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Abstract. The area enclosed by hysteresis loops in a periodically forced bistable microscopic sys-
tem at zero-temperature is examined by using the time dependent Hellmann–Feynman theorem and
the Fourier grid Hamiltonian recipe for solving time-dependent Schr¨odinger equation. Effects of
non-zero temperatures are explored with reference to a symmetric double well potential. The barrier
crossing or, relaxation rates are shown to correlate systematically with the area of the loop. The
possible use of hysteresis loop area in designing field parameters for optimal control is suggested.

Keywords. Quantum hysteresis; stochastic resonance; quantum dynamics; Fourier grid methods;
stochastically perturbed systems.

PACS Nos 03.65; 31.70.Hq; 62.50

1. Introduction

The thermodynamic response of an interacting many particle system placed in an oscillat-
ing external field will oscillate with appropriate change in the form. Any delay in relaxation
will however, cause the response to lag behind, creating a thermodynamic response-field
loop of non-vanishing area. The phenomenon has been called dynamic hysteresis [1,2].
When the time period of oscillation of the driving field is much less than the relaxation
time of the thermodynamic system, the hysteresis loop loses its symmetry about its origin.
The dynamically broken symmetry may then lead to the appearance of a new thermody-
namic phase. One then says that a dynamic phase transition has taken place due to the
presence of two competing time scales, namely the relaxation time of the system and the
time period of the external field.

An associated problem concerns the stochastic resonances in bistable systems that are
periodically driven in the presence of stochastic noise. If the weak periodic modulation is
in resonance with the Kramer’s frequency of the thermodynamic system it may ultimately
succeed in setting off periodic phase changes in the entire macroscopic system [3–5].

Can a microscopic system at zero temperature reveal similar response in appropriate
cases? In what follows we explore this possibility with a wave function based descrip-
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tion. That means we make use of pure state dynamical description of our quantum system.
Let the quantum system be described by a one dimensional bi-stable potential [V (x)], the
most well known example of which is the symmetric double well potential. The system is
assumed to be initially in the ground state (	L) localized in the left well when the peri-
odic field is switched on.	L is not an eigenstate of the symmetric double well potential
as it is not a parity eigenstate. It is a symmetry-broken state formed by the superposi-
tion of the lowest even and odd parity eigenstates. We may anticipate therefore that	Lh
 L = 1p

2
( +0 +  �0 )

i
will slowly evolve into the parity eigenstate( �0 ) by tunneling,

even in the absence of any external field. The switched on external time varying field cou-
ples to the system and delivers energy to it. As time elapses, the higher states begin to be
populated and the system crosses over to the other well (the state	R = 1p

2
( +

0
�  �

0
))

by barrier crossing and tunneling. As the driving field of a fixed frequency sweeps through
one period, the population in the excited states may not relax at the same rate, causing a
relaxation delay. If the system response is measured byhx(t)i, it may not retrace its path as
one cycle is completed, creating anhx(t)i-field loop with non-vanishing area. We call them
hysteresis loops of our microscopic system. The area itself would measure the amount of
energy dissipated per cycle of the driving field and can be an important parameter in un-
derstanding some features of the dynamics of driven bi-stable quantum systems. We note
here that the dissipated energy over a cycle of the periodic field is distributed among the
higher energy levelswhich act as an ‘internal bath’. There is no external bath. As more
and more energy is dumped into the higher energy levels, de-excitation sets in, affecting
the dissipation of the wave packet. After many cycles therefore, the initially localized wave
packet would disperse and the loops would disappear. If the intensity or the frequency of
the light is high, the loop may get distorted even during one cycle.

We propose in what follows, how one can easily calculate the loop area and examine
possible uses of it. The question of simulating the dynamics in a non-zero temperature sit-
uation is also explored. We should mention here that quantum hysteresis has been an active
area of contemporary research. For example, the dynamical phases in quantum hysteresis
has been carefully analysed by Raoet al [6] and Dharet al [7] recently. Dynamical hys-
teresis and stochastic resonance in quantum 2-level systems have been discussed in detail
by Pareeket al [8].

2. The method

Let a particle of massm, move in a symmetric double well potentialV (x). The Hamilto-
nian of the system is then given by

H0 =
P 2
x

2m
+ V0(x): (1)

When an external periodic field (�x) where

�x = �0x sin!t

is switched on, the perturbed time-dependent Hamiltonian is given by

H(x; t) = H0 + �0xex sin!t = H0 + V 0(x; t): (2)
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The evolution of the perturbed system is governed by Schr¨odinger equation

i�h
@

@t
j	(x; t)i = [H0 + V 0(x; t)]j	(x; t)i: (3)

The quasi-energy of the system at any instant of time is given byhE(t)i where

hE(t)i = hH(t)i: (4)

Since we represent the system by a well defined Hamiltonian and describe the relevant
state by a wave function, we are in the regime of pure state quantum dynamics. We may
invoke therefore the time-dependent Hellmann–Feynman theorem [9,10] for pure states to
calculate time dependence of the quasi-energyhE(t)i, to have

d

dt
hE(t)i =

�
d

dt
H(t)

�

=

�
d

dt
(H0 + �0xex sin!t)

�
= �0xe!hx(t)i cos!t: (5)

Integrating over one cycle of the applied field, we haveZ �

0

dhE(t)i = �0xe!

Z �

0

hx(t)i cos!tdt

i.e.

�E(�) = �0xe!

Z 2�

!

0

hx(t)i cos!tdt: (6)

In eq. (6),�E(t) is the energy dissipated during one cycle of the field. To calculate the
integral on the right hand side, we need to know howhx(t)i varies over one cycle. The
information can be obtained by solving eq. (3) forj	(x; t)i by the time-dependent Fourier
grid Hamiltonian method [11–14]. In this method we expressj	(x; t)i on an uniformly
discretized coordinate grid as follows

j	(x; t)i �

nX
p=1

wp(t)jxpi�x;

wherehxpjxqi�x = Æpq , !p(t) = 	(xp; t). The use of the Dirac–Frenkel time-dependent
variational principle then directly leads to the evolution equation for the grid point ampli-
tudes:

_wp(t) =
1

i�h

"
nX

q=1

hxpjH jxqiwq(t)

#
(7)

for p = 1; 2; : : : ; n.
These equations can be numerically integrated, oncefw q(0)gq=1;n are supplied leading

to the values offwq(t)gp=1;n. h	(x; t)jxj	(x; t)i = hx(t)i is then given by
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Figure 1(a–d).Hysteresis loop for different peak field intensities (�
0

x
) at zero tempera-

ture at a fixed frequency of the driving field (! = 0:005 a.u). Note the behaviour of the
loop area as�0

x
! 0 (inset).

hx(t)i =
X
p

jwp(t)j
2xp

which is put back on the right hand side of eq. (6) and integration is carried out numerically.
For thezero temperature case, 	(x; t) is chosen as an eigenfunction of the unperturbed
Hamiltonian (H0) while for the non-zero temperature case the initial state [	(x; 0)] is
chosen as a superposition of the eigenstates ofH0 with amplitudes (Ci) so chosen that
jCij

2s reproduce the Boltzmann distribution of population among different eigenstates of
H0 (see ref. [15]) at the given temperature, the phases of the superposition being chosen
randomly. This way, we hope to simulate a wave function based description at a non-zero
temperature.

3. Results and discussion

3.1 Quantum hysteresis loop and their areas(T = 0 case)

The symmetric double well potentialV (x) used has the formV (x) � ax4 � bx2 with
a = 0:01, b = 0:02, all in atomic units. With these parameter values, the potential supports
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Figure 2(a–c).Hysteresis loop for different frequencies (!) of the driving field at zero
temperature when intensity (�

0

x
= 0:05 a.u) is fixed. Inset is the loop as! ! 0.

4 states under the barrier. From eq. (6), it follows that ifhx(t)i is plotted against
Ft = �0x cos!t, the area enclosed byhx(t)i�Ft loop when multiplied by!e will give the
value of�E(t). It is obvious that�E(t) ! 0 as�0x ! 0. Figures 1a–d demonstrates how
the loop area shrinks as�0x ! 0 in theT = 0 case. The magnitude of energy dissipation in
one cycle can also be modulated by changing the amplitude of the external field. At higher
field strengths,hx(t)i lags appreciably behind the field, thereby creating larger hysteresis
loops. The reverse happens as�0x decreases. Figures 2a–c, on the other hand, display the
response of the quantum hysteresis loop as! ! 0. In either case the area does not vanish
linearly either as a function of! or �0. When we monitor the calculated area of the hystere-
sis loop as a function of!, it shows a clear maximum at!(= !0) that nearly corresponds
to the0 ! 1 transition frequency or the tunneling splitting (figure 3b). The barrier cross-
ing rate computed under similar condition is also seen to pass through a maximum (figure
3a) at the same frequency!0. The frequency at which hysteresis is maximal therefore
appears to be dominantly shaped by tunneling atT = 0Æ K. The barrier crossing rate has
been calculated by monitoring the rate of the growth of probability of the system within
the perimeters of the right well (PR) and then calculating the time-derivative of lnPR [16].
Figure 4a displays how the computed barrier crossing rate constant atT = 0 Æ K varies with
changes in the intensity of the external periodic field (for a given! = 0:005). There is
increase, followed by saturation. The computed hysteresis loop area behaves similarly
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Figure 3. (a) Barrier crossing rate constant at zero temperature against the frequency
(!) of the driving field. (b) Inset is the corresponding plot for the area of loop against!.

as shown in figure 4b (inset). The present exploration of dynamic hysteresis in microscopic
systems or quantum hysteresis can be extended to non-zero temperatures.

3.2 Quantum hysteresis atT > 0

For T>0, when more than one level are populated, the shape of the hysteresis loop be-
comes quite different (figure 5a). Apparently, it breaks into a number of smaller loops.
The total enclosed area, however responds to different perturbations quite systematically.
As ! increases the loop disappears (figure 5b), and there is a sharp transition inhx(t)i.
Apparently, the state localized in the left well makes a sharp transition to the right well,
when the frequency of the driving field exceeds a critical value.

The initial state which has been chosen to be consistent with Boltzmann population
of different levels at the given temperature is strongly localized in the left well. As the
periodic field is switched on, the population relaxes. We have followed the relaxation (fig-
ure 5c) by monitoringhx(t)i as a function of time and computing d/d(thx(t)i) numerically.
That leads to the average relaxation rate constant which is plotted against temperature. The
hysteresis loop area has also been computed and plotted againstT . The computed area and
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Figure 4. (a) Barrier crossing rate constant at zero temperature against the intensity of
the driving field. (b) Inset is the corresponding plot for loop area against the intensity.

the rate constant are seen to grow almost exponentially with temperature. The relaxation
thus appears to be dominated by over-barrier process atT > 0.

The loop area at a particular temperature also shows a resonance-like behaviour as a
function of the frequency of the driving field (figure 5d). Themaximumcorresponds to a
frequency! = ! 0 which is somewhatred shiftedwith respect to the resonance frequency
(!0) in the zero temperature case. The computed barrier crossing rate constant at this
temperature shows an identical type of!-dependence (figure 5e). That! 0 for which the rate
is maximal is different from!0 for which maximum crossing rate was observed atT = 0,
suggests that the barrier crossing atT > 0 is not dominated by coherent tunneling. Thus,
an enhancement of the reaction rate at non-zero temperatures seems possible to achieve by
tuning the frequency of the external field to the near resonance frequency. However, the
new resonance frequencies may be quite different from the tunneling frequencies at zero
temperature. For an optimal control, the new frequencies need to be determined. It is in
this context that hysteresis loop area can be an useful quantity for designing the optimal
field parameters. When the potential is made to fluctuate, quantum analogue of stochastic
resonance may set in [17]. We are exploring this aspect at present. The results already
available indicate the possibility of stochastic resonance affecting barrier crossing rates.
We hope to return to the problem in the near future [17].
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Figure 5a,b.

Figure 5c.
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Figure 5. (a) Hysteresis loop at non-zero temperature (T = 25Æ K) at particular peak
field intensity. (b) The phase transition-like behaviour when the frequency of the driving
field is too high is shown (inset). (c) Relaxation profile of the system against time. (d)
Inset is the loop area plotted against the driving frequency. (e) Barrier crossing rate
constant at non-zero temperature against the frequency of the driving field.

4. Conclusion

The hysteresis and dynamic phase transition in a bistablemicro systemmirror their macro-
scopic analogues. The hysteresis loop area can be an useful quantity for identifying critical
values of field parameters responsible for the onset of resonance-like response of the sys-
tem, and thereby help in designing field parameters for optimal control.
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