can be approximated by the percentage of guaranteed impressions that the publisher failed to
deliver.
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Figure 3.2: The impact of model parameters on the guaranteed selling prices: α, β, ζ, η are
defined in Eqs. (3.6) & (3.7); ωκ is the expected size of penalty; γ is the percentage of estimated
future impressions to sell in advanced; T is the length of guaranteed selling period; τ is the
remaining time to the delivery date; p(τ) is the guaranteed selling price at τ.

updated once the PG system runs for a certain period of time. Here we set ω = 0.05,

κ = 1. With less and less supplied impressions to sell on the market, the price p(τ)

increases. The total length of time period to sell guaranteed contracts positively affects

the guaranteed price, the longer T , the higher the p(τ).

3.3 Experiments

We describe our datasets in Section 3.3.1, investigate the RTB campaigns in Sec-

tions 3.3.2-3.3.3, discuss the estimation of model parameters in Sections 3.3.4-3.3.5,

and evaluate the performance of revenue maximisation in Section 3.3.6.
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Table 3.2: Summary of RTB datasets.

Dataset SSP DSP
Time period (date) 08/01/2013-14/02/2013 19/10/2013-27/10/2013
No. of ad slots 31 53571
No. of user tags NA 69
No. of advertisers 374 4
No. of impressions 6646643 3158171
No. of bids 33043127 11457419
Bid quote GBP/CPM CNY/CPM

Table 3.3: Experimental design of the SSP dataset.

Time period (date)
Training set 08/01/2013-13/02/2013
Development set 08/01/2013-14/02/2013
Test set 14/02/2013

3.3.1 Datasets

We use two different RTB datasets: one from a medium-sized SSP in the UK and the

other from a DSP in China. Table 3.2 shows a brief summary of these two datasets.

The SSP dataset is used throughout the whole experiments while the DSP dataset is

used for further exploring advertisers’ strategies in RTB. In these two datasets, all the

bids are expressed as CPM.

Table 3.3 illustrates our experimental design. The SSP dataset is divided into one

training set, one development set and one test set. In the training set, we investigate

RTB campaigns and estimate model parameters. In the development set, we use the

discussed model to allocate and price the impressions that are created on 14/02/2013.

Guaranteed contracts are sold over the period from 08/01/2013 to 13/02/2013 and the

rest impressions are auctioned off on the delivery date 14/02/2013. In the development

set, we simulate the transactions of guaranteed contracts and calculate the remaining

campaigns of RTB on 14/02/2013. The test set contains the actual bids and winning

payment prices of 14/02/2013, which is used to evaluate the revenue maximisation per-

formance. Note that time periods of training and development sets can be different. For

example, the development period can be a few days/weeks later than the training pe-

riod. However, this requires a number of forecasting methods to estimate all the model

parameters (features). As our primary intention here is not to discuss better forecasting

methods, we choose a learning period that is close to the impression delivery date so
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Figure 3.3: Overview of statistics for the winning advertisers from the SSP dataset in the
training period.

that the learned parameters are more accurate for the evaluation purpose.

3.3.2 Bidding Behaviours

We first examine if selling guaranteed impressions in advance can be a viable way to

segment advertisers according to their bids, and then discuss how much of revenue

growth can be expected.

Let us first look at advertisers behaviours in RTB. From the SSP dataset, we find

that advertisers mainly join auctions in the morning from 6am to 10am. It is the time

period that supplied impressions arrive peak. We also find that the winning advertisers’

final payments are much less than their bids. Figure 3.3 provides some descriptive
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Table 3.4: Summary of winning advertisers’ statistics from the SSP dataset in the training
period: the numbers in the brackets represent how many advertisers who use the combined
bidding strategies.

Bidding No. of No. of Average change Ratio of payment
strategy advertisers impressions rate of payment price to winning bid

prices
Fixed price 188 (51) 454681 188.85% 43.93%
Non-fixed price 200 (51) 6068908 517.54% 58.94%

Table 3.5: Summary of advertisers’ winning campaigns from the DSP dataset. All advertisers
use the fixed price bidding strategy. Each user tag contains many ad slots and an ad slot is
sampled from the dataset only if the advertiser wins more than 1000 impressions from it.

Advertiser No. of No. of No. of Average change Ratio of payment
ID user tags ad slots impressions rate of payment price to winning

won prices bid
1 69 635 196831 58.57% 36.07%
2 69 428 144272 58.94% 34.68%
3 69 1267 123361 79.24% 30.89%
4 65 15 3139 104.19% 22.32%

statistics about this finding across all 31 ad slots. Winning advertisers are divided into

two groups. The first group contains those who always offer a fixed bid; the second

group contains those who frequently change their bids. Figure 3.3 shows that more

winning advertisers adopt the non-fixed price bidding in RTB. They intend to offer

higher bids on each impression, endure more variance in payment prices due to the

second price auction, and obtain more impressions. The second price auction in RTB

provides an opportunity for making more revenue by selling impressions in advance:

(i) a risk-averse advertiser is willing to buy in advance to lock in the price; (ii) the

publisher would be able to increase the price for the guaranteed contracts by charging

advertisers their private valuations rather than the second price bids. The question is

how big the difference between the top bids and actually payments (the second price).

Table 3.4 shows that the publisher can expect 100% increase in revenue because the

current average ratio of actual payment price (the second price) to winning bid (the

first price) is about 50%.

We further examine the DSP dataset, and find all four advertisers use the fixed

price strategy in their bidding. This might be because the DSP itself adopts the fixed

price strategy for these 4 advertisers. While the DSP dataset itself is biased, we can still

take a look at the average volatility of the advertisers’s payment prices and the average
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ratio of payment price to winning bid. The DSP dataset shows that advertisers actually

bid for user tags instead of specific ad slots. Each user tag contains a set of ad slots

that have similar features so that advertisers are able to target a certain group of users.

Therefore, RTB is an auction mechanism with user targeting. Consider in a user tag the

advertiser’s bids are not well distributed among ad slots, we only investigate the ad slots

where the advertiser wins more than 1000 impressions. Table 3.5 confirms our earlier

statement from a buy side perspective. Even using the fixed price bidding strategy,

advertisers’ payment prices are volatile (more than 50% from each impression). In

fact, these advertisers can afford more to reduce the risk because the current payment

prices are much lower than their private valuations (around 30% across 4 advertisers).

3.3.3 Supply and Demand

Figure 3.4 presents some descriptive statistics about supply and demand of all 31 ad

slots from the SSP dataset in the training set. The ad slots have the same daily supply

levels as well as their upper and lower bounds. However, the levels of daily demand are

significantly different: AdSlot25, AdSlot27, AdSlot29 and AdSlot31 are in

higher demand than others, about 9 bidders per impression while the rest ad slots have

the average value around 5. As shown in Figure 3.5, we take the average distance [Han

et al., 2011] in ξ as the metric to cluster ad slots and obtain two groups. Note that ξ

significantly deviates from its mean value in a day’s period because many more adver-

tisers join RTB at peak time from 6am to 10am, as shown in Figure 3.6. In these hours,

ξ is 118.96% higher than other hours. We can develop regression or time-series models

to estimate Q and S on delivery date; however, this is not a significant part of our study

so we consider them as given parameters.

3.3.4 Bids and Payment Prices

Once ξ is given, either probabilistic or empirical models can be used to estimate the cor-

responding payment price φ(ξ) in RTB. In probabilistic models, bidders are assumed to

be symmetric, whose bids follow a log-normal distribution. However, the distribution

tests shown in Table 3.6 reveal the fact that actual bids in RTB are not log-normally dis-

tributed. This confirms the statement that advertisers in the real-world environment are

not symmetric. They may frequently change their bids for unclear reasons. Therefore,

we use the empirical method to estimate φ(ξ) as well as ψ(ξ) and π(ξ).
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Figure 3.4: Overview of daily supply and demand of ad slots in the SSP dataset in the train-
ing period: S is the number of total supplied impressions; Q is the number of total demand
impressions; ξ is the per impression demand (i.e., the number of advertisers who bid for an
impression).
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Table 3.6: Summary of bids distribution tests, where the numbers in the Kolmogorov-Smirnov
(K-S) and Jarque-Bera (J-B) tests represent the percentage of tested auctions that have lognor-
mal bids.

Group of ad slots No. of auctions K-S test J-B test
where ξ ≥ 30

Low competition 286 0.00% 0.00%
High competition 15702 0.00% 0.00%

Table 3.7: Comparison of estimations between the empirical distribution and the actual bids:
φ(ξ) is the expected payment price; ψ(ξ) is the standard deviation of payment prices; π(ξ) is
the expected winning bid; and the per impression demand ξ = Q/S.

Group of ad slots Difference Difference Difference
in φ(ξ) in ψ(ξ) in π(ξ)

Low competition 14.35% 814.45% 24.43%
High competition 6.23% 11.25% 1.22%

Figure 3.7 illustrates an example of our empirical distribution method for

AdSlot25. In the learning set, each winning price can be plot against the demand

level ξ. We then use Algorithm 3.1 to compute φ(ξ). As described earlier, ψ(ξ) and

π(ξ) are obtained numerically in the similar manner. In our experiments, 10% span

of smoothing is allowed. As shown in Figure 3.7, φ(ξ) and π(ξ) are increasing with

ξ while ψ(ξ) shows a quadratic pattern on ξ. Once ξ is given, we can calculate the
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Figure 3.7: Empirical example of estimating π(ξ), φ(ξ) and ψ(ξ) for AdSlot25 from histor-
ical bids, where ξ is the per impression demand, π(ξ) is the expected winning bid, φ(ξ) is the
expected payment price and ψ(ξ) is the standard deviation of payment prices.

value of the terminal condition p(0) by Eq. (3.2). Figure 3.7 also confirms our earlier

statement on λ. Advertisers are not risk-averse if λ = 0; and they are risk-sensitive for

a large λ. In our experiments, we set λ = 1.

Table 3.7 examines the forecast performance of empirical method and compares

the estimated values of φ(ξ), ψ(ξ), π(ξ) to the results of actual bids in the test set. The

estimations of φ(ξ) and π(ξ) are much better accurate than that of ψ(ξ). We find that

the weak estimations of ψ(ξ) mainly come from AdSlot24, AdSlot26, AdSlot28

and AdSlot30. Their average per impression demand (in both learning and test sets)

are around 1.3. As also shown in Figure 3.7, the lower ξ the larger ψ(ξ). Therefore, for

the ad slots with a very low level of competition, we set p(0) = π(ξ).

3.3.5 Demand for Guaranteed Impressions

The advertisers’ purchase behaviour of guaranteed impressions is modeled by parame-

ters α, β, ζ , η as well as be restricted by the expected risk-aversion cost φ(ξ) + λψ(ξ).
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Here we discuss how to learn the values of α and ζ .

If we only consider the price effect, we can create the function c(p) = e−αp from

Eq. (3.6) to represent the probability that an advertiser would like to buy an impres-

sion at price p when τ = 0. In RTB, this probability can be learned from the data by

investigating the inverse cumulative distribution function (CDF) of all bids, denoted

by z(x) = 1 − F (x). For a same domain space of p and x, we can have two series

of probabilities c(p) and z(x). Therefore, α can be calibrated as the value that gives

the smallest root mean square error (RMSE) between c(p) and z(x). Figure 3.8 illus-

trates an empirical example of this calibration graphically for AdSlot25 where the

estimated α = 1.72.

The values of ζ can also be calibrated from data. Consider a small time step dτ̃,

then we have the following inequality

e−αp(1+β×0)ζe−η×0dτ̃ ≤ Q× (1− F ({x ≥ p})). (3.17)

If dτ̃ = 1, then we can have ζ = Q× (1− F ({x ≥ p}))/e−αp.

It is difficult to learn the values of parameters β and η given our current datasets.

The two parameters represent the time effect on advertiser’s buy behaviour of guaran-

teed impressions. Here we simply adopt the initial parameter settings used in the flight

tickets booking system [Anjos et al., 2004, Malighetti et al., 2009] and set β = η = 0.2.

These two parameters can be then updated if the PG system runs for a certain period

of time. By having the values of all the model parameters, we can construct the de-

mand surface for a certain range of price series. Figure 3.9 presents a demand surface

that satisfies Assumptions 3.1-3.2. It is convex in the guaranteed price and in the time

interval between the purchase time and the delivery date.

3.3.6 Revenue Analysis

Two empirical examples are first presented to illustrate how the developed model works

with different levels of competition. The overall results are then provided.

Figure 3.10 shows an example of a less competitive market. The learned average

per impression demand on AdSlot14 is about 3.39 (in the test set the actual ξ = 6.21).

In such a market, advertisers would be less willing to purchase future impressions in

advance because they think they can obtain the targeted impressions at lower payment
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Figure 3.10: Empirical example of AdSlot14: (a) the optimal dynamic guaranteed prices;
(b) the estimated daily demand; (c) the daily demand calculated based on the actual bids in
RTB on the delivery date; (d) the winning bids and payment price in RTB on the delivery date;
(e) the comparison of revenues [see Table 3.8 for summary of notations B-I, B-II, B-III,
R-I, R-II]. The parameters are: Q = 17691;S = 2847;α = 2.0506;β = 0.2; ζ = 442; η =
0.2;ω = 0.05;κ = 1; γ = 0.4240; λ = 2.
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Figure 3.11: Empirical example of AdSlot27: (a) the optimal dynamic guaranteed prices; (b)
the estimated daily demand; (c) the daily demand calculated based on the actual bids in RTB
on the delivery date; (d) the winning bids and payment price in RTB on the delivery date; (e)
the comparison of revenues [see Table 3.8 for summary of notations B-I, B-II, B-III, R-I,
R-II]. The parameters are: Q = 89126;S = 7678;α = 1.7932;β = 0.2; ζ = 2466; η =
0.2;ω = 0.05;κ = 1; γ = 0.66; λ = 2.
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Table 3.8: Summary of plot notations in Figures 3.10 & 3.11.

Calculated revenue:
R-I Optimal total revenue calculated based on the estimated demand.
R-II Optimal total revenue calculated based on the actual bids in the test set.
Baseline:
B-I RTB revenue calculated based on actual winning bids in the test set.
B-II RTB revenue calculated based on actual payment prices in the test set.
B-III Estimated RTB revenue based on the learned empirical distribution.

Table 3.9: Summary of revenue evaluation of all 31 ad slots in the SSP dataset.

Group of ad slots

Performance of revenue maximisation
Estimated Actual Difference of RTB
revenue revenue revenue between
increase increase estimation & actual payment

Low competition 31.06% 8.69% 13.87%
High competition 31.73% 21.51% 6.23%

Group of ad slots

Performance of price discrimination
Ratio of actual Ratio of actual
2nd price reve optimal reve
to actual to actual
1st price reve 1st price reve

Low competition 67.05% 81.78%
High competition 78.04% 94.70%

prices. The model finally allocates 42.40% of future impressions to the guaranteed

contracts. In the meantime, the calculated guaranteed prices are not expensive. The

prices start with a value lower than the expected payment price from RTB and steadily

increases into the level that is close to the maximum value of advertisers’ bids. In Fig-

ure 3.10, we find that our forecasting values are close to the actual campaigns because

the estimated RTB revenue B-III is almost the same as the actual RTB revenue B-II.

Therefore, the estimated advertisers’ demand for guaranteed impressions is similar to

the actual daily demand (see Figure 3.10(b)&(c)). We also test the guaranteed selling

with the actual bids in the test set and find that the calculated revenue R-II is still

higher than actual second-price RTB revenue B-II. This shows that the developed

model successfully segments advertisers.

Figure 3.11 describes an example of a competitive market, where the learned aver-

age per impression demand for AdSlot27 is 9.63 (in the test set the actual ξ = 11.61).

More advertisers would be willing to purchase guaranteed impressions in advance be-
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cause of the increased level of competition and risk. The model finally allocates 66%

future impressions to guaranteed contracts and suggests higher prices at the beginning

of guaranteed selling. The estimated total revenue is maximised (i.e., R-I > B-III);

the optimal revenue calculated by the actual bids is more than the actual second-price

RTB revenue (i.e., R-II > B-II).

The overall results are presented in Table 3.9. The revenues calculated based on

the estimated demand are always maximised. If we use the actual bids to calculate the

demand at the given guaranteed prices, we still have increased revenues (compared to

the actual second-price auction market). The results successfully validate the developed

model and we find the model performs better in a more competitive environment. This

is because the publisher’s revenue is actually maximised by the price discrimination,

and in a competitive market there are more risk-averse advertisers to segment. With

more and more risk-averse advertisers buying the guaranteed impressions, the increased

total revenue will approximate advertisers’ private evaluations.

3.4 Summary
In this chapter, we investigated a dynamic model for a publisher (or SSP) who engages

in RTB to provide the guaranteed delivery of display impressions. We not only de-

signed the mechanism tailored to RTB but also explored its feasibility and performance

by analysing the real datasets. Our experimental evaluation successfully validated the

developed model as the publisher can receive increased revenues. This work opens

several directions for future research. First, we can further consider stochastic supply

and demand in revenue maximisation. Second, a parametric updating framework for

multi-period pricing and allocation would be of interest.



Chapter 4

Multi-Keyword Multi-Click Ad

Options for Sponsored Search

This chapter proposes an ad option tailored for the unique environment of sponsored

search, where multiple candidate keywords and a certain number of required clicks

are considered. Section 4.1 introduces the background and the problem. Section 4.2

describes the option structure and usage. We then discuss the option pricing methods

in Section 4.3 and analyse the revenue effects in Section 4.4. Section 4.5 presents our

experimental evaluation and Section 4.6 summarises the chapter. Several important

mathematical results are provided in Section 4.7.

4.1 Introduction
Sponsored search is an important form of online advertising. A search engine sells

ad slots in the search engine results pages (SERPs) generated in response to a user

query. Along with the click on the search button, the query term is what triggers the

results on the SERP to appear. The SERP has two types of result listings in response

to the submitted query: organic results and paid results. Organic search results are the

Web page listings that most closely match the user’s search query based on relevance.

Paid results are basically online ads – the companies who have paid to have their Web

pages displayed for certain keywords, so such listings show up when an user submits a

search query containing those keywords. The price of an ad slot is usually determined

by a keyword auction [Jansen, 2011, Börgers et al., 2013, Qin et al., 2014] such as

the widely used generalized second price (GSP) auction [Edelman et al., 2007, Varian,

2007]. In the GSP auction, advertisers bid on keywords present in the query, and the
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highest bidder pays the price associated with the bid next to him.

Despite the success of keyword auctions, there are two major drawbacks. First,

the uncertain and volatile bids make it difficult for advertisers to predict their campaign

costs and thus complicate their business planning [Wang and Chen, 2012]. Second, the

“pay-as-you-go” nature of the auction mechanisms does not encourage a stable rela-

tionship between advertiser and search engine [Jank and Yahav, 2010] – an advertiser

can switch from one search engine to another in the next bidding at near-zero cost.

To alleviate these problems, we propose a multi-keyword multi-click ad option in

this chapter. It is essentially a contract between an advertiser and a search engine. It

consists of a non-refundable upfront fee, known as the option price, paid by the ad-

vertiser, in return for the right, but not the obligation, to subsequently purchase a fixed

number of clicks for particular keywords for pre-specified fixed cost-per-clicks (CPCs)

during a specified period of time. From the advertiser’s perspective, fixing the CPCs

significantly reduces the uncertainty in cost of advertising campaigns. Moreover, for

a keyword, if the spot CPC set by keyword auction falls below the fixed CPC, the ad-

vertiser is not obligated to exercise the option, but can, instead, participate in keyword

auctions. Therefore, the option can be considered as an “insurance” that establishes an

upper limit on the cost of advertising campaigns. From the search engine’s perspective,

the proposed option is not only an additional guaranteed service provided for advertis-

ers. We show that the search engine can, in fact, increase the expected revenue in the

process of selling an option. Also, the option covers a specific period of time should

encourage a more stable relationship between advertiser and search engine. An impor-

tant question for us is to determine the option price and the fixed CPCs associated with

candidate keywords in the advertiser’s request list. Clearly if the option is priced too

low, then significant loss in revenue may ensure. Moreover, this may create an arbi-

trage opportunity where the buyer of the option sells the clicks their targeted keywords

to gain extra profits. Conversely, if the option is priced too high, then the advertiser

will not purchase it. In this chapter we consider a risk-neutral environment and price

the option under the no-arbitrage objective [Wilmott, 2006, Björk, 2009]. We use the

Monte Carlo method to price the option with many keywords and show the closed-form

pricing formulas for the cases of single and two keywords. Further, the effects of ad

options on the search engine’s revenue is analysed.
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This chapter has three major contributions. First, we propose a new way to pre-sell

ad slots in sponsored search which provides flexible guaranteed deliveries to advertis-

ers. It naturally complements the current keyword auction mechanism and offers both

advertiser and search engine an effective risk mitigation tool to deal with the bid price

fluctuation. Although the proposed ad option belongs to a family of exotic options,

its payoff function differs from existing exotic options that we know from finance and

other industries (see Table 2.1 for detailed comparisons): it can be exercised not once

but multiple times during the contract period; it is not for a single keyword but multiple

keywords and each keyword has its own fixed CPC; it allows its buyer to choose which

keyword to advertise at the corresponding fixed CPC later during the contract period.

Second, we discuss a generalized pricing method for the proposed ad option (see Algo-

rithm 4.1) to deal with the high dimensionality. Third, we demonstrate that, compared

to keyword auctions, a search engine can have an increased expected revenue by selling

an ad option.

4.2 Flexible Guaranteed Deliveries via Multi-Keyword

Multi-Click Ad Options

We use the following example to illustrate our idea. Suppose that a computer science

department creates a new master degree programme Web Science and Big Data Ana-

lytics and is interested in search advertising based around relevant search terms such as

‘MSc Web Science’, ‘MSc Big Data Analytics’ and ‘Data Mining’ etc. The campaign is

to start immediately and last for three months and the goal is to generate at least 1000

clicks on the ad which directs users to the programme’s homepage. The department

(i.e., advertiser) does not know how the clicks will be distributed among the keywords,

nor how much the campaign will cost if based on keyword auctions. However, with

the ad option, the advertiser can submit a request to the search engine to lock-in the

advertising cost. The request consists of the candidate keywords, the overall number

of clicks needed, and the duration of the contract. The search engine responds with a

price table for the option, as shown in Figure 4.1. It contains the option price and the

fixed CPC for each keyword. The CPCs are fixed yet different across the candidate

keywords. The contract is entered into when the advertiser pays the option price.
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Sell clicks from the requested keywords in advance 

via a multi-keyword multi-click option .

Pay $50 option price (i.e., upfront fee) to buy 

the multi-keyword multi-click option. The 

contract can be exercised 1000 times for total 

1000 clicks on the candidate keywords in 

period [0, T].

t = 0

t = T

Multi-keyword multi-click option contract

(3 month period, T=0.25)

Option price

(max 1000 clicks)

Candidate 

keywords

Fixed 

CPCs

$50

‘MSc Web 

Science’
$1.80

‘MSc Big Data 

Analytics’
$6.25

‘Data Mining’ $8.67

Exercise 100 clicks of the keyword ‘MSc 

Web Science’ via option.

t = t1

Reserve an ad slot of  the keyword ‘MSc Web 

Science’ for the advertiser for 100 clicks until all the 

100 clicks are fully clicked by users.

Pay $1.80 to the search engine for each click 

until the requested 100 clicks are fully 

clicked by users. 

t = t1
c

Timeline

If the advertiser thinks the fixed CPC $6.25 

of the keyword ‘MSc Big Data Analytics’ is 

expensive (i.e., higher than the winning 

payment CPC from keyword auctions),  he 

can attend keyword auctions to bid for the 

keyword as other bidders, say $6.

Select the winning bidder for the keyword ‘MSc Big 

Data Analytics’ under the GSP auction model. 

Lose/win the campaign. If the advertiser is 

the winning bidder, he obtains the ad slot and 

pays at the bid next to him.

…

Exercise 5 clicks of the keyword ‘MSc Big 

Data Analytics’ via option. 

t = t2

Reserve an ad slot of  the keyword ‘MSc Big Data 

Analytics’ for the advertiser for 5 clicks until all the 

5 clicks are fully clicked by users.

.

Pay $6.25 to the search engine for each click 

until the requested 5 clicks are fully clicked 

by users. 

t = t2
c

Submit a request of guaranteed deliveries for 

the keywords ‘MSc Web Science’, ‘MSc Big 

Data Analytics’ and ‘Data Mining’ for the 

future 3 month period [0, T], where T = 0.25.

Search engine
Advertiser

Figure 4.1: Schematic view of buying, selling and exercising a multi-keyword multi-click ad
option for sponsored search.
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During the contract period [0, T ], where T represents the contract expiration date

(in terms of year format and is three months in this example), the advertiser has the

right, at any time, to exercise portions of the contract, for example, to buy a requested

number of clicks for a specific keyword. This right expires after time T or when the

total number of clicks have been purchased, whichever is sooner. For example, at time

t1 ≤ T the advertiser may exercise the right for 100 clicks on the keyword ‘MSc Web

Science’. After receiving the exercise request, the search engine immediately reserves

an ad slot for the keyword for the advertiser until the ad is clicked by a 100 times.

In our current design, the search engine decides which rank position the ad should be

displayed as long as the required number of clicks is fulfilled - we assume there are

adequate search impressions within the period. It is also possible to generalise the

study in this research and define a rank specific option where all the parameters (CPCs,

option prices etc.) become rank specific.

The advertiser can switch among the candidate keywords and also monitor the

keyword auction market. If, for example, the CPC for the keyword ‘MSc Big Data

Analytics’ drops below the fixed CPC, then the advertiser may choose to participate in

the auction rather than exercise the option for the keyword. If later in the campaign,

the spot price for the keyword ‘MSc Big Data Analytics’ exceeds the fixed CPC, the

advertiser can then exercise the option.

The above example illustrates the flexibility of the proposed ad option. Specifi-

cally, (i) the advertiser does not have to use the option and can participate in keyword

auctions as well, (ii) the advertiser can exercise the option at any time during the con-

tract period, (iii) the advertiser can exercise the option up to the maximum number of

clicks, (iv) the advertiser can request any number of clicks in each exercise provided

the accumulated number of exercised clicks does not exceed the maximum number,

and (v) the advertiser can switch among keywords at each exercise with no additional

cost. Of course, this flexibility complicates the pricing of the option, which is discussed

next.

4.3 Option Pricing Methods
The proposed multi-keyword multi-click ad option enables an advertiser to fix his ad-

vertising cost beforehand, yet leave the decision of selecting suitable keywords and the
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exact timing to place the ad to later. Since the advertiser enjoys great flexibility in

sponsored search, there is an intrinsic value associated with an ad option and it buyer

needs to pay an upfront option price first. In the following discussion, we focus on

calculating a fair upfront option price for the given option specifications, such as the

candidate keywords, the current winning payment prices and volatility of these key-

words, the length contract period, the risk-less bank interest rate, the preferred fixed

CPCs. Recall that Table 2.1 presents the payoff functions of the proposed ad option.

We discuss the option pricing for the first payoff function here and in Section 4.3.4 we

briefly explain how the introduced option pricing methods can be applied to the second

payoff function.

4.3.1 Underlying Stochastic Model

The winning payment CPC of the candidate keyword Ki (for a specific slot/position)

at time t is denoted by Ci(t), and whose movement can be described by a multivariate

Geometric Brownian Motion (GBM) [Samuelson, 1965a]:

dCi(t) = µiCi(t)dt+ σiCi(t)dWi(t), i = 1, . . . , n, (4.1)

where µi and σi are constant drift and volatility of the CPC respectively, and Wi(t) is a

standard Brownian motion satisfying the conditions:

E(dWi(t)) = 0,

var(dWi(t)) = E(dWi(t)dWi(t)) = dt,

cov(dWi(t), dWj(t)) = E(dWi(t)dWj(t)) = ρijdt,

where ρij is the correlation coefficient between keywords Ki and Kj , such that ρii = 1

and ρij = ρji. The correlation matrix is denoted by Σ, so that the covariance matrix

is simply MΣM , where M is the matrix with the σi along the diagonal and zeros

everywhere else. For the reader’s convenience, detailed descriptions of notations are

provided in Table 4.1.

Since the GBM assumption lays down the foundation of pricing the proposed ad

option, we also provide several discussions and investigations on the GBM. In Sec-

tion 4.3.4, we explain why the GBM assumption is suitable for pricing an ad option
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Table 4.1: Summary of notations.

Notation Description
r Constant continuous (risk-less) interest rate.
T Option expiration date.
t Continuous time point in [0, T ].
m Number of total clicks specified by an ad option.
n Number of total number of keywords specified by an ad option.
K Keywords specified by an ad option,K = (K1, . . . ,Kn).
F Pre-specified fixed CPCs for keywordsK.
C(t) Winning payment CPCs for keywordsK from auctions at time t.
V (t,C(t);T,F ,m) Value of an n-keyword m-click ad option at time t.
µi Constant drift of CPC for keyword Ki, i = 1, . . . , n.
σi Constant volatility of CPC for keyword Ki, i = 1, . . . , n.
Σ Price correlation matrix, in which ρij is the correlation coefficient be-

tween ith and jth keywords, such that ρii = 1 and ρij = ρji.
MΣM Price covariance matrix, whereM is the matrix with σi along the diag-

onal and zeros everywhere else.
Φ(C(t)) Payoff function of an ad option at time t.
π Option price (i.e., upfront fee) of an ad option.
MVN(µ,MΣM) Multivariate normal distribution with mean µ and varianceMΣM .

in sponsored search as well as indicate its limitations. In Section 4.5.2, we discuss the

estimation of the GBM parameters. In Section 4.5.3, we investigate the goodness-of-fit

tests with the real datasets and track the “errors” is the GBM underlying model is not

valid empirically.

4.3.2 Terminal Value Pricing

To simplify the discussion and without loss of generality, the value of an n-keyword

m-click ad option can be decomposed as the sum of m independent n-keyword 1-click

ad options. If an advertiser buys an ad option at time 0, the option price π can be

expressed as follows

π = V (0,C(0);T,F ,m) = mV (0,C(0);T,F , 1), (4.2)

where V (0,C(0);T,F ,m) represents the option value at time 0.

Our focus now centres on the n-keyword 1-click ad option. By adopting the basic

economic setting [Narahari et al., 2009], we assume that an advertiser is risk-neutral.

Simply, he has no preference across the candidate keywords and exercises the option

for the keyword which has the maximum difference between its winning payment price

and the pre-specified fixed price. This difference shows the value of the option because
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the advertiser is offered the right to move from the auction market to the guaranteed

market. Let’s consider if the advertiser exercises the option at the contract expiration

date T , the option payoff can be defined as follows

Φ(C(T )) = max{C1(T )− F1, . . . , Cn(T )− Fn, 0}. (4.3)

Note that the option payoff in sponsored search does not mean the direct reward but it

measures the difference of advertising cost between the auction market and the guar-

anteed market. By having Eq. (4.3), we can see if the advertiser would like to early

exercise the option by using the backward deduction method. The option value at time

time t < T is then

V (t,C(t);T,F , 1) =

{
Φ(C(t)), if early exercise,

EQ
t

[
e−r(T−t)Φ(C(T ))

]
, if not early exercise,

where r is the constant risk-less bank interest rate and EQ
t [·] is the conditional expec-

tation with respect to time t under the probability measure Q. As we use the risk-less

bank interest rate as the discounted factor, the probability measure Q is also called the

risk-neutral probability measure [Björk, 2009]. Here we do not further discuss why us-

ing the risk-less bank interest rate while we provide a brief explanation in Section 4.7.2

together with introducing an alternative way of option pricing.

Let’s back to the decision making problem. If the ad option is early exercised

at time t, the option value is equal to its payoff Φ(C(t)). However, if the ad option

is not exercised, the option value at time t is equal to the discounted value of the

expected payoff from the expiration date T . The comparison between Φ(C(t)) and

EQ
t

[
e−r(T−t)Φ(C(T ))

]
can tell us the optimal decision for the advertiser. Since the

payoff function defined is convex, we then obtain the following inequality (see Sec-

tion 4.7.1):

Φ(C(t)) ≤ EQ
t

[
e−r(T−t)Φ(C(T ))

]
. (4.4)

Eq. (4.4) illustrates, to gain the maximum option value, the advertiser will not exercise

the option until its expiration date. Hence, the option price should be computed at

the discounted value of the expected payoff from the expiration date T . Together with
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Eq. (4.2), we can obtain the option pricing formula for the n-keywordm-click ad option

as follows

π = me−rTEQ
0

[
Φ(C(T ))

]
. (4.5)

It is worth noting that we rule out the arbitrage [Varian, 1987] between the auction

market and the guaranteed market in option pricing. The concept of arbitrage can

be understood as the “free lunch”. As a market designer, we need to make sure that

everyone obtains something by paying something so that it is fair for both buy and sell

sides. Since we assume that an advertiser is risk-neutral, then it makes sense that the

risk-less bank interest rate can be employed as the benchmark rate to rule out arbitrage.

Eq. (4.5) can also be obtained by constructing an advertising strategy for the advertiser

and the detailed discussion is provided in Section 4.7.2.

4.3.3 Solutions

Eq. (4.5) can be expanded in an integration form as follows

π = me−rT
(
2πT

)−n
2 |Σ|−

1
2

(
n∏
i=1

σi

)−1

×

∫ ∞

0

· · ·

∫ ∞

0

Φ(C̃)∏n
i=1 C̃i

exp

{
−1

2
ζTΣ−1ζ

}
dC̃, (4.6)

where ζ = [ζ1, . . . , ζn]T, ζi = 1
σi
√
T

(
ln{C̃i/Ci(0)} − (r − σ2

i

2
)T
)
, and other notations

are described in Table 4.1.

Closed form solutions to Eq. (4.6) can be derived if n ≤ 2. If n = 1, Eq. (4.6)

is equivalent to the Black-Scholes-Merton (BSM) pricing formula for an European call

option [Black and Scholes, 1973, Merton, 1973]. If n = 2, Eq. (4.6) contains a bivariate

normal distribution and the option price can be obtained by employing the pricing for-

mula for a dual-strike European call option [Zhang, 1998]. The discussed two formulas

are provided in Section 4.7.3.

If n ≥ 3, taking integrals in Eq. (4.6) is computationally difficult. In such a

case, we resort to numerical techniques to approximate the option price. Algorithm 4.1

illustrates our Monte Carlo method. Let’s consider ñ number of simulations, and for



4.3. Option Pricing Methods 78

Algorithm 4.1 Pricing a multi-keyword multi-click ad option via Monte Carlo simula-
tion. Detailed notations are provided in Table 4.1.

function OPTIONPRICINGMC(K,C(0),Σ,M ,m, r, T )
ñ← 1000; # Number of simulated paths;
for k ← 1 to ñ do

[z1,k, . . . , zn,k]← GeneratingMultiNoise(MVN[0,MΣM ])
for i← 1 to n do

Ci,k ← Ci(0) exp
{

(r − 1
2
σ2
i )T + σizi,k

√
T
}

.
end for
Gk ← Φ([C1,k, . . . , Cn,k]).

end for
π ← me−rTE0[Φ(C(T ))] ≈ me−rT

(
1
ñ

∑ñ
k=1Gk

)
.

return π
end function

each simulation, we generate a vector of multinormal noise and then calculate the CPCs

at time T . Eq. (4.4) shows that there is no need to generate the whole paths in each

simulation as we only consider the CPCs on the expatriation date in the calculation of

option payoff. Hence, by having ñ payoffs at time T , the option price π can be then

approximated numerically, and Algorithm 4.1 is lightweight and computationally fast.

4.3.4 Discussion

Like other methods based on the GBM assumption, the candidate keywords’ prices may

not follow it empirically because some time series features, such as jumps and volatil-

ity clustering, cannot be captured effectively [Marathe and Ryan, 2005]. However,

the GBM assumption is still a good choice for pricing ad options in sponsored search.

First, in our data analysis (see Section 4.5.3.1), we find that several keywords’ winning

payment CPCs satisfy the GBM assumption. Second, for the cases that the GBM as-

sumption is not valid empirically (see Section 4.5.3.2), we find that the pricing model

is reasonably robust as the identified arbitrage values in many experimental groups are

small. Third, our dataset might be biased. However, other previous research in key-

word auctions support the GBM assumption: Lahaie and Pennock [2007] tested the

log-normality of bids on Yahoo! search advertising data and gave the estimated distri-

bution parameters; Ostrovsky and Schwarz [2011] performed a field experiments based

on the log-normal bids on Yahoo! search advertising platform; Pin and Key [2011]

observed random bids from Microsoft Bing and simulated similar bids based on the

log-normal distribution. Since in these research the advertisers’ bids are tested across
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auctions, the winning payment prices over time should also satisfy the log-normal dis-

tribution (because they are the second-highest bids from auctions). Recall that in the

GBM assumption, the difference between two logarithms of winning payment prices

follows a time dependent normal distribution. If we consider the average daily winning

payment price as the underlying variable, these previous work can provide the distribu-

tion hypothesis tests to support the GBM assumption in sponsored search. However, for

display advertising, the GBM assumption is mostly not valid. This has been indicated

by Chen et al. [2014c] and Yuan et al. [2014].

In addition, the option payoff defined in Eq. (4.3) can be used for both keyword

exact match and keyword broad match settings. It depends on the type of the win-

ing payment prices used. Also as described in Table 2.1, if we only have the exactly

matched C(T ), we can still construct a broad match structure for the option, similar to

Eq. (4.3), the option payoff function on time T is

Φ(C(T )) = max

{ k1∑
i=1

ω1iC1i(T )− F1, · · · ,
kn∑
i=1

ωniCni(T )− Fn, 0
}
. (4.7)

where ωji is the probability that the ith broad matched keyword (i.e., the sub-phrase

occurs in search queries) for the keyword Kj . Eq. (4.1) can be still used to model the

underlying CPCs’ movement but the selected keywords need to be uniquely distinctive

from each other. For simplicity, we denote them by C̃(T ). The correlation matrix is the

correlation between these distinctive underlying keywords, denoted by Σ̃. By having

the distinctive underlying keywords in Eq. (4.1), the option price π0 can be calculated

by Algorithm 4.1.

4.4 Revenue Analysis for Search Engine
The proposed ad option can be loosely considered as a kind of insurance for an adver-

tiser. It does not come without a cost because the advertiser needs to pay the upfront

option price; therefore, the ad option is also beneficial to the search engine’s revenue.

In the following discussion, we analyse the effect of an ad option on the search engine’s

revenue. We provide a functional analysis for the 1-keyword 1-click ad option in this

section and leave the empirical investigation of the n-keyword cases in Section 4.5.

Let D(F ) be the difference between the expected revenue from ad option and the
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expected revenue from only keyword auctions, we then have

D(F ) =

(
C(0)N [ζ1]− e−rTFN [ζ2] + e−rTF

)
P(EQ

0 [C(T )] ≥ F )︸ ︷︷ ︸
= Discounted value of expected revenue from option if EQ

0 [C(T )]≥F

+

(
C(0)N [ζ1]− e−rTFN [ζ2] + e−rTEQ

0 [C(T )]

)
P(EQ

0 [C(T )] < F )︸ ︷︷ ︸
= Discounted value of expected revenue from option if EQ

0 [C(T )]<F

− e−rTEQ
0 [C(T )]︸ ︷︷ ︸

= Discounted value of expected revenue from auction

.

= C(0)N [ζ1]− e−rTFN [ζ2]− e−rT (EQ
0 [C(T )]− F )× P(EQ

0 [C(T )] ≥ F ),

(4.8)

where N [·] represents the cumulative probability of a standard normal distribution.

Let us take a look at the boundary values first. If F = 0, the option price π

achieves its maximum value e−rTEQ
0 [C(T )]; therefore, D(F )→ 0. If π = 0, the fixed

CPC F is as large as possible, and P(EQ
0 [C(T )] ≥ F )→ 0 and D(F )→ 0. Since

ln{C(T )/C(0)} ∼ N
(
(r − σ2/2)T, σ2T

)
,

we can have

P(EQ
0 [C(T )] ≥ F ) = P

(
C(0) exp{(r − 1

2
σ2)T} ≥ F

)
= P

(
ln{F/C(0)} − (r − 1

2
σ2)T ≤ 0

)
= P

(
ln{C(T )/C(0)} − (r − 1

2
σ2)T

≤ ln{C(0)/F}+ (r − 1

2
σ2)T + σW (T )

)
≈ N

[
1

σ
√
T

(
ln{C(0)/F}+ (r − 1

2
σ2)T

)]
= N [ζ2]. (4.9)
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Substituting Eq. (4.9) into Eq. (4.8) gives

D(F ) = C(0)N [ζ1]− e−rTEQ
t (C(T ))N [ζ2]

≥ C(0)N [ζ1]− e−rTEQ
t (C(T ))N [ζ1] (because N [ζ1] ≥ N [ζ2])

≥ C(0)N [ζ1]− e−rTC(0)e(r− 1
2
σ2)TN [ζ1]

= C(0)N [ζ1](1− e−
1
2
σ2T ) > 0, (4.10)

suggesting that the search engine can have an increase expected revenue if he sells the

click via an option rather than through an auction. We then take the derivative of D(F )

with respect to F and assign its value to zero:

∂D(F )

∂F
= C(0)

∂N [ζ1]

∂ζ1

∂ζ1

∂F
− e−rTN [ζ2]− e−rTF ∂N [ζ2]

∂ζ2

∂ζ2

∂F

− e−rT (EQ
0 [C(T )]− F )

∂P(EQ
0 [C(T )] ≥ F )

∂F
+ e−rTP(EQ

0 [C(T )] ≥ F ) = 0.

(4.11)

Since ∂N (x)/∂x = 1√
2π
e−

1
2
x2 , the following equation holds

∂N [ζ2]

∂ζ2

/
∂N [ζ1]

∂ζ1

= exp

{
1

2
(ζ2

1 − ζ2
2 )

}
=
C(0)erT

F
. (4.12)

Taking the derivative of ζ1 and ζ2 with respect to F gives

∂ζ1

∂F
=

∂ 1
σ
√
T

(
ln{C(0)/F}+ (r + 1

2
σ2)T

)
∂F

= − 1

Fσ
√
T
, (4.13)

∂ζ2

∂F
=
∂ζ1

∂F
− ∂σ

√
T

∂F
= − 1

Fσ
√
T
. (4.14)

and we find that D(F ) achieves its maximum or minimum value at F = EQ
0 [C(T )].

Further taking the second derivative of D(F ) with respect to F = EQ
0 [C(T )] gives

∂2D(F )

∂F 2
=
∂P(EQ

0 [C(T )] ≥ F )

∂F
=
∂N [ζ2]

∂ζ2

∂ζ2

∂F
= − 1√

2π
e−

1
2
ζ2

2 1

Fσ
√
T
< 0.

Hence, if the fixed CPC is set as same as the estimated spot CPC on the contract expi-
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Table 4.2: Overview of experimental settings of data.

Market Group Training set (31 days) Development & test set (31 days)

US

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 10/06/2012-12/07/2012 12/07/2012-17/08/2012
4 10/11/2012-11/12/2012 11/12/2012-10/01/2013

UK

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 12/06/2012-13/07/2012 13/07/2012-19/08/2012
4 18/10/2012-22/11/2012 22/11/2012-24/12/2012

ration date (i.e., F = EQ
0 [C(T )]), the search engine can have a maximised profit.

4.5 Experiments
This section presents our evaluation results. We first describe the dataset, then conduct

assumption and fairness tests, and finally investigate the effects of ad options on the

search engine’s revenue.

4.5.1 Data and Experimental Design

The data1 used in the experiments are collected from Google AdWords by using its

Traffic Estimation service Google. When an advertiser submits his ad keywords, bud-

get, and other settings such as keyword match type and targeted ad location, the Traffic

Estimation will return a list of data values, including estimated CPC, clicks, global im-

pressions, local impressions and position etc. Such values are recorded for the period

from 26/11/2011 to 14/01/2013, for a total of 557 keywords across US and UK mar-

kets. Note that in the data 21 keywords have missing values and 115 keywords’s CPCs

are all 0.

For each market, the data is split into four experimental groups and each group

has one training, one development, and one test set, as illustrated in Table 4.2. The

training set is used to: (i) select the keywords with non-zero CPCs; (ii) test the statistical

properties of the underlying dynamic and estimate the model parameters. We then

price ad options and simulate the corresponding buying and selling transactions in the

development set. Finally, the test set is used as the baseline to examine the priced ad

options.

1The data is available at:
http://www.computational-advertising.org [Yuan and Wang, 2012].

http://www.computational-advertising.org
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4.5.2 Parameter Estimation and Option Pricing

In the experiments, we use the method suggested by Wilmott [2006] to estimate the

GBM parameters. For the keywordKi, the volatility σi is the sample standard deviation

of change rates of log CPCs and the correlation is calculated as follows

ρij =

∑m̃
k=1

(
yi(k)− ȳi

)(
yj(k)− ȳj

)√∑m̃
k=1

(
yi(k)− ȳi

)2∑m̃
k=1

(
yj(k)− ȳj

)2
, (4.15)

where m̃ is the size of training data and yi(tk) is the kth change rate of log CPCs.

Figure 4.2 illustrates an empirical example, where the candidate keywords are

K =


K1

K2

K3

 =


‘canon cameras’

‘nikon camera’

‘yahoo web hosting’

 ,

and the model parameters are estimated as follows

σ =


0.2263

0.4521

0.2136

 , Σ =


1.0000 0.2341 0.0242

0.2341 1.0000 −0.0540

0.0242 −0.0540 1.0000

 .

Note that a high contextual relevance of keywords normally means that they have a

high substitutional degree to each other, such as ‘canon cameras’ and ‘nikon camera’,

whose CPCs move in the same direction with correlation 0.2341. The other keyword

‘yahoo web hosting’ is contextually less relevant to the formers and also has very low

price correlations to them. The example also shows that the contextual relevance of

keywords has an impact on their CPCs movement.

Based on the estimated parameters, we draw a sample of simulated paths of a 3-

dimensional GBM in Figure 4.2(a) for 31 days (where the x-axis is expressed in terms

of year value). Recall that the option payoff at any time t in the contract lifetime is

max{C1(t) − F1, . . . , Cn(t) − Fn, 0}. In Figure 4.2(b), we plot the price difference

between the spot CPC and the fixed CPC of each candidate keyword (i.e., Ci(t) − Fi,

i = 1, . . . , n) and also indicate the corresponding option daily payoffs (shown by the

cyan curve). It suggests that switching between keywords would help the advertiser
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Figure 4.2: Empirical example of generating paths under a GBM for a 3-keyword 1-click option
and calculating the corresponding payoffs: K1 = ‘canon cameras’, K2 = ‘nikon camera’,
K3 = ‘yahoo web hosting’, F1 = 3.8505, F2 = 4.6704 and F3 = 6.2520.

to maximise the benefits of the ad option. Repeating the above simulations 50 times

generates 50 simulated vales of each keyword for each day, as shown in Figure 4.2(c).

We then calculate 50 option payoffs and their daily mean values to obtain the final

option price, as shown in Figure 4.2(d).
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To examine the fairness (i.e., no-arbitrage) of the calculated option price, we can

construct a risk-less value difference process by delta hedging ∂V/∂Cj and check if

any arbitrage exists (see Section 4.7.2 or [Wilmott, 2006]). The hedging delta of the

1-keyword 1-click ad option can be obtained as follows

∂V

∂C
= N (ζ1) + C(0)N (ζ1)′

∂ζ1

∂C
− Fe−rTN (ζ2)′

∂ζ2

∂C
, (4.16)

and

ζ1 =
1

σ
√
T

(
ln{C(0)/F}+ (r +

σ2

2
)T
)
,

ζ2 = ζ1 − σ
√
T .

Therefore, ∂ζ1/∂C = ∂ζ2/∂C. Since

N (ζ1)′ =
1√
2π
e−

ζ21
2 , (4.17)

N (ζ2)′ =
1√
2π
e−

(ζ1−σ
√
T )2

2 =
C(0)

F
erTN (ζ1)′, (4.18)

then ∂V/∂C = N (ζ1).

For the n-keyword 1-click option, the hedging delta of each keyword can be com-

puted by the Monte Carlo method, i.e., ∂V/∂Ci = EQ[∂V (T,C(T ))/∂Ci(T )]. Ac-

cording to Section 4.7.2, we can define the 31-day growth rate of the value difference

process as γ̃ =
(

Π(t31) − Π(t0)
)
/Π(t0), and compare γ̃ to the risk-less bank interest

rate r = 5% (equivalent to r̃ = 4.12% per 31 days return2). The arbitrage detection

criteria is

|γ̃ − r̃| ≤ ε ? arb doesn’t exist : arb exists, (4.19)

where the notation ε is the model variation threshold (and we set ε = 5% in experi-

2The relationship between the continuous compounding r and the return per 31 days r̃ is: 1 + r̃ =
er×30/365 [Wilmott, 2006].
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Table 4.3: Test of arbitrage for ad options under the GBM assumption: n is the number of
keywords, N is the number of options priced in a group, P(α) is percentage of options in a
group found arbitrage, and the E[α] is the average arbitrage value of the options found arbitrage,
where the arbitrage α is defined by Eq. (4.20) and the risk-less bank interest rate r = 5%.

n Group
US market UK market

N P(α) E[α] N P(α) E[α]

1

1 94 0.00% 0.00% 76 0.00% 0.00%
2 64 0.00% 0.00% 45 0.00% 0.00%
3 94 1.06% 0.75% 87 0.00% 0.00%
4 112 0.89% -0.37% 53 0.00% 0.00%

2

1 47 4.26% 1.63% 38 0.00% 0.00%
2 32 9.38% 0.42% 22 4.55% 13.41%
3 47 4.26% 0.84% 43 4.65% 0.82%
4 56 5.36% 3.44% 26 23.08% -6.22%

3

1 31 0.00% 0.00% 25 4.00% 0.00%
2 21 4.76% -1.38% 15 0.00% 0.00%
3 31 0.00% 0.00% 29 3.45% -1.12%
4 37 10.81% 3.87% 17 35.29% -2.54%

ments). Then the identified arbitrage α is defined as the excess return, that is

α =

{
γ̃ − (r̃ + ε), if γ̃ ≥ r̃ + ε,

γ̃ − (r̃ − ε), if γ̃ ≤ r̃ − ε.
(4.20)

Hence, a positive α means that the advertiser buys an option can obtain arbitrage while

a negative α indicates the case of making arbitrage by selling an option.

Table 4.3 presents the overall results of our arbitrage test based on the GBM. We

generate paths for candidate keywords with 100 simulations and examine the options

price using delta hedging. There are 99.76% (1-keyword), 93.06% (2-keyword) and

92.71% (3-keyword) options fairly priced. Only a small number of options exhibits

arbitrage and most of the mean arbitrage values lie within 5%, such as shown in Fig-

ure 4.3. The existence of small arbitrage may be due to two reasons. First, the stability

of process simulations in both option pricing and arbitrage test. Second, the candidate

keywords are randomly selected for the 2-keyword and 3-keyword options. The signif-

icant differences on the absolute prices these keywords can generates a large variation

of calculated option payoffs, which then trigger arbitrage.
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Figure 4.3: Empirical example of the arbitrage analysis under the GBM dynamic for the US
market.

4.5.3 Model Validation and Robustness Test

We now examine the GBM assumption and investigate if arbitrage exists when the

keywords in an option do not follow the GBM movement.

4.5.3.1 Checking the GBM Assumption

To validate the GBM assumption, two validation conditions are tested [Marathe and

Ryan, 2005]: (i) the normality of change rates of log CPCs; and (ii) the independence

from previous data. Normality can be either checked graphically by histogram/Q-Q

plot or verified statistically by the Shapiro-Wilk test [Shapiro and Wilk, 1965]. To

examine independence, we employ the autocorrelation function (ACF) [Tsay, 2005]

and the Ljung-Box statistic [Ljung and Box, 1978]. Figure 4.4 provides an empirical

example of the keyword ‘canon 5d’. Figure 4.4 (a)-(b) exhibit the movement of CPCs

and log change rates while Figure 4.4 (c)-(d) show that the stated two conditions are

satisfied in this case.

We check the discussed two conditions with the training data. As shown in Fig-

ure 4.5, there are 14.25% and 17.20% of keywords in US and UK markets that satisfy

the GBM assumption, respectively. Thus 15.73% of keywords can be effectively priced

into an option based on the GBM. It is worth mentioning that not all keywords follow
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Figure 4.4: Empirical example of the GBM assumptions checking for the keyword ‘canon
5d’, where the Shapiro-Wilk test is with p-value 0.2144 and the Ljung-Box test is with p-value
0.6971.
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Figure 4.5: Overview of the GBM assumption checking for all candidate keywords of experi-
mental groups in both US and UK markets.

the GBM. Next, we examine the robustness of pricing model and investigate the arbi-

trage based on non-GMB models.

4.5.3.2 Examining Arbitrage for Non-GBM Dynamics

Several popular stochastic processes (together with the real data) are tested to check the

arbitrage in option pricing. Table 4.4 shows the candidate models and each model can
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Figure 4.6: Overview of model similarity testing: Wilcoxon test, Ansari-Bradley (A-B) test
and Two-sample Kolmogorov-Smirnov (K-S) test.
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Figure 4.7: Overview of pricing model robust tests.

Table 4.4: Other underlying models or dynamics examined, where the parameter ki is set 0.5
and the rest of parameters are estimated from the training data.

Dynamic Stochastic differential equation (SDE)
CEV dCi(t) = µiCi(t)dt+ σi(Ci(t))

1/2dWi(t)

MRD dCi(t) = ki(µi − Ci(t))dt+ σi(Ci(t))
1/2dWi(t)

CIR dCi(t) = ki(µi − Ci(t))dt+ (σi)
1/2Ci(t)dWi(t)

HWV dCi(t) = ki(µi − Ci(t))dt+ σidWi(t)

Note: the Constant elasticity of variance (CEV) model [Cox and Ross, 1976]; the Mean-
reverting drift (MRD) model [Wilmott, 2006]; the Cox-Ingersoll-Ross (CIR) model [Cox
et al., 1985]; the Hull-White/Vasicek (HWV) model [Hull and White, 1990].

capture certain features of time series data, such as mean-reversion, constant volatility

and square root volatility [Wilmott, 2006]. The arbitrage tests here are slightly different

from that of GBM. We estimate the model parameters from the actual data in the test

sets instead of the learning sets and treat the actual data as one single path of each
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model. Hence, the simulated data has the same drift, volatility and correlations as the

test data. We are now able to examine the arbitrage multiple times when the real-world

environment does not follow GBM. Also, for the candidate models, hypothesis tests

are used to check if the simulated path and actual data come from a same distribution.

These tests include the Wilcoxon test [Wilcoxon, 1945], Ansari-Bradley test [Mood

et al., 1974] and Two-sample Kolmogorov-Smirnov test [Justel et al., 1997]. Figure 4.6

summarizes the results of models’ goodness-of-fit tests, where the y-axis represents the

mean percentage of simulated paths not rejected by the hypothesis tests. Even though

the three tests give different absolute percentages, the dynamics’ performance is similar

and consistent: the CEV model has the best simulations for the actual data, followed

by the MRD model; the CIR and HWV models are very close.

Table 4.5 presents the arbitrage testing results for non-GBM dynamics, where

most of experimental groups exhibit arbitrage. The CEV model gives the best no-

arbitrage performance, showing that 78.65% of CEV-based keywords can be fairly

priced by using the GBM-based option pricing model. About 53.05% of CIR and about

43% of MRD or HWV based options have no arbitrage. For single-keyword options,

the fairness percentage is more than 85% across all groups. However, this figure drops

to around 38% for multi-keyword options (36.27% for 2-keyword options and 42%

for 3-keyword options). For the identified arbitrage, many groups (especially single-

keyword options) show small arbitrage values around 10% while arbitrage explodes in

some groups.

In summary, Tables 4.3 and 4.5 illustrate that our option pricing methods are effec-

tive and reasonably robust for the real sponsored search data. As shown in Figure 4.7,

when the keywords’s price follow a GBM (15.73%), the pricing model ensures that

95.17% of ad options are fairly priced under the 5% arbitrage precision. For the non-

GBM keywords, the CEV model is the best performance model, giving 78.65% of

fairness; the CIR model is worst performance model and is with only 31.97% of fair-

ness. Overall, the best expected fairness for all keywords is 81.25% while the worst is

41.91%. We find that the increase of the number of candidate keywords in an ad option

increases the likelihood of arbitrage. This is confirmed by the fact that expected fair-

ness drops from 86.83% (99.76% GBM and 83.60% non-GBM for 1-keyword options)

to 43.69% (2-keyword options) and 53.39% (3-keyword options), respectively.
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Figure 4.8: Empirical example of analysing the search engine’s revenue for the keyword ‘canon
cameras’.
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Figure 4.9: Empirical example of analysing the search engine’s revenue for the keywords ‘non
profit debt consolidation’ and ‘canon 5d”, where ρ = 0.0259.
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4.5.4 Effects on Search Engine’s Revenue

Let us start with the case of 1-keyword options. The example of keyword ‘canon cam-

eras’ in Figure 4.8(a) illustrates (other keywords exhibit the similar pattern) the conclu-

sions from our theoretical analysis in Section 4.4 that (i) the revenue difference between

option and auction is always positive and (ii) that when the fixed CPC F = EQ
t [C(T )],

the revenue difference D(F ) achieves its maximum and the two boundary values are

approximately zero.

The non-GBM cases are further examined in Figure 4.8(b)-(e), which show that

when the fixed CPC is close to zero, the revenue difference D(F )→ 0. This is because

when the fixed CPC approximates zero, it is almost certain that the option will be used

in the contract period. As such, the only income for the keyword is from the option

price, which in this case is close to the CPC in the auction market (discounted back to

t=0). On the other hand, if the fixed CPC is very high, it is almost certain that the option

won’t be used. In this case, the option price π → 0 and the probability of exercising the

option P(EQ
t [C(T )] ≥ F ) → 0. Hence, D(F ) is zero. However, under the non-GBM

dynamics, the point F = EQ
t [C(T )] is not the optimal value that gives the maximum

D(F ), which indicates that arbitrage may occur.

Next, Figure 4.9 illustrates an empirical example a 2-keyword ad option. The

candidate keywords are ‘non profit debt consolidation’ and ‘canon 5d”. Figure 4.9(a)

tells that the higher the fixed CPCs the lower is the option price (even though the option

price is less sensitive to the keyword ‘canon 5d”) and it achieves the maximum when

all the fixed CPCs are zeros. This monotone results are as same as the 1-keyword

options. Figure 4.9(b) then shows the revenue difference curve of the search engine,

where the red star represents the value where F1 = EQ
t [C1(T )] and F2 = EQ

t [C2(T )].

The expected revenue differences are all non-negative, showing that this 2-keyword ad

option is beneficial to the search engine’s revenue. However, the red star point is not

the maximum difference revenue. This is different to we see in 1-keyword ad options.

For higher dimensional ad options (i.e., n ≥ 3), we cannot graphically examine the

revenue difference. However, based on the earlier discussions, we can summarize two

properties. First, there are boundary values of the revenue differences. If every Fi → 0,

D(F) → 0; and if every Fi → ∞, D(F) → 0. Second, there exists a maximum

revenue difference value even though this may not at the point where Fi = EQ
t [Ci(T )].
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Hence, compared to only keyword auctions, proper setting the fixed CPCs can increase

the search engine’s expected revenue.

4.6 Summary
In this chapter, we proposed a novel framework to provide flexible guaranteed deliveries

for sponsored search, from which both buy and sell sides can benefit. On the buy side,

advertisers are able to secure a certain number of clicks from their targeted keywords

in the future and can decide how to advertise later. They can be released from auction

campaigns and can manage price risk under the given budgets. On the sell side, search

engine can sell the future clicks in advance and can receive a more stable and increased

expected revenue over time. In addition, advertisers would be more loyal to a search

engine due to the contractual relationships, which has the potential to boost the search

engine’s revenue on the long run.

We also believe that the proposed ad options will soon be welcomed by the spon-

sored search market. Several similar but different developments appeared in the display

digital markets are able to support our point of view. They are:

09/2013: AOL’s Programmatic Upfront3.

03/2013: OpenX Programmatic Guarantee [OpenX, 2013].

10/2012: Adslot Media’s Programmatic Direct Media Buying4.

10/2012: Shiny Ads Direct’s End-to-end Programmatic Direct Advertising Platform5.

10/2012: iSOCKET’s Programmatic Direct6.

Our work differs to the above developments in many aspects. First, we focus on spon-

sored search while they are for display advertising. Second, the proposed ad options

provide flexible guaranteed deliveries (e.g., multi-keyword targeting, multi-click exer-

cise, early exercise, no obligation of exercise) while other recent developments do not

provide such new features.

Our work leaves several directions for future research. First, to address the limita-

tions of GBM, other stochastic processes tailored to some specific keywords are worth

3http://www.aolnetworks.com/programmaticupfront.
4https://media.adslot.com/marketplace.
5http://www.shinyads.com/solutions.
6https://www.isocket.com/programmatic-direct.

http://www.aolnetworks.com/programmaticupfront
https://media.adslot.com/marketplace
http://www.shinyads.com/solutions
https://www.isocket.com/programmatic-direct
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studying, such as the jump-diffusion model [Kou, 2002]. The most challenging part

of this future research is that the underlying model is multi-dimensional and needs to

be computational fast. Second, it would be interesting to discuss an optimal pricing

and allocation model of ad options so that a search engine can algorithmically manipu-

late the limited future clicks in front of uncertain demand. Third, the game-theoretical

pricing of ad options can be another direction.

4.7 Chapter Appendix

4.7.1 Proof of the No-Early Exercise Property for the Ad Option

Eq. (4.3) can be rewritten as Φ(x) = max{x − f , 0}, where x = [x1, . . . , xn]T and

f = [f1, . . . , fn]T. It is not difficult to find that Φ(x) is multivariate convex. Let

0 ≤ λ ≤ 1 and let y = [y1, . . . , yn]T, if the elements of vector a = y − x are all

non-negative, we have

Φ
(
λx+ (1− λ)y

)
≤ λΦ(x) + (1− λ)Φ(y).

If taking y = [0, . . . , 0]T, and using the fact that Φ(0) = 0, we obtain

Φ(λx) ≤ λΦ
(
x
)
, for all xi ≥ 0, 0 ≤ λ ≤ 1.

For 0 ≤ s ≤ t ≤ T , we have 0 ≤ e−r(t−s) ≤ 1, and then

EQ
s

[
e−r(t−s)Φ

(
X(t)

)]
≥ EQ

s

[
Φ
(
e−r(t−s)X(t)

)]
≥ Φ

(
EQ
s

[
e−r(t−s)X(t)

])
(by the Jenen’s Inequality)

= Φ
(
ersEQ

s

[
e−rtX(t)

])
,

where EQ
s [·] is the conditional expectation with respect to time s under the risk-neutral

probability Q. As e−rtX(t) is a martingale under Q [Björk, 2009], we have

Φ
(
ersEQ

s

[
e−rtX(t)

])
= Φ

(
erse−rsX(s)

)
= Φ

(
X(s)

)
.

Therefore, we obtain EQ
s

[
e−r(t−s)Φ

(
X(t)

)]
≥ Φ

(
X(s)

)
, showing that e−rtΦ

(
X(t)

)
is a sub-martingale under Q. This tells that we can price the proposed ad option as
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same as its European structure, focusing on the payoff on the contract expiration date.

For the detailed definitions of martingale and sub-martingale, see Björk [2009].

4.7.2 Derivation of the Ad Option Pricing Formula

As the proposed ad option complements the existing keyword auctions, there may exist

a situation that some advertisers make guaranteed profits from the difference of costs

between the option and auctions without taking any risk. This situation is called the

arbitrage opportunity [Varian, 1987]. Therefore, we must fairly evaluate the option so

that arbitrage is eliminated.

We consider the advertiser buys a n-keyword m-click ad option. At time t, the

difference between the option value and the market value of candidate keywords can be

expressed as

Π(t) = V (t,C(t);F , T,m)−
n∑
i=1

ψi(t)Ci(t), (4.21)

where ψi(t) represents the number of clicks needed for the keyword Ki such that∑
i ψi(t) = m. Here we call Π(t) as the value difference process. As in Eq. (4.3)

we consider the value of a n-keyword m-click option as the sum of m independent n-

keyword 1-click options, for the mathematical convenience, we can rewrite Eq. (4.21)

as follows

Π(t) =m

(
V (t,C(t);F , T, 1)−

n∑
i=1

∆iCi(t)

)
, (4.22)

where ∆i represents the probability that the click goes for the keyword Ki and∑n
i=1 ∆i = 1. The changes of Π over a very short period of time dt is

dΠ(t) = m

(
∂V

∂t
dt+

1

2

n∑
i=1

n∑
j=1

σiσjρijCiCj
∂2V

∂Ci∂Cj
dt+

n∑
i=1

∂V

∂Ci
dCi −

n∑
i=1

∆idCi

)
.

(4.23)

We can remove the uncertain components in dΠ(t) if choosing ∆i = ∂V/∂Ci. This

is called delta hedging in financial option pricing [Wilmott, 2006]. Therefore, Π(t) is
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now a risk-less process over time

dΠ(t) = m

(
∂V

∂t
+

1

2

n∑
i=1

n∑
j=1

σiσjρijCiCj
∂2V

∂Ci∂Cj

)
dt. (4.24)

Consider if the advertiser has no initial fund. He borrows the money from a bank

at the risk-less bank interest rate r. Then the interest of this debt is

dΠ(t) = rΠ(t)dt = rm

(
V −

n∑
i=1

∂V

∂Ci
Ci

)
dt. (4.25)

Eqs. (4.24) and (4.25) should be equal otherwise arbitrage exists. If the risk-less

growth rate of the value difference process is larger than the risk-less bank interest rate,

the advertiser can obtain arbitrage by: (i) borrowing the money from bank at interest

rate r to buy an ad option first; (ii) selling the ad option later to repay the bank interest.

In the case when the risk-less growth rate of the value difference process is smaller than

the risk-less bank interest rate, the advertiser can obtain the risk-less surplus by: (i)

selling short an ad option first and deposit the revenue into bank; (ii) using the deposit

money to buy the clicks of underlying keywords later. In either case, the advertiser can

finally receive a risk-less surplus; therefore, arbitrage exists.

Solving Eqs. (4.24)-(4.25) gives a parabolic partial differential equation (PDE) for

the no-arbitrage equilibrium as follows

∂V

∂t
+ r

n∑
i=1

∂V

∂Ci
Ci +

1

2

n∑
i=1

n∑
j=1

∂2V

∂Ci∂Cj
σiσjρijCiCj − rV = 0.

The PDE satisfies the boundary condition in Eq. (4.3). We can employing the multidi-

mensional Feynman-Kac̆ stochastic representation [Björk, 2009] to obtain the solution

V (t,C(t);F , T, 1) = e−r(T−t)EQ
t [Φ(C(T ))],

where EQ
t [·] is the conditional expectation with respect to time t under the risk-neutral

probability Q. Under this, the process Ci(t) is rewritten as

dCi(t) = rCi(t)dt+ σiCi(t)dW
Q
i (t),
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where WQ
i (t) is the standard Brownian motion under Q. Therefore, the option price π0

can be calculated by

π0 = V (0,C(0);F , T,m) = mV (0,C(0);F , T, 1) = me−rTEQ
0 [Φ(C(T ))].

4.7.3 Option Pricing Formulas for Special Cases

If there is only one candidate keyword (i.e. n = 1), Eq. (4.6) is equivalent to the

Black-Scholes-Merton (BSM) pricing formula for an European call option [Black and

Scholes, 1973, Merton, 1973], so we have

π0 = mC(0)N [ζ1]−mFe−rTN [ζ2], (4.26)

where ζ1 = 1
σ
√
T

(
ln{C(0)/F}+ (r + σ2

2
)T
)

and ζ2 = ζ1 − σ
√
T .

If there are two candidate keywords (i.e. n = 2), Eq. (4.6) contains a bivari-

ate normal distribution. We can use the formula from a dual-strike European call op-

tion [Zhang, 1998] to calculate the option price, given by

π0 = mC1(0)

∫ ζ1+σ1
√
T

−∞
f(u)N

[
q1(u+ σ1

√
T )− ρσ1

√
T + ρu√

1− ρ2

]
du

+mC2(0)

∫ ζ2+σ2
√
T

−∞
f(v)N

[
q2(u+ σ2

√
T )− ρσ1

√
T + ρv√

1− ρ2

]
dv

−me−rT
(
F1

∫ ζ1

−∞
f(u)N

[
q1(u) + ρu√

1− ρ2

]
du+ F2

∫ ζ2

−∞
f(v)N

[
q2(v) + ρv√

1− ρ2

]
dv

)
,

(4.27)

where

q1(u) =
1

σ2

√
T

(
ln

{
F2 − F1 + C1(0)e(r− 1

2
σ2
1)T−uσ1

√
T

C2(0)

}
− (r − 1

2
σ2

2)T

)
,

q2(u) =
1

σ1

√
T

(
ln

{
F1 − F2 + C2(0)e(r− 1

2
σ2
2)T−vσ2

√
T

C1(0)

}
− (r − 1

2
σ2

1)T

)
,
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ζ1 =
1

σ1

√
T

(
ln{C1(0)/F1}+ (r − 1

2
σ2

1)T

)
,

ζ2 =
1

σ2

√
T

(
ln{C2(0)/F2}+ (r − 1

2
σ2

2)T

)
.

Eq. (4.27) appears somewhat complicated and we can further approximate the op-

tion price by using some polynomial functions. More detailed discussions are provided

by Zhang [1998].



Chapter 5

Lattice Methods for Pricing Display

Ad Options

This chapter studies an ad option for display advertising. Section 5.1 introduces the

background and indicates the problem. Section 5.2 investigates several one-factor lat-

tice methods reviewed in Table 2.2, which are all based on the GBM underlying model.

Section 5.3 discusses our proposed lattice method for pricing a display ad option with

the SV underlying model. We present several experimental results in Section 5.4 and

summarise the chapter in Section 5.5. Some important mathematical results are pro-

vided in Section 5.6.

5.1 Introduction
Options, as a concept, have been introduced recently into online advertising to solve

the non-guaranteed delivery problem as well as provide advertisers with greater flexi-

bility. Moon and Kwon [2010] focused on an option for advertisers to make a choice

between CPM and CPC, whereas Wang and Chen [2012] and Chen et al. [2014a] pro-

posed ad options between buying and non-buying the future impressions. In practice,

the latter has been implemented as a “First Look” tactic that is widely offered by pub-

lishers who offer prioritised access to selected advertisers within an open RTB market

environment [Yuan et al., 2013]. Instead of the winning impression going to the high-

est bid in RTB, “First Look” affords first the right of refusal for an impression within

an exchange based on a pre-negotiated floor or fixed price. If a buyer requests it, he

is guaranteed to win the impression. Formally, an ad option is a contract in which an

advertiser can have a right but not obligation to purchase future impressions or clicks
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from a specific ad slot or keyword at a pre-specified price. The pre-negotiated price is

usually called the strike price in finance. In display advertising, the price can be charged

as either a CPM or CPC depending on the underlying ad format. The corresponding

winning payment price of impressions or clicks from real-time auctions is called the

underlying price. The publisher or search engine grants this right in exchange for a

certain amount of upfront fee, called the option price. Options are more flexible than

guaranteed contracts as on the delivery date, if the advertiser thinks that the spot market

is more beneficial, he can join online auctions as a bidder and his cost of not using an

ad option is only the option price.

When evaluating ad options, the previous research [Wang and Chen, 2012, Chen

et al., 2014a] is mostly restricted in their usage to those situations where the underlying

price follows a GBM [Samuelson, 1965b]. According to Yuan et al. [2013], Yuan

et al. [2014] and Chen et al. [2014b], there are only a very small number of ad slots or

keywords whose CPM or CPC satisfies the GBM assumption. Therefore, the previous

studies fail to provide an effective unified framework that covers general situations.

In this chapter, we address the issue and provide a more general pricing frame-

work. Our option pricing is based on lattice methods and uses a stochastic volatility

(SV) model to describe the underlying price movement for the cases where the GBM

assumption is not valid. Based on the SV model, a censored binomial lattice is con-

structed for option pricing. We also examine several binomial and trinomial lattice

methods to price a display ad option with the GBM underlyings and deduce a close-

form solution to examine the convergence performance of these lattice methods. Our

developments are validated by experiments using real advertising data. We examine the

fitness of the underlying model, and illustrate that the options provide a more flexible

way of selling and buying ads. In particular, we show that an advertiser can have better

deliveries in a bull market, where the underlying price increases. On the other hand, a

publisher or search engine is able to reduce the revenue volatility over time. In a bear

market, where the underlying price decreases, there is a growth in total revenue.

5.2 Lattices for the GBM Underlying Model
This section introduces the basic settings of the lattice based option pricing framework

in the context of display advertising. We examine the previous lattice methods based
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Table 5.1: Summary of key notations in Chapter 5.

Notation Description
T Option expiration date (in terms of year).
n Total number of time steps and the length of each time step is ∆t = T/n.
r̂, r Constant risk-less interest rate: r̂ is the discrete-time interest rate in ∆t and r̃ =

1 + r̂; r is a continuous-time interest rate such that er∆t = r̃.
u,m, d State transition scale in upward, unchanged and downward movement.
q1, . . . , qn Risk-neutral transition probability, nodes are labelled from top to bottom.
Q{i}(tk) Risk-neutral probability on each node, i = 1, . . . , k + 1.
Mi,M(t) Mi is CPM at time step i, i = 0, . . . , n; M(t) is CPM at time t.
Ci, C(t) Ci is CPC at time step i; C(t) is CPC at time t.
H Constant CTR.
Ri Revenue in time step i, i = 0, . . . , n (see Section 5.6.1).
Φn Option payoff on the expiration date (i.e., the time step n).
FM , FC Strike price in terms of CPM, CPC.
π0 Option price at time 0 (i.e., the time step 0).
µ, σ, σ(t) Constant drift, constant volatility and stochastic volatility for the underlying price.
κ, θ, δ Constant speed, long-term mean, and volatility for the stochastic volatility model.

on the GBM assumption (see Table 2.2) and provide a comparative analysis of their

convergence performances to a closed-form pricing formula (see Section 5.6.4). For

the reader’s convenience, the key notations used throughout the chapter are described

in Table 5.1. It is worth mentioning that we here discuss the case where an ad option

allows its buyer to pay a fixed CPC for display impressions. Therefore, the strike price

of the option is the fixed CPC and the underlying price is the uncertain winning payment

CPM from RTB, where each single impression being auctioned off is paid at the second

highest bid [Google, 2011, Yuan et al., 2013]. Other ad option cases can be discussed

in the same manner. For example, the case where an ad option allows its buyer to pay

a fixed CPM for display impressions, or the case where an ad option allows its buyer to

pay a fixed CPM or CPC for clicks.

5.2.1 Binomial Lattice

Suppose that an advertiser buys a display ad option in time 0 which allows him to

purchase several impressions from a publisher’s ad slot in time 1 at a fixed CPC, de-

noted by FC . As impressions are normally auctioned off at a CPM value, the un-

derlying price is the winning payment CPM from RTB, denoted by Mi, i = 0, 1.

In time 1, the underlying price may rise or fall, denoted by M
{u}
1 or M{d}

1 . Let’s

consider the upward case. If M{u}
1 /(1000H) ≥ FC , the advertiser will exercise the
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option; if M{u}
1 /(1000H) < FC , he will not exercise the option but join RTB in-

stead. Note that H represents a constant CTR; therefore, the underlying and strike

prices can be compared on the same measurement basis. Mathematically, we use

the option payoff function Φ
{u}
1 to describe the above decision making, Φ

{u}
1 :=

max{M{u}
1 /(1000H)− FC , 0}. Similarly, if the winning payment CPM moves down-

ward, the option payoff Φ
{d}
1 := max{M{d}

1 /(1000H)− FC , 0}.

We adopt a general economic setting and assume that the advertiser is risk-neutral

so he exercises the ad option only if the option payoff is maximised [Wilmott, 2006,

Narahari, 2014]. In finance, the so-called risk-neutral probability measure [Björk,

2009] is defined by the statement that the expected risky return of an asset is equal to

a risk-less bank interest return. In the online advertising environment, the risk-neutral

probability measure Q = (q, 1− q) satisfies the following equation

r̃M0 ≡ quM0 + (1− q)dM0, (5.1)

where r̃ = (1 + r̂) is the risk-less return over the period from time 0 to time 1, u =

M
{u}
1 /M0 and d = M

{d}
1 /M0 are the movement scales of CPM. Therefore, we can

obtain the risk-neutral transition probability q = (r̃ − d)/(u − d). Note that here q

equals to q1 in Table 2.2, which describes the probability that CPM moves upward

in time 1. Since the option value can be considered as a bivariate function of time and

underlying price, the option value at time 0 can be obtained by discounting the expected

option value at time 1 under Q = (q, 1− q) [Björk, 2009, see Martingale]. The option

value at time 1 is actually the option payoff; therefore, the option price at time 0 can be

obtained by discounting the expected payoff, that is

π0 = r̃−1EQ[Φ1] = r̃−1
(
qΦ
{u}
1 + (1− q)Φ{d}1

)
. (5.2)

This option price π0 is fair because it rules out arbitrage [Varian, 1987, Björk,

2009]. Arbitrage means that an advertiser can obtain a profit larger or smaller than the

risk-less bank interest rate with certainty. Consider if the option price is overestimated,

i.e., π0 > r̃−1(qΦ
{u}
1 + (1− q)Φ{d}1 ), the advertiser can sell short an ad option at time 0

and save the money into bank to get the risk-less profit r̃π0 − (qΦ
{u}
1 + (1 − q)Φ{d}1 ).
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Figure 5.1: Binomial lattice for CPM. Detailed description of notations is given in Table 5.1.

Converse strategies can be used to obtain arbitrage if the option price is underestimated.

Up to this point, we have discussed the option pricing framework that is the one-step

binomial method, initially proposed by Sharpe [1978]. Eq. (5.2) can also be derived

from the perspective of a publisher who wants to hedge the revenue risk incurred from

CPM changes (see Section 5.6.1 for more details).

For a multi-step binomial lattice, as shown in Figure 5.1, the possible values of

CPM and the corresponding risk-neutral transition probabilities can be estimated di-

rectly by investigating various combinations of each one-step model, so the option

price π0 can be obtained as follows

π0 = r̃−n

(
n∑
j=0

f {j}n Φ{j}n

)
(where f {j}n is the risk-netural probability for Φ{j}n )

= r̃−n

(
n∑
j=0

(
n

j

)
qj(1− q)n−j max

{
ujdn−jM0

1000H
− FC , 0

})
.
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Figure 5.2: Trinomial lattice for CPM. Detailed description of notations is given in Table 5.1.

If for any j ≥ j∗, ujdn−jM0/(1000H) ≥ FC , then

π0 = r̃−n

(
n∑
j=0

(
n

j

)
qj(1− q)n−j u

jdn−jM0

1000H
− FC

n∑
j=0

(
n

j

)
qj(1− q)n−j

)

=
M0

1000H

n∑
j=j∗

(
n

j

)(
qu

r̃

)j(
(1− q)d

r

)n−j
− FC r̃−n

n∑
j=j∗

(
n

j

)
qj(1− q)n−j

=
M0

1000H

n∑
j=j∗

(
n

j

)
q̃j(1− q̃)n−j − FC r̃−n

n∑
j=j∗

(
n

j

)
qj(1− q)n−j

=
M0

1000H
ψ(j∗, n, q̃)− FC r̃−nψ(j∗, n, q), (5.3)

where q̃ = q × (u/r̃). If each time step ∆t = T/n is sufficiently small, a continuous-

time closed-form formula for π0 can be obtained (see 5.6.2 for more details), which

is very similar to the BSM option pricing formula [Black and Scholes, 1973, Merton,

1973].

5.2.2 Trinomial Lattice

Figure 5.2 shows a trinomial lattice. There are 6 parameters: u,m, d are state move-

ment scales; q1, q2, q3 are the corresponding risk-neutral transition probabilities. These
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parameters uniquely determine the movement of CPM, which then determines a unique

value of an ad option written on CPM. They must be restricted such that the constructed

trinomial lattice converges to the log-normal distribution of CPM in continuous time

(i.e., the GBM assumption). The moment matching technique [Cox et al., 1979] can be

used to define the basic restrictions as follows:

q1 + q2 + q3 = 1, (5.4)

q1u+ q2m+ q3d = γ = er∆t, (5.5)

q1u
2 + q2m

2 + q3d
2 = γ2ζ = e2r∆teσ

2∆t (5.6)

where 0 ≤ q1, q2, q3 ≤ 1. Since there are 6 parameters, 3 additional equations are

necessary to define a unique solution. In this research, we examine the additional con-

ditions discussed by previous research [Boyle, 1988, Kamrad and Ritchken, 1991, Tian,

1993] and use the same settings to price a display ad option. For the sake of complete-

ness, a simple algorithm is provided in Section 5.6.3, which describes how to construct

a trinomial lattice for the underlying price and then how to calculate the option value

backward iteratively.

5.2.3 Discussion

The main results of related binomial and trinomial lattices are presented in Table 2.2.

In Figure 5.3, we compare the convergence performance of these lattice methods for

pricing a display ad option with the GBM underlying. The BSM-like closed-form so-

lution (see Eq. (5.34) in Section 5.6.2) is used as the gold standard to examine how

quickly that the option price calculated based on a lattice can approximate its closed-

form value. Figure 5.3(a) illustrates the situation where the option value at time 0 is

in the money (i.e., M0/(1000H) ≥ FC) and Figure 5.3(b) shows the out of the money

case (i.e., M0/(1000H) < FC). Several findings are worth mentioning here. First,

the convergence rate of the trinomial lattice is faster than that of the binomial lattice;

however, more nodes need to be computed for the former, i.e., (n+1)2 nodes for the tri-

nomial lattice while there are only (n+1)(n+2)/2 nodes for binomial lattice. Second,

we find that the Tian-TRIN [Tian, 1993] model has a better convergence performance

than the others.
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Figure 5.3: Comparison of the convergence performance of the binomial and trinomial lattices
for pricing a display ad option with the GBM underlying: (a) the option value at time 0 is in the
money where M0 = 2, FC = 0.005, CTR = 0.3, r = 0.05, T = 31/365 and σ = 0.5; and
(b) the option value at time 0 is out of the money where M0 = 2, FC = 0.075, CTR = 0.3,
r = 0.05, T = 31/365 and σ = 0.5. Detailed descriptions of notations are provided in
Table 5.1.

5.3 Censored Binomial Lattice for the SV Underlying

When the GBM assumption is not valid empirically, the SV model can be used to

describe the underlying price movement. Let us extend the case whereby an ad option

allows its buyer to pay a fixed CPC for display impressions. The SV model for the

uncertain winning payment CPM (i.e., M(t)) can be expressed as follows:

dM(t) = µM(t)dt+ σ(t)M(t)dW (t), (5.7)

dσ(t) = κ(θ − σ(t))dt+ δ
√
σ(t)dZ(t), (5.8)

where µ is the constant drift of CPM, σ(t) is the volatility of CPM, W (t) and Z(t) are

the standard Brownian motion under the real world probability measure P, and κ, θ, δ

are the volatility parameters. The drift factor κ(θ−σ(t)) ensures the mean reversion of

σ(t) towards its long-term value θ. The volatility factor δ
√
σ(t) avoids the possibility

of negative σ(t) for all positive values of κ and θ.

Let X(t) = ln(M(t)), the following risk-neutral form of Eq. (5.7) can be obtained

(see Section 5.6.5.1 for more details):

dX(t) =

(
r − σ2(t)

2

)
dt+ σ(t)dWQ(t), (5.9)
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Algorithm 5.1 Censored binomial lattice method for pricing a display ad option with
the SV underlying. Detailed description of notations is provided in Table 5.1.

function OPTIONPRICINGCENSOREDBINLATTICE(M0, σ0, κ, θ, δ,H, T, n, r, F
C)

∆t← T/n; r̃ ← er∆t;
for k ← 0 to n− 1 do

i ∈ nodes in time step k
if i = 1 then

Step ¬;
else

Step ;
end if

end for
π0 ← Eq. (5.21) (see Step ®);

end function

where r is the constant continuous-time risk-less interest rate and WQ is a standard

Brownian motion under the risk-neutral probability measure Q. The process X(t) can

be weakly approximated by a series of binomial processes, say X̃(ti), i = 1, . . . , n. The

approximation conditions are discussed by Nelson and Ramaswamy [1990] (see 5.6.4

for more details).

In Algorithm 5.1, we present our method of calculating the option price for a

display ad option whose underlying is the SV model. Simply, a binomial lattice for

X̃(ti) is first constructed to approximates X(t) weakly. The lattice is constructed from

time step 0 to time step n, and at each time step, nodes are calculated from top to

bottom. In the following discussion, we explain the details of Steps ¬-®. Figure 5.4

illustrates the calculation from time step k to time step k + 1.

Step ¬ We start the estimation from the first node X̃{1}(tk) in Figure 5.4, whose

two successors can be expressed as follows

X̃{1,u}(tk + ∆t) = (J{1}(tk) + 1)σ(tk + ∆t)
√

∆t+

(
r − σ2(tk + ∆t)

2

)
∆t, (5.10)

X̃{1,d}(tk + ∆t) = (J{1}(tk)− 1)σ(tk + ∆t)
√

∆t+

(
r − σ2(tk + ∆t)

2

)
∆t, (5.11)

where J{1}(tk)σ(tk + ∆t)
√

∆t is the point on the grid closest to X̃{1}(tk), given by

J{1}(tk) = inf
J∗∈N

∣∣∣ J∗ × σ(tk + ∆t)
√

∆t− X̃{1}(tk)
∣∣∣, (5.12)
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Figure 5.4: Censored binomial lattice for the SV underlying. Detailed description of notations
is provided in Table 5.1.

and σ(tk + ∆t) can be estimated by (see Section 5.6.5.2)

σ(tk + ∆t) = σ(t0)e−κ(tk+∆t) + θ(1− e−κ(tk+∆t)). (5.13)

Eqs. (5.10)-(5.11) verify the conditions that a binomial lattice can be used to

approximate a general diffusion process (see Eqs. (5.37)-(5.39) in Section 5.6.4).

Eqs. (5.10)-(5.11) can be rewritten in terms of their conditional increments as follows:

X̃{1,u}(tk + ∆t)− X̃{1}(tk) = σ(tk + ∆t)
√

∆t−K{1}(tk) +

(
r − σ2(tk + ∆t)

2

)
∆t,

(5.14)

X̃{1,d}(tk + ∆t)− X̃{1}(tk) = − σ(tk + ∆t)
√

∆t−K{1}(tk) +

(
r − σ2(tk + ∆t)

2

)
∆t,

(5.15)

where K{1}(tk) is the grid adjusting parameter for the successors of the first node at
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time tk. As shown in Figure 5.4, the value of K{i}(tk), i = 1, 2, . . . , 2k − 1, can be

either positive or negative, To satisfy the approximation condition set in Eq. (5.36) (see

Section 5.6.4), the following equation holds:

E
[
X̃{1}(tk + ∆t)− X̃{1}(tk) | F(tk)

]
=

(
r − σ2(tk + ∆t)

2

)
∆t (5.16)

Then, the following system of equations is obtained

(
σ(tk + ∆t)

√
∆t−K{1}(tk)

) q{1}1 (tk)

Q{1}(tk)
+
(
− σ(tk + ∆t)

√
∆t−K{1}(tk)

) q{1}2 (t)

Q{1}(t)
= 0,

q
{1}
1 (tk) + q

{1}
2 (tk) = Q{1}(t),

where q{1}1 (tk) and q{1}2 (tk) are the risk-neutral probabilities that the successor of the

first node at time tk rises or falls in time tk + ∆t, and Q{1}(tk) is the risk-neutral

probability for the first node at time tk. Solving the above equations gives

q
{1}
1 (tk) =



Q{1}(tk)
2

(
1 + K{1}(tk)

σ(tk+∆t)
√

∆t

)
, if 0 ≤ Q{1}(tk)

2

(
1 + K{1}(tk)

σ(tk+∆t)
√

∆t

)
≤ Q{1}(tk),

0, if Q{1}(tk)
2

(
1 + K{1}(tk)

σ(tk+∆t)
√

∆t

)
< 0,

Q{1}(tk), if Q{1}(tk)
2

(
1 + K{1}(tk)

σ(tk+∆t)
√

∆t

)
≥ Q{1}(tk),

= max

{
0,min

{
Q{1}(tk),

Q{1}(tk)

2

(
1 +

K{1}(tk)

σ(tk + ∆t)
√

∆t

)}}
, (5.17)

q
{1}
2 (tk) = Q{1}(tk)− q{1}1 (tk). (5.18)

Eqs. (5.17) and (5.18) show that transition probabilities q{1}1 (tk) and q{1}2 (tk) are

censored in the approximation.

Step  We then move to other nodes and construct their successors in the same

manner. However, as some nodes in the next step are recombining, the following equa-

tions hold for 1 ≤ i ≤ k:

X̃{i,d}(tk + ∆t) = (J{i}(tk)− 1)σ(tk + ∆t)
√

∆t+

(
r − σ2(tk + ∆t)

2

)
∆t,

= X̃{i+1,u}(tk + ∆t) = (J{i+1}(tk) + 1)σ(tk + ∆t)
√

∆t+

(
r − σ2(tk + ∆t)

2

)
∆t,
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therefore, J{i+1}(tk) = J{i}(tk) − 2 and K{i+1}(tk) = J{i+1}(tk)σ(tk + ∆t)
√

∆t −

X̃{i+1}(tk). The transition probabilities for the node X̃{i+1}(tk) can be given by

q
{i}
1 (tk) = max

{
0,min

{
Q{i}(tk),

Q{i}(tk)

2

(
1 +

K{i}(tk)

σ(tk + ∆t)
√

∆t

)}}
, (5.19)

q
{i}
2 (tk) = Q{i}(tk)− q{i}1 (tk). (5.20)

Step ® We follow the calculation steps ¬- for each time step until the contract

expiration date, and finally obtainQ{i}(tn) and X̃{i}(tn), for all nodes (i = 1, . . . , n+1)

at time step n. Then the option price can be obtained as follows:

π0 = r̃−n
n+1∑
i=1

Q{i}(tn) max

{
1

1000H
eX̃
{i}(tn) − FC , 0

}
. (5.21)

Similar to Algorithm 5.2, the option value can also be calculated recursively over the

lattice.

In the above discussion, we follow Florescu and Viens [2008] to construct the

binomial lattice and use variables K{i}(tk) and J{i}(tk) to tune the grid so that the

constructed framework is recombining. In the meantime, it satisfies the approxima-

tion conditions proposed by Nelson and Ramaswamy [1990]. We here use a modified

mean-reverting process (i.e., the Cox-Ingersoll-Rubinstein (CIR) model [Cox et al.,

1985]) for the volatility underlying so that the volatility will always be non-negative.

We also simplify the calculation of node parameters in Florescu and Viens [2008].

Since the transition probabilities are censored directly at each node, K{i}(tk), J{i}(tk)

and Q{i}(tk) can be calculated sequentially from top to bottom alongside the lattice

construction for the underlying price. Once the upper node is calculated, it can be used

to update the value of its lower node. Hence, the risk-neutral probability distribution

Q{i}(tk) for each node can be quickly computed as follows:

Q{i}(tk + ∆t) =


q
{1}
1 (tk), if i = 1,

q
{i−1}
2 (tk) + q

{i}
1 (tk), if 1 < i < k + 1,

q
{k+1}
2 (tk), if i = k + 1,

and Q(t0) = 1.
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Figure 5.5 presents an empirical example of constructing a censored binomial lat-

tice for pricing a display ad option written on an ad slot from a SSP in the UK. The

given values of the model parameters are estimated from the training data. Figure 5.5(a)

shows a censored binomial lattice for the underlying CPM and Figure 5.5(b) illustrates

how the option value is calculated backward iteratively from the expatriation date to

time 0. For the sake of comparison, Figure 5.6 illustrates the binomial lattices con-

structed by the CRR model with the same parameter settings. Obviously, the changing

volatility can be found in Figure 5.5(a) while 5.6(a) exhibits a constant volatility over

time. We find that the option price given by the SV model is slightly smaller than that

of the CRR model. This is because the long-term mean value of volatility is 0.2959,

smaller than its initial value 0.8723. Therefore, the drift drags the volatility downside

to its long-term level and the option value based on the SV model contains less risk

than the CRR model.

5.4 Experiments
Our experimental results are presented in this section. We examine the GBM assump-

tion with the real advertising data, compare the goodness-of-fit of the underlying mod-

els, analyse if an advertiser can have better deliveries under a fixed daily budget, and

discuss the effects on the publisher’s (or search engine’s) revenue.

5.4.1 Datasets and Experimental Design

The following two datasets are used in the experiments (see Table 5.2): a RTB dataset

from a SSP in the UK; and a sponsored search dataset from Google AdWords. The RTB

dataset contains all advertisers’ bids and the corresponding winning payment CPMs

(per transaction). The Google dataset is obtained by using Google’s Traffic Estimation

service [Yuan and Wang, 2012], in which we remove 21 keywords that have over 30%

missing values and also 115 keywords whose CPCs are all zero.

Tables 5.3-5.4 illustrate our experimental settings. Each dataset is divided into

several experimental groups, each of which consists of one training, one development

and one test set. The model parameters are estimated in the training set. Display ad

options are priced in the development set. The actual bids in the test set are used to

examine the priced options. The default value of CTR in the experiments is set to 0.03.
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Figure 5.5: Empirical example of binomial lattices for an ad slot from the SSP dataset: (a) the
censored binomial lattice for CPM based on the SV model, where r = 0.05, T = 0.0384, n =
14, CPM = 0.7417, σ0 = 0.8723, κ = 96.4953, θ = 0.2959, δ = 14.9874; (b) the censored
binomial lattice for the option value. The model parameters are estimated based on the training
data.
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Figure 5.6: Example of binomial lattices for the same ad slot in Figure 5.5: (a) the CRR bino-
mial lattice for CPM based on the GBM model, where r = 0.05, T = 0.0384, n = 14, CPM =
0.7417, σ0 = 0.8723. Here we use the same parameters’ values in Figure 5.5; (b) the CRR bi-
nomial lattice for the option value.

5.4.2 Fitness of GBM and SV Models

The following two conditions hold if the GBM assumption is valid empiri-

cally [Marathe and Ryan, 2005]: (i) the normality of the logarithm ratios of the

winning payment price1; and (ii) the independence of the logarithm ratios from the

previous data. Normality can be graphically checked by a histogram and Q-Q plot, and

be statistically verified by the Shapiro-Wilk test [Shapiro and Wilk, 1965]. To examine

the independence, we use the autocorrelation function (ACF) [Tsay, 2005] and the

1The logarithm ratio of winning payment price Li is defined by Li = ln(Mi+1/Mi) or Li =
ln(Ci+1/Ci).
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Table 5.2: Summary of datasets for experiments.

Dataset SSP Google AdWords
Period 08/01/2013 - 14/02/2013 26/11/2011 - 14/01/2013
No. of ad slots or keywords 31 557
No. of advertisers 374 ×
No. of impressions 6646643 ×
No. of bids 33043127 ×
Winning payment price

√ √

Bid quote GBP/CPM GBP/CPC

Table 5.3: Experimental settings of the SSP dataset.

Training set (31 days) Development & test set (7 days)
08/01/2013-07/02/2013 08/02/2013-14/02/2013

Table 5.4: Experimental settings of the Google AdWords dataset.

Market Group Training set (31 days) Development & test set (31 days)

US

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 10/06/2012-12/07/2012 12/07/2012-17/08/2012
4 10/11/2012-11/12/2012 11/12/2012-10/01/2013

UK

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 12/06/2012-13/07/2012 13/07/2012-19/08/2012
4 18/10/2012-22/11/2012 22/11/2012-24/12/2012

Ljung-Box statistic [Ljung and Box, 1978]. If the winning payment price satisfies the

GBM assumption, we evaluate the ad option by using the Tian-TRIN model (or the

BSM-like closed-form formula). If the GBM assumption is not valid empirically, we

develop a SV model and price the ad option by using the censored binomial lattice

method.

Figure 5.7 presents an empirical example of testing the GBM assumption for an

ad slot from the SSP dataset, where the underlying winning CPM cannot be described

accurately as a GBM. In fact, none of the 31 ad slots in the SSP dataset satisfy the

GBM model. Therefore, we use the SV model for the ad slots in the SSP dataset.

Figure 5.8 presents an example of a keyword from the Google dataset. The keyword’s

winning CPC satisfies the GBM assumption. The log-normality of CPC is validated in

Figure 5.8(a)-(c) and the independence is confirmed by Figure 5.8(d). The overview

results of the Google dataset is shown in Figure 5.9. There are 14.25% and 17.20% of
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Figure 5.7: Empirical example of testing the GBM conditions on an ad slot from the SSP
dataset: (a) the plot of the average daily winning payment CPMs from auctions; (b) the his-
togram of the logarithm ratios of the CPM, i.e., ln(Mi+1/Mi), i = 1, . . . , n − 1; (c) the QQ
plot of the logarithm ratios; (d) the plot of the ACFs of the logarithm ratios. The Shapiro-Wilk
test is with p-value 0.0009 and the Ljung-Box test is with p-value 0.1225.

the keywords in the US and UK markets respectively that can be accurately described

by the GBM model. We will price the remaining keywords using the SV model.

Figure 5.10 gives an empirical example of the model fitness test for the situation

where the GBM assumption is not valid. We give three different instances of simulated

paths from the GBM and SV models for the same keyword. Figure 5.10(a),(c),(d) com-

pares the simulations from these two models with the actual winning payment CPCs in

real-time auctions. The smooth movement pattern of these three instances is examined

in Figure 5.10(b),(d),(f). We find that the SV model has a better fitness to the data. In

addition, we use the Euclidean distance (also called the L-2 distance) to examine the

similarity of a simulated path and the test data. The overall results of the ad slots and

keywords in our datasets are presented in Tables 5.5-5.6, showing that the SV model

has a general better fitness to the real data.
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Figure 5.8: Empirical example of testing the GBM conditions on the keyword “canon 5d”
from the Google AdWords dataset: (a) the plot of average daily winning payment CPCs; (b) the
histogram of logarithm ratios of CPC, i.e., ln(Ci+1/Ci), i = 1, . . . , n − 1; (c) the QQ plot of
the logarithm ratios; (d) the plot of the ACFs of the logarithm ratios. The Shapiro-Wilk test is
with p-value 0.2144 and the Ljung-Box test is with p-value 0.6971.
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Figure 5.9: Summary of the GBM conditions test for all keywords in the Google AdWords
dataset in (a) the US market; and (b) the UK market.
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Figure 5.10: Empirical example of comparing the fitness of GBM and SV models to the key-
word “kinect for xbox 360” from the Google AdWords dataset. The training period is from
time step 1 to 50, the development and test periods are from time step 51 to 150. Plot (a), (c),
(e) illustrates three instances of simulated paths from the estimated GBM and SV, respectively.
Plot (b), (d), (f) provides the corresponding smooth pattern and confidence interval of plot (a),
(c), (e).
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5.4.3 Delivery Performance for Advertiser

Tables 5.7-5.8 provide an empirical example that compares an advertiser’s delivery

performance between RTB and ad options. Tables 5.7 shows the advertiser’s delivery

performance in RTB with a fixed daily budget. If the supplied impressions are at same

levels and if the average winning payment CPMs increase, the advertiser will receive

fewer impressions. In Table 5.8, the advertiser buys several display ad options in ad-

vance. Consider if he purchases an ad option with expiration date 08/02/2013, he has

the right to secure impressions that will be created on 08/02/2013 at a fixed CPC. Here

we consider the advertiser uses the daily budget from the corresponding delivery date

to pay the upfront option price. Therefore, as shown in Table 5.8, the advertiser’s ad-

vertising strategy is to purchase as many ad options in advance as possible, and the

remaining daily budgets will be used on the corresponding delivery dates. Actual bids

from RTB are used to simulate the real-time feeds of the spot market, so if the market

value of a click is higher than the fixed payment, the advertiser will use ad options to

secure the needed clicks and then pay the fixed CPCs accordingly. Otherwise, the ad-

vertiser will obtain the equivalent clicks from RTB. Our example shows a “bull market”

where the average spot CPM in the test set is far higher than the initial CPM. Therefore,

the bought ad options would be actively used by the advertiser to purchase the clicks.

Compared to Table 5.7, the advertiser can receive more clicks (increased by 20.92%)

in a bull market via ad options.

The overall results are presented in Tables 5.9-5.10. For the SSP dataset, we con-

sider the ad options that allow advertisers to pay a fixed CPC to purchase impressions of

targeted ad slots. For the Google dataset, we consider the ad options that allow adver-

tisers to pay a fixed CPM to purchase clicks of their targeted keywords. To summarise,

we find that an advertiser’s daily budget can be used more effectively in a bull market

and that his delivery increases as well. The advertiser’s average cost spent on each

impression or click is reduced. In a bear market (i.e., the underlying price decreases),

the advertiser will use the ad options less (and sometimes not at all) and the maximum

cost is just the option price. It is worth noting that here we consider the ad options are

in the money at time 0 (i.e., the strike price is less than the current underlying price). In

Table 5.7, there are 4 ad slots that exhibit somewhat bear markets. However, these 4 ad

slots do not receive enough bids in the test set and the actual winning payment CPMs
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Table 5.9: Overview of the improvement in delivery performance by using ad options for all
ad slots in the SSP dataset.

Bull market Bear market
Change on used budget (%) -8.7878% –
Change on delivery of impressions (%) 6.1781% –

Table 5.10: Overview of the improvement in delivery performance by using ad options for
keywords in the Google AdWords dataset.

Market Group
Change in used budget (%) Change in delivery of impressions (%)
Bull market Bear market Bull market Bear market

US

1 0.3447% 2.3438% 9.3050% -0.1122%
2 1.7748% 3.9687% 2.3153% -2.6285%
3 0.5372% 4.8567% 44.3735% -0.0940%
4 5.6288% 29.3626% 1.6433% -1.0993%

UK

1 21.4285% 6.8940% 3.0717% -0.2523%
2 5.4426% 0.0000% 0.4419% 0.0000%
3 10.9285% 3.8474% 28.7706% -2.1066%
4 6.7155% 0.1552% 16.6955% -2.1550%
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Figure 5.11: Empirical examples of the publisher’s revenue: (a) from an ad slot in the bull
market; and (b) from an ad slot in the bear market. The sell ratio represents the percentage of
future daily impressions that are sold in advance via display ad options. Note that here the ad
slot in the bear market does not receive enough bids in the test set, so we randomly simulate
some underlying prices for the bear market.

are just around its floor reserve level (i.e., the CPM is £0.01 so the per impression price

is £0.00001). Since these prices will seriously bias the results, we do not take them into

account in the situation of a bear market.
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5.4.4 Revenue Analysis for Publisher and Search Engine

The revenue for a publisher (or search engine) is examined in this section. We consider

the revenue effects when a certain amount of future impressions or clicks can be sold in

advance. Figure 5.11 presents two empirical examples of ad slots from the SSP dataset:

one exhibits the bull market while the other shows the bear market. The sell ratio in

the figure represents the percentage of future impressions that are sold in advance via

display ad options; therefore, when the sell ratio equals zero, the publisher auctions off

all of the future impressions in RTB. Figure 5.11(a) suggests that the publisher should

sell less future impressions in advance if the future market is bull. This is because

the ad options will be exercised by advertisers in the future and the obtained revenues

from the fixed payment are less than these impressions’ market values. Of course,

the publisher can choose a certain percentage of future impressions to sell according

to his level of risk tolerance or to meet other business objectives. For example, the

publisher may be willing to sacrifice some revenues in order to increase the advertisers’

engagement in the long run. Conversely, in a bear market, as shown in Figure 5.11(b),

the publisher is advised to sell more future impressions in advance because there is

more upfront income if more display ad options are sold, and in the future advertisers

will not exercise the sold options. Therefore, the increased revenue comes from the

option price.

Based on the above analysis, the revenue effects across all ad slots and keywords

in our datasets are examined. In the experiments, the display ad options in a bull market

are priced in the money while in a bear market they are priced out of the money. The

sell ratio is set at 0.20 in a bull market while it is set at 0.80 in a bear market. The

overall results are presented in Tables 5.11-5.12, which further confirm our analysis

in the empirical examples. The average revenue is reduced in the bull market as well

as the standard deviation (i.e., one kind of revenue risk). However, as described, the

publisher (or search engine) may be willing to sacrifice some revenue to establish a

long-term relationship with advertisers. In a bear market, the average revenue increases

significantly. This is because fewer display ad options are exercised. Many premium

advertisers join RTB so that the market equilibrium is almost as same as that in an

environment with only auctions. Finally, the publisher (or search engine) earns the

upfront payment without providing guaranteed deliveries.
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Table 5.11: Overview of the improvement in revenue by selling display ad options for ad slots
in the SSP dataset.

Bull market Bear market
Change on mean (%) -7.1283% 726.3085%
Change on standard deviation (%) -2.7041% 196.0547%

Table 5.12: Overview of the improvement in revenue by selling display ad options for ad slots
in the Google AdWords dataset.

Market Group
Change in mean (%) Change in standard deviation (%)
Bull market Bear market Bull market Bear market

US

1 -20.5880% 22.3898% -0.6507% 9.3291%
2 -23.2971% 17.1898% -17.6508% 9.4175%
3 -32.8388% 69.9113% -21.9468% -2.1065%
4 -24.4710% 8.9650% -10.6024% 95.4868%

UK

1 -8.5463% 15.4155% 4.5617% 10.4116%
2 -20.0632% 4.3816% -16.0239% 6.8847%
3 -16.9050% 30.7737% -11.4811% -19.4625%
4 -21.8142% 7.6342% -19.4368% 0.3877%

5.5 Summary
In this chapter, we described a new ad option tailored to the display advertising environ-

ment. We examined several lattice methods for an ad option with the GBM underlying,

and proposed a new lattice method to price it if the underlying price does not follow

the GBM model. Our lattice method is based on the SV model which can capture

the changing volatility and mean-reverting fact of price movement. Our developments

were examined and validated by experiments using real advertising data. For future

research, we are interested in developing a lattice method that can be used to price an

ad option with the multivariate non-GBM underlying.

5.6 Chapter Appendix

5.6.1 Proof of Equivalence of the Option Price under the One-Step

Binomial Lattice

We derive the option pricing formula from the perspective of a publisher who wants

to hedge the revenue risk incurred from price changes, and prove that under the one-

step binomial lattice the derived option price is equal to the one that is calculated from

the perspective of a risk-neutral advertiser. The derivation here follows the settings

proposed by Wang and Chen [2012] and considers the case where an ad option allows
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its buyer to pay a fixed CPC for display impressions. Therefore, the strike price of

the option is the fixed CPC and the underlying price is the uncertain winning payment

CPM in online auctions. The total number of future impressions to sell is assumed to

be deterministic, denoted by SM . If the CPM in time 1 goes up, the publisher’s revenue

can be expressed as

R
{u}
1 =

{
(1− α)SM/1000M

{u}
1 + αSMHFM , if M{u}

1 ≥ FC ,

(1− α)SM/1000M
{u}
1 + αSM/1000M

{u}
1 , if M{u}

1 < FC ,
(5.22)

where α is the percentage of estimated total impressions to sell via ad op-

tions. Eq. (5.22) shows that the publisher’s revenue is a combination of guar-

anteed and non-guaranteed impressions. Eq. (5.22) can be rewritten as R
{u}
1 =

SM/1000M
{u}
1 − αSMHΦ

{u}
1 , where Φ

{u}
1 is the option payoff function, defined

by max{M{u}
1 /(1000H) − FC , 0}, and the superscript notation {u} represents the

upward movement. Similarly, if CPM in time 1 goes down, the publisher’s revenue is

R
{d}
1 = SM/1000M

{d}
1 − αSMHΦ

{d}
1 , where Φ

{d}
1 = max{M{d}

1 /(1000H)− FC , 0}.

Since the publisher uses α to control the revenue in bull and bear markets, there

exists a value α∗ such that R{u}1 (α∗) = R
{d}
1 (α∗), then α∗ = (M

{u}
1 −M{d}

1 )/(Φ
{u}
1 −

Φ
{d}
1 ). As described, the publisher’s least requirement on the valuation is that his ex-

pected future revenue (including the upfront income in terms of option prices) should

be equal to the current revenue level from auctions alone, so the following equation

holds:

R0 =
α∗SM

1000
π0 + r̃−1R

{u}
1 (α∗) =

α∗SM

1000
π0 + r̃−1R

{d}
1 (α∗).

The option price π0 can then be calculated by

π0 = r̃−1

(
r̃M0 −M{d}

1

M
{u}
1 −M{d}

1

Φ
{u}
1 +

M
{u}
1 − r̃M0

M
{u}
1 −M{d}

1

Φ
{d}
1

)

= r̃−1

(
r̃ − d
u− d

Φ
{u}
1 +

u− r̃
u− d

Φ
{d}
1

)
, (5.23)

where u = M
{u}
1 /M0, d = M

{u}
1 /M0. Up to this point, we have proved that the calcu-

lated option price π0 is no-arbitrage and hedges the revenue for the publisher.
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5.6.2 Convergence of the Binomial Lattice Option Pricing Model

to the BSM Model

Hsia [1983] discussed a general proof for the convergence of the binomial lattice option

pricing model to the BSM model. His work can be used to derive a continuous-time

closed-form option pricing formula for Eq. (5.3). To simplify the discussion, we here

adopt the settings proposed by Cox, Ross, and Rubinstein [1979] and derive a BSM-like

option pricing formula for Eq. (5.3).

We consider the case where an ad option allows its buyer to pay a fixed CPC for

display impressions. Therefore, the strike price of the option is the fixed CPC and

the underlying price is the uncertain winning payment CPM in online auctions. Let

∆t = T/n, u = eσ
√

∆t > 1, d = 1/u < 1, where σ is the volatility of CPM. Let r be

the constant continuous-time risk-less interest rate and let M(t) be the continuous-time

CPM at time t. Under the risk-neutral probability measure Q, the GBM underlying can

be expressed as

dM(t) = rM(t)dt+ σM(t)dWQ(t), (5.24)

where WQ(t) is a standard Brownian motion under Q.

As described, for j ≥ j∗, j = 1, 2, . . . , n, j∗ = 1, 2, . . . , n, the advertiser will

exercise the option to buy the targeted impressions, so the following inequality holds:

M0

1000H
uj
∗−1dn−j

∗+1 < FC ≤ M0

1000H
uj
∗
dn−j

∗
, (5.25)

then (
u

d

)j∗−1

≤ 1000HFC

M0dn
≤
(
u

d

)j∗
, (5.26)

and, taking logarithms and dividing by ln(u/d) and subtracting nq from each side gives

j∗ − 1− nq√
n

≤ ln(1000HFC/M0)− ln(unqdn(1−q))√
n(ln(u)− ln(d))

≤ j∗ − nq√
n

. (5.27)

Since

lim
n→∞

j∗ − nq√
n
− j∗ − 1− nq√

n
= 0,

then
ln(1000HFC/M0)− ln(unqdn(1−q))√

n(ln(u)− ln(d))
≈ j∗ − nq√

n
. (5.28)
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Therefore, we can obtain

ψ(j∗, n, q) = P(j ≥ j∗, j ∈ {1, . . . , n})

= P

(
j − nq√
nq(1− q)

≥ j∗ − nq√
nq(1− q)

)
= 1−N

(
j∗ − nq√
nq(1− q)

)

= N

(
nq − j∗√
nq(1− q)

)

= N

(
ln(M0/(1000HF c)) + ln(unqdn(1−q))
√
n(ln(u)− ln(d))

√
q(1− q)

)
, (5.29)

where N (·) is the cumulative distribution function of a standard normal distribution.

If n→∞ (or ∆t→ 0), the following convergence results can be obtained:

√
n ln(u) = lim

n→∞

√
n ln eσ

√
∆t = σ

√
T ,

√
n ln(d) = lim

n→∞

√
n ln e−σ

√
∆t = −σ

√
T ,

q =
r̃ − d
u− d

= lim
∆t→0

er∆t − e−σ
√

∆t

eσ
√

∆t − e−σ
√

∆t

= lim
∆t→0

σ + (r − 1
2
σ2)
√

∆t+ o(∆3/2)

2σ + o(∆t)
=

1

2
,

lim
∆t→0

2q − 1√
∆t

= lim
∆t→0

2√
∆t

er∆t − e−σ
√

∆t

eσ
√

∆t − e−σ
√

∆t
=
r

σ
− σ

2
,

and then

ln(unqdn(1−q)) = nq ln(u) + n(1− q) ln(d)

= nqσ
√

∆t− n(1− q)σ
√

∆t = 2nqσ
√

∆t− nσ
√

∆t

≈ 2nσ
√

∆t lim
∆t→0

σ + (r − 1
2
σ2)
√

∆t+ o(∆t)

2σ + o(∆t)
− lim

∆→0
nσ
√

∆t

≈ lim
∆t→0

nσ
√

∆t+ (r − 1

2
σ2)T − lim

∆t→0
nσ
√

∆t = (r − 1

2
σ2)T.

Therefore, we have

ψ(j∗, n, q) = N

(
ln(M0/(1000HFC)) + (r − 1

2
σ2)T

σ
√
T

)
. (5.30)
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Since q̃ = qu/r̃, we then have

ln(unq̃dn(1−q̃))− ln(unqdn(1−q)) = ln(un(q̃−q)dn(q−q̃))

= n(q̃ − q) ln(u) + n(q − q̃) ln(d)

= n(q̃ − q)σ
√

∆t− n(q − q̃)σ
√

∆t = 2n(q̃ − q)σ
√

∆t

= 2nq
u− r̃
r̃

σ
√

∆t = 2qσ
T√
∆t

eσ
√

∆t − er∆t

er∆t

≈ lim
∆t→0

2qσT
σ − r∆t
1 + r∆t

= σ2T.

Similarly,

q̃ = lim
∆t→0

1 + σ
√

∆

1 + ∆̃t

σ + (r − 1
2
σ2)
√

∆t)

2σ
=

1

2
,

we then obtain

ψ(j∗, n, q̃) = N

(
ln(M0/(1000HFC)) + ln(unq̃dn(1−q̃))
√
n(ln(u)− ln(d))

√
q̃(1− q̃)

)

= N

(
ln(M0/(1000HFC)) + ln(unqdn(1−q))
√
n(ln(u)− ln(d))

√
q̃(1− q̃)

+
ln(unq̃dn(1−q̃))− ln(unqdn(1−q))
√
n(ln(u)− ln(d))

√
q̃(1− q̃)

)

= N

(
ln(M0/(1000HFC)) + (r + 1

2
σ2)T

σ
√
T

)
. (5.31)

Finally, the continuous-time option pricing formula can be obtained as follows

π0 =
M0

1000H
N (ς1)− FCe−rTN (ς2), (5.32)

ς1 =
1

σ
√
T

(
ln

(
M0

1000HFC

)
+ (r +

1

2
σ2)T

)
, (5.33)

ς2 =
1

σ
√
T

(
ln

(
M0

1000HFC

)
+ (r − 1

2
σ2)T

)
. (5.34)

Hence, if the GBM assumption is valid, one can use the closed-form solution to

calculate the option price. However, as described, lattice methods provide an alternative

way to calculate the option price and, in general, is simpler in terms of implementation.

We here use the closed-form pricing formula to examine the convergence error of vari-

ous lattice methods which are based on the GBM underlying model.
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5.6.3 Trinomial Lattice Methods for Pricing Display Ad Options

with the GBM Underlying

The calculation of the option price for a display ad option with the GBM underlying

model over a trinomial lattice is described in Algorithm 5.2. We here consider the

case where an ad option allows its buyer to pay the fixed CPC for display impressions.

Therefore, the strike price of the option is the fixed CPC and the underlying price is the

uncertain winning payment CPM from online auctions. Algorithm 5.2 can be easily

extended to calculate the option price over a binomial lattice (see Table 2.2).

Algorithm 5.2 Trinomial lattice method for pricing an ad option with the GBM un-
derlying. The strike price is the fixed CPC and the underlying price is the uncertain
winning payment CPM from online auctions.

function OPTIONPRICINGTRINOMIALLATTICE(M0, σ,H, T, n, r, F
C)

# Initialization:
∆t← T/n; r̃ ← er∆t;
u,m, d, q1, q2, q3 ← Boyle-TRIN (or KR-TRIN or Tian-TRIN) in Table 2.2;
# Build a (recombining) trinomial lattice for CPM
Σ(n+1)×(n+1) ← 0(n+1)×(n+1); Σ(1,1) ←M0;
for j ← 2 to n+ 1 do

Σ(1,j) ← u× Σ(1,j−1); Σ(2,j) ← m× Σ(1,j−1); Σ(3,j) ← d× Σ(1,j−1);
if 2(j − 1) + 1 > 3 then

for k ← 4 to 2(j − 1) + 1 do
Σ(k,j) ← d×Σ(k−2,j−1);

end for
end if

end for
# Calculate the terminal payoffs and the option value backward recursively
Σ̃(n+1)×(n+1) ← 0(n+1)×(n+1); Σ̃(:,n+1) ← max{Σ(:,n+1)/(1000H)− FC , 0};
for j ← n to 1 do

for k ← 1 to 2(j − 1) + 1 do
if k = 1 then

Σ̃(k,j) ← r̃−1(q1Σ̃(k,j+1) + q2Σ̃(k,j+1) + q3Σ̃(k,j+1));
else if k ≥ 2 then

Σ̃(k,j) ← r̃−1(q1Σ̃(k−1,j+1) + q2Σ̃(k,j+1) + q3Σ̃(k+1,j+1));
end if

end for
end for
return π0 ← Σ̃(1,1)

end function

5.6.4 Binomial Diffusion Approximation

The discussed discrete-time binomial process can be used to approximate a general

stochastic diffusion process. Let M(t) be the continuous-time process of CPM at time



5.6. Chapter Appendix 129

t ∈ [0, T ] and let X(t) = ln(M(t)). A general stochastic diffusion process can be

expressed as follows:

dX(t) = α(t,X(t))dt+ β(t,X(t))dW (t), (5.35)

where α(t,X(t)) and β(t,X(t)) are continuous-time drift and diffusion functions, and

W (t) is a standard Brownian motion under the real-world probability measure P. Con-

sider a process X̃(t), which is a step function with initial value X(0) and transition

movements only at times ∆t, 2∆t, . . ., n∆t. For simplicity, we denote the time steps

by t0 = 0, t1 = ∆t, . . . , tn = n∆t = T . Then, Eq. (5.35) can be weakly converged by

a (discrete-time) binomial process X̃(t) if the following conditions hold [Nelson and

Ramaswamy, 1990]:

lim
∆t→0

sup
tk≤t<tk+∆t,0≤k<n

| α(tk, X̃(tk))− α(t,X(t)) | → 0, (5.36)

lim
∆t→0

sup
tk≤t<tk+∆t,0≤k<n

| β(tk, X̃(tk))− β(t,X(t)) | → 0, (5.37)

lim
∆t→0

sup
tk≤t<tk+∆t,0≤k<n

| X̃u(tk + ∆t)−X(t) | → 0, (5.38)

lim
∆t→0

sup
tk≤t<tk+∆t,0≤k<n

| X̃d(tk + ∆t)−X(t) | → 0, (5.39)

where X̃u(tk + ∆t) and X̃d(tk + ∆t) are the successors of X(t) and at each time step

the process can make one of two possible moves: up to a value X̃u(tk + ∆t) or down

to a value X̃d(tk + ∆t).

5.6.5 Mathematical Results of the SV Model

The mathematical results of the SV model defined in Eqs. (5.7)-(5.8) are provided in

this appendix, including the arbitrage-free condition, the estimation of volatility in the

constructed binomial lattice, and the estimation of the model parameters κ, θ, δ.

5.6.5.1 Risk-Neutral Probability Measure for Eq. (5.7)

By applying the Itô Lemma to Eq. (5.7), we obtain

M(t) = M(0) exp

{∫ t

0

(µ− 1

2
σ2(t))ds+

∫ t

0

σ(s)dW (s)

}
. (5.40)
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Consider a discount process D(t) = e−rt, where r is a constant risk-less interest rate.

Then dD(t) = −rD(t)dt. Therefore, the discounted CPM process is

D(t)M(t) = M(0) exp

{∫ t

0

(µ− r − 1

2
σ2(t))ds+

∫ t

0

σ(s)dW (s)

}
, (5.41)

and its differential is

d
(
D(t)M(t)

)
= M(t)dD(t) +D(t)dM(t)

= − rD(t)M(t)dt+D(t)(µM(t)dt+ σ(t)M(t)dW (t))

= σ(t)D(t)M(t)

(
µ− r
σ(t)

dt+ dW (t)

)
= σ(t)D(t)M(t)dWQ(t), (5.42)

where WQ(t) = W (t) +
∫ t

0
µ−r
σ(s)

ds. According to the Girsanov Theorem [Wilmott,

2006], if choosing the process τ(t) = µ−r
σ(t)

, then WQ(t) is a standard Brownian motion

under a new probability measure Q. This Q is risk-neutral because it rendersD(t)M(t)

into a martingale. Therefore, the risk-neutral formulation of Eq. (5.7) is then

dM(t) = rM(t)dt+ σ(t)M(t)dWQ(t). (5.43)

Therefore, dX(t) = (r − σ2(t)/2)dt+ σ(t)dWQ(t).

5.6.5.2 Estimation of σ(tk + ∆t) for the Censored Binomial Lattice

Eq. (5.8) is the Cox-Ingersoll-Ross (CIR) model [Cox et al., 1985]. Several CIR model

forecasting results can be used to estimate σ(tk + ∆t). Since

d(eκtσ(t)) = κeκtσ(t)dt+ eκdσ(t)

= κeκtσ(t)dt+ eκ
(
κ(θ − σ(t))dt+ δ

√
σ(t)dZ(t)

)
= eκtκθdt+ eκtδ

√
σ(t)dZ(t). (5.44)

Then, we have

σ(t) = σ(0)e−κt + θ(1− e−κt) + δ

∫ t

0

e−κ(t−s)
√
σ(s)dZ(s). (5.45)
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Recall that the expectation of an Itô integral is zero, we obtain

E[σ(t) | F(0)] = σ(0)e−κt + θ(1− e−κt), (5.46)

where F(0) represents the information up to time 0. Therefore, the conditional stochas-

tic volatility σ(tk + ∆t) can be obtained by the following formula

σ(tk + ∆t) = σ(t0)e−κ(tk+∆t) + θ(1− e−κ(tk+∆t)).

5.6.5.3 Estimation of Parameters κ, θ, δ

Several statistical methods can be used to estimate the values of parameters κ, θ, δ. The

simplest method is the ordinary least squares (OLS) method [Kladivko, 2007]. The

discreteness form of Eq. (5.8) is

σ(tk)− σ(tk−1) = κ(θ − σ(tk))∆t+ δ
√
σ(tk)ε(tk), (5.47)

where ε(tk) ∼ N(0,∆t). The equation can be rewritten as follows

σ(tk)− σ(tk−1)√
σ(tk)

=
κθ∆t√
σ(tk)

− κ
√
σ(tk)∆t+ δε(tk), (5.48)

The sum of square errors
∑ñ−1

k=1

(
δε(tk)

)2

can be minimized so that κ and θ can be

obtained, where ñ is the size of training data. Then, we have

(κ̂, θ̂) = argminκ,θ

ñ−1∑
k=1

(
σ(tk)− σ(tk−1)√

σ(tk)
− κθ∆t√

σ(tk)
+ κ
√
σ(tk)∆t

)2

. (5.49)

Therefore,

κ̂ =
(ñ+ 1)2 +

∑ñ−1
k=1 σ(tk+1)

∑ñ−1
k=1

1
σ(tk)
−
∑ñ−1

k=1 σ(tk)
∑ñ−1

k=1
1

σ(tk)
− (n− 1)

∑ñ−1
k=1

σ(tk+1)

σ(tk)(
(ñ+ 1)2 −

∑ñ−1
k=1 σ(tk)

∑ñ−1
k=1

1
σ(tk)

)
∆t

,

θ̂ =
(ñ− 1)

∑ñ−1
k=1 σ(tk+1)−

∑ñ−1
k=1

σ(tk+1)

σ(tk)

∑ñ−1
k=1 σ(tk)

(ñ+ 1)2 +
∑ñ−1

k=1 σ(tk+1)
∑ñ−1

k=1
1

σ(tk)
−
∑ñ−1

k=1 σ(tk)
∑ñ−1

k=1
1

σ(tk)
− (n− 1)

∑ñ−1
k=1

σ(tk+1)

σ(tk)

.
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Then, we obtain the estimation of δ̂ by the formula

δ̂ =

( ñ−1∑
k=1

∆t

)−1

×
ñ−1∑
k=1

(
σ(tk+1)− σ(tk)√

σ(tk)
− κ̂θ̂∆t√

σ(tk)
+ κ̂
√
σ(tk)∆t

)2
1/2

=

 1

(ñ− 1)∆t

ñ−1∑
k=1

(
σ(tk+1)− σ(tk)√

σ(tk)
− κ̂θ̂∆t√

σ(tk)
+ κ̂
√
σ(tk)∆t

)2
1/2

. (5.50)

Kladivko [2007] discussed the Maximum Likelihood (ML) method as an alterna-

tive way and compared the results to the OLS method for a specific dataset. In our

experiments, we find that the calculated option prices of display ad options are less

sensitive to OLS and ML methods; therefore, we adopt the OLS method as it is com-

putationally simpler.



Chapter 6

Conclusion

In this chapter, we summarise the main points made in Chapters 3-5 and point out the

future directions that can be carried out to extend the research of this thesis.

6.1 Concluding Remarks
The work presented in this thesis looked at the non-guaranteed delivery problem in

online advertising. Three novel solutions were proposed by employing and extending

the mathematical models from modern financial theories. In Chapter 3, we studied an

optimal dynamic model for a publisher or SSP who engages in RTB to allocate and

price the future display impressions into guaranteed contracts. The developed model

mimics the advanced booking system in the airline industry, and connects RTB and PG

algorithmically in order to maximise the publisher’s expected revenue. In Chapter 4,

we proposed a multi-keyword multi-click ad option for sponsored search and discussed

the corresponding option pricing methods based on the assumption that the underlying

winning payment prices of candidate keywords follow a GBM. This option allows an

advertiser to target multiple keywords and exercise multiple times in the contract life-

time. Our theoretical and empirical analysis also showed that the search engine can

have an increased expected revenue over time. In Chapter 5, we discussed another ad

option for display advertising and investigated a lattice framework for option evalua-

tion under a more general situation that the GBM assumption is not valid empirically.

This option allows an advertiser to pay a fixed CPM or CPC for an impression or click

that is same or different to its underlying measurement model from auctions. We used

the SV model to describe the underlying price movement and constructed a censored

binomial lattice to approximate the underlying SV model.
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Table 6.1: Summary the developments in Chapters 3-5.

Chapter 3 Chapter 4 Chapter 5
Development Optimal model Ad option Ad option
Ad type/format Display Search Display, search
Objective Revenue maximisation No arbitrage No arbitrage
Expected revenue Increase Increase Increase
Inventory allocation

√
× ×

Contract pricing
√ √ √

Exercise right ×
√ √

Exercise time Fixed Flexible Fixed
Exercise opportunities Single Multiple Single
Underlying inventory Single Multiple Single
Underlying assumption Probabilistic, empirical GBM GBM, SV
Behaviour assumption Risk-neutral Risk-neutral Risk-neutral
Modelling setting Continuous-time Continuous-time Discrete-time

Table 6.1 provides an overview summary and comparison of the developments

in Chapters 3-5. These developments have many similarities in solving the non-

guaranteed delivery problem. First, they can all be implemented in conjunction with

auction mechanisms. Second, advertisers are assumed to be risk-neutral [Wilmott,

2006, Krishna, 2009, Narahari, 2014] in the modelling. Third, these developments can

increase the seller’s expected revenue. They support the two most popular measure-

ment models (i.e., the CPM and CPC models) in our discussions and can be extended

easily to others like the cost-per-action (CPA) model.

In the meantime, these developments are uniquely different from each other. The

optimal model discussed in Chapter 3 offers a complete automated system that deals

with both optimal allocation and pricing of future inventories. Even though only the

guaranteed contracts can be sold, the model is not limited to any presumed bids’ dis-

tribution (i.e., works for both probabilistic and empirical bids’ distributions). The ad

option proposed in Chapter 4 is the first research work that discusses the option contract

mechanism in the context of sponsored search. Advertisers are able to have greater flex-

ibility and a more personalized delivery. As also described earlier (see Section 4.3.4),

the proposed ad option is priced based on a GBM and the GBM assumption is rea-

sonable because several observations have been made in the sponsored search mar-

ket. However, this GBM assumption is not valid for display advertising. Therefore,

Chapter 5 investigated the possibility of using the SV model as the underlying force

to describe the winning price movement. The ad option discussed in Chapter 5 has a
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different contract structure but it is currently limited to the single underlying variable.

6.2 Future Work
Financial methods open up many new possibilities for developing online advertising

sales models and markets. The studies discussed in this thesis represent only a small

step in using the full potential of financial methods in online advertising. The following

research directions are interesting to further explore in the future.

6.2.1 Optimal Stochastic Dynamic Models

Given the static supply and demand, the dynamic model discussed in Chapter 3 max-

imises the expected revenue of a publisher (or SSP) who wants to sell some of the

estimated future display impressions in advance via guaranteed contracts and the re-

maining estimated supply will be auctioned off in RTB. This research can be further

extended with considering the stochastic supply and demand. Simply, the arrival of

advertisers and online users can be modelled by two independent stochastic processes.

Gallego and van Ryzin [1994] provided some insights on this issue while they only

used a Poisson process to represent the arrival of demand. In future research, we can

extend the Poisson process to model the supply. In addition, as described in Chap-

ter 3, the expected salvage value of display impressions from RTB is not zero, which

is determined by the new levels of remaining future supply and demand. Therefore,

the optimal pricing and allocation of display impressions will depend on balancing the

filled or unfilled demand with the arriving speed of supply.

6.2.2 Stochastic Processes for Market Price

Stochastic processes that describe the movement of the spot market prices of ad inven-

tories (i.e., the winning payment CPMs or CPCs from online auctions) are the one that

have received surprisingly little attention in online advertising. Here the spot market

price is similar but slightly different to the one that we see in financial markets because

there are no posted winning payment CPMs or CPCs in any ad exchanges or search

advertising platforms. However, a seller, such as publisher, SSP and search engine,

have the information about the advertisers’ bids and winning payment prices for some

specific ad slots or keywords. Such information could be used to analyse the market’s

supply and demand levels.
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In Chapters 4-5, we discussed the GBM and SV models for pricing ad options.

These stochastic processes can be investigated independently as they can also be used

to analyse the statistical properties of market price movements. As described earlier,

the studied GBM and SV models still have their limitations. The former is restricted

by a constant volatility while the latter is unable to capture the price jumps and spikes.

Many other stochastic processes can be further explored in the future. For example, we

can study the parametric mean-reverting jump diffusion process [Kou, 2002] to capture

the long-term mean-reverting fact as well as the distribution of price jumps.

6.2.3 Game-Theoretical Models for Ad Option Pricing

Game theory can provide an alternative way to evaluate an option written on ad inven-

tories. For an advertiser, two advertising strategies can be considered: (i) bidding in

online auctions; (ii) buying and exercising ad options. Advertisers are assumed to be

identical and risk-neutral. The interesting and difficult part of this research is to find

the advertisers’ equilibrium in a mixed strategy game. This equilibrium may not be

a simple Nash because most of the current advertising auction mechanisms adopt the

GSP auction model where advertisers follow a symmetric Nash (or locally Envy-free)

equilibrium [Edelman et al., 2007, Varian, 2007]. However, once a certain type of equi-

librium is found in this mixed strategy game, the option can be evaluated accordingly.

Two different objectives can be considered for the game-theoretical option pricing.

First, the optimal models which maximise the expected revenue of a publisher or search

engine. Second, the efficient models which maximise the social welfare (or surplus) of

advertisers. In this research, VCG auctions can be explored. Under a VCG auction,

it would be interesting to examine if the incentive compatibility and the individual ra-

tionality constraints are satisfied in the option pricing [Narahari et al., 2009, Nadarajah

et al., 2012]. The former ensures that an advertiser reveals his true value and the latter

ensures the advertiser’s payoff to be non-negative. This is a broad research direction

and many game-theoretical models can be investigated.

6.2.4 Market Design of Ad Derivatives

Designing an ad derivatives market would be another interesting topic for future re-

search. Most of the current online advertising markets are one-sided auctions [McAfee

and Vassilvitskii, 2012], in which an advertiser can only submit his bids to purchase
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the targeted ad inventories and is limited to real-time transactions. The ad derivatives

market will be two-sided auctions, where an advertiser can not only submit bids to buy

but also can receive bids to sell. The transactions are for the ad inventories that will

be created in the future. This will give advertisers a market place to buy and sell their

future ad inventories centrally in order to speculate profits or hedge risks.

One interesting thing for further discussion is whether the prices should be posted

in the ad derivatives market or not. Sealed-bid auctions are mostly adopted in online

advertising markets and the transaction information is not disclosed to advertisers. If

there are posted prices in ad derivatives market, advertisers may use such prices to

estimate the spot market prices inversely. They will then adjust their bidding strategies

in real-time auctions, which can further influence the prices posted in the ad derivatives

market because the values of ad derivatives are calculated based on the corresponding

spot market prices. This interesting problem can be examined in two stages. First, we

can study this as the implied price problem, similar to the implied volatility problem in

option pricing [Wilmott, 2006]. Second, we can move one step further to the system

level and discuss the new equilibrium between the spot and guaranteed markets.
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Glossary of Technical Terms

The technical terms used throughout the thesis are briefly explained in this glossary.

Many term definitions here are drawn from Wilmott [2006], Jansen [2011], IAB [2013]

and Wikipedia directly.

Ad: the commercial portion of message content for which an advertiser has paid or

will pay when an online user sees his content.

Ad exchange: a technology platform that facilitate the bidded buying and selling of

online media advertising inventory from multiple ad networks. The approach is

technology-driven as opposed to the historical approach of negotiating price on

media inventory.

Ad slot (or ad space): the allocated real estate on a Web page of a site in which an ad

can be placed. Each space on a site is uniquely identified; therefore, multiple ad

slots can exist on a single page.

Advertiser: also called the marketer, the company who pays for the ad display or click.

Banner ad: an ad embedded on a Web page that is usually intended to drive traffic to

a different Web page by linking to the advertiser’s site.

Bear market: a market in which market prices are falling and investors, fearing losses,

tend to sell. This can create a self-sustaining downward spiral.

Bull market: a market in which the market prices are generally rising.

Click: a click on an ad on a Web page, which takes a user to another site.



139

Click-through rate (CTR): the rate of clicked ads to total ads displayed.

Cost per click (CPC): also called pay-per-click (PPC), is an online advertising mea-

surement model used to direct traffic to websites, where an advertiser pays a

search engine (or a publisher) when his ad is clicked by an online user.

Cost per mille (CPM): also called pay-per-mille (PPM), is an online advertising mea-

surement model used to direct traffic to websites, where an advertiser pays a

publisher when his ad is displayed 1000 times to online users.

Demand-side platform (DSP): an automated bidding platform for advertisers to get

good impressions at low cost, by participating in multiple auctions among various

ad exchanges at the same time.

Impression: a display of an ad to a user on a Web page. Note that a single page view

can have more than one impression if there is more than one ad slot on the page.

Interest rate: a percentage used to calculate the cost of borrowing money. In this

thesis, we only consider the constant risk-less bank interest rate.

Keyword: a specific word or combination of words that an online searcher might type

into a search field. Advertisers can purchase keywords to guarantee that their

website information is displayed prominently.

Publisher: an individual or organization that prepares, issues, and disseminates con-

tent for public distribution. Simply, a publisher has the space for ads to be dis-

played.

Query: a series of terms entered by a searcher into a search engine, which initiates a

search and results in a search engine result page (SERP) with organic and paid

listings.

Real-time bidding (RTB): refers to the means by which ad inventory is bought and

sold on a per-impression basis, via programmatic instantaneous auction, similar

to financial markets.
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Search engine: a program that indexes Web pages and then attempts to match then

by relevancy to the users’ search requests. Examples of search engines include

Google, Bing, Baidu etc.

Search engine results page (SERP): a page that online users see after they have en-

tered their query into the search box. The SERP has two types of result listings

in response to the submitted query: organic results and paid results. Organic

search results are the Web page listings that most closely match the user’s search

query based on relevance. Paid results are basically ads – the websites have paid

to have their Web pages display for certain keywords, so these listings show up

when someone runs a search query containing those keywords.

Supply-side platform (SSP): an automated platform for publishers to sell impressions

at an optimal price, by creating multiple auctions for the same impression in

different ad exchanges to reach more advertisers who are willing to bid.

User: an individual with access to the Internet and the WWW, and issues ad-hoc topics

to express his information needs, such as Web search or surfing.

Web page: the traditional presentation of information online. Web sites are made up

of Web pages, analogous to the pages in a book.
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Related Publications

The following publications and submissions are related to this thesis:

• Bowei Chen and Jun Wang. A lattice framework for pricing display ad options

with the stochastic volatility model. Working Paper, 2014. In arXiv: http:

//arxiv.org/abs/1409.0697

• Bowei Chen, Shuai Yuan, and Jun Wang. A dynamic pricing model for unifying

programmatic guarantee and real-time bidding in display advertising. In Pro-

ceedings of the 8th International Workshop on Data Mining for Online Advertis-

ing (ADKDD’14), Best Paper Award, pages 1–9, New York, NY, USA, 2014b.

ACM

• Bowei Chen, Jun Wang, Ingemar Cox, and Mohan Kankanhalli. Multi-keyword

multi-click ad options for sponsored search. Working Paper, 2014a. In arXiv:

http://arxiv.org/abs/1307.4980

• Jun Wang and Bowei Chen. Selling futures online advertising slots via option

contracts. In Proceedings of the 21st International Conference on World Wide

Web (WWW ’12), pages 627–628, Lyon, France, 2012. ACM

There are also other publications that were completed during my PhD study; while

relevant to the broader applications of financial methods into information technologies,

they are not directly solving the non-guaranteed delivery problem in online advertising:

• Shuai Yuan, Jun Wang, Bowei Chen, Peter Mason, and Sam Seljan. An empir-

ical study of reserve price optimisation in real-time bidding. In Proceedings of

http://arxiv.org/abs/1409.0697
http://arxiv.org/abs/1409.0697
http://arxiv.org/abs/1307.4980
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the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD’14), pages 1897–1906, New York, NY, USA, 2014. ACM

• Weinan Zhang, Jun Wang, Bowei Chen, and Xiaoxue Zhao. To personalize or

not: a risk management perspective. In Proceedings of the 7th ACM Confer-

ence on Recommender Systems (RecSys’13), pages 229–236, Hong Kong, China,

2013. ACM

• Jamie O’Brien, Chris Coleridge, and Bowei Chen. Enriching domain knowl-

edge of the academic-industrial landscape of an engineering doctorate centre: a

multiple-sector industrial R&D survey. In Triple Helix International Conference

2013 (THA’13), London, UK, 2013



Bibliography

Miguel Anjos, Russell Cheng, and Christine Currie. Maximizing revenue in the airline

industry under one-way pricing. Journal of the Operational Research Society, 55(5):

535–541, 2004.

Miguel Anjos, Russell Cheng, and Christine Currie. Optimal pricing policies for perish-

able products. European Journal of Operational Research, 166(1):246–254, 2005.

Moshe Babaioff, Jason Hartline, and Robert Kleinberg. Selling ad campaigns: on-

line algorithms with cancellations. In Proceedings of the 10th ACM Conference on

Electronic Commerce (EC’09), pages 61–70, Stanford, CA, USA, 2009. ACM.
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