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Abstract
Data collapse is a way of establishing scaling and extracting associated
exponents in problems showing self-similar or self-affine characteristics as, for
example, in equilibrium or non-equilibrium phase transitions, in critical phases,
in dynamics of complex systems and many others. We propose a measure to
quantify the nature of data collapse. Via a minimization of this measure, the
exponents and their error-bars can be obtained. The procedure is illustrated
by considering finite-size-scaling near phase transitions and quite strikingly
recovering the exact exponents.

PACS numbers: 05.10.-a, 05.70.Jk, 03.65.-w, 64.60.-i

(Some figures in this article are in colour only in the electronic version)

Scaling, especially finite size scaling (FSS), has emerged as an important framework for
understanding and analysing problems involving diverging length scales. Such problems
abound in condensed matter, high-energy and nuclear physics, equilibrium and non-
equilibrium situations, thermal and non-thermal problems and many more. The operational
definition of scaling is this: a quantity m(t, L) depending on two variables, t and L, is
considered to have scaling if it can be expressed as

m(t, L) = Ldf (t/Lc). (1)

Depending on the nature of the problem of interest, m may refer to magnetization, specific
heat, size or some other characteristic of a polymer, width of a growing or fluctuating surface
and so on. Equation (1) is the FSS form if L is a linear dimension of the system and t is
any other variable, could even be time in dynamics. In the thermodynamic limit of infinite-
sized systems, such a scaling would have t andL representing two thermodynamic parameters
like the magnetic field, pressure, chemical potential etc or one could be time. If L is a
length scale, then d would look like the dimension of this quantity m, and c of variable t .
In fluctuation-dominated cases, it is generally a rule, rather than an exception, that d and c
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assume nontrivial values, different from what one expects from a dimensional analysis. The
exponents and the scaling function f (x) then characterize the behaviour of the system. The fact
that two completely independent variables (both conceptually and as controlled in experiments)
combine in a nontrivial way to form a single one leads to an enormous simplification in the
description of the phenomenon. This underlies the importance of scaling.

A quantitative way of showing scaling is data collapse (also called scaling plot) that goes
back to the original observation of Rushbrooke that the coexistence curves for many simple
systems could be made to fall on a single curve [1]. For example, the values of m(t, L)
(equation (1)) for various t and L can be made to collapse on a single curve ifmL−d is plotted
against tL−c. The method of data collapse therefore comes as a powerful means of establishing
scaling. It is in fact now used extensively to analyse and extract exponents especially from
numerical simulations. Given the importance of scaling in wide varieties of problems, it is
imperative to have an appropriate measure to determine the ‘goodness of collapse’—not to be
left to the eyes of the beholder.

It might be mentioned here that there are situations where pure power laws are expected,
or the exponents are known with sufficient accuracy but data collapse suffers from correction-
to-scaling terms. In such situations, several methods are available to extract the exponents [2]
or to take care of the correction terms [3]. Our method finds relevance in situations where no
such prior knowledge is available especially as many phenomena in sciences, social sciences,
economics, etc are being analysed for possible scaling behaviour. In such cases the data
collapse remains a viable approach.

In this paper, we propose a measure that can be used to quantify ‘collapse’. This measure
can be used, via a minimization principle, for an automatic search for the exponents thereby
removing the subjectiveness of the approach. To show the power of the method and the
measure, we use it for two exactly known cases, namely the FSS of the specific heat for:
(1) the one-dimensional ferro-electric six-vertex model [4] showing a first-order transition [5],
and (2) the Kasteleyn dimer model [6] exhibiting the continuous anisotropic Pokrovsky–
Talapov transition [7, 8]. In addition, to show the usefulness of the method in case of noisy
data as expected in any numerical simulation, we consider the one-dimensional case with extra
Gaussian noise added (by hand). It is worth emphasizing that the proposed procedure, without
any bias, recovered the exactly known exponents from the specific heat data for finite systems.

If the scaling function f (x) of equation (1) is known, then the sum of residuals

R = 1

N

∑
| L−d m− f (t/Lc) | (2)

where the sum is over all the data points, is minimum for the right choice of (d, c). In absence
of any statistical or systematic error, the minimum value is zero.

However, in most situations the function itself is not known but is generally an analytic
function. In the case of a perfect collapse, any one of the sets (say set p) can be used for f (x).
An interpolation scheme can then be used to estimate the residuals. For this estimate, only the
overlapping regions are considered, i.e. the regions where points from both the sets are present
(see below). Since this can be done for any set as the basis, we repeat the procedure for all
sets. Let the tabulated values ofm and t be denoted bymij , tij (ith value of t for the j th set of
L (i.e. L = Lj for set j )). We now define a quantity Pb:

Pb =
[

1

Nover

∑
p

∑
j �=p

∑
i,over

| L−d
j mi,j − Ep(L−c

j tij ) |q
]1/q

(3)

where Ep(x) is the interpolating function based on the values of set p bracketing the argument
in question (of set j ). The innermost sum over i is done only over the overlapping regions
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(denoted by the ‘i, over’), i.e. only those points of set j are considered for which xij = L−d
j tij

belongs to the interval spanned by the corresponding x-values of setp. Let Nover being the total
number of such pairs. Though defined with a general q, we use q = 1. For Ep(x), a four-point
polynomial interpolation can be used and if any complex singularity is suspected a rational
approximation may be used. Extrapolations are avoided. The minimum of this function Pb is
zero3 and is achievable in the ideal case of perfect collapse with correct values of (d, c), i.e.

Pb � Pb|abs min = 0. (4)

This inequality can then be exploited and a minimization of Pb over (d, c) can be used to
extract the optimal values of the parameters.

In addition to the values of the exponents, estimates of errors can be obtained from the
width of the minimum. This can be obtained by diagonalizing the inverse of the Hessian
matrix for Pb. A simpler approach (at least for illustration) is to take the quadratic part in the
individual directions along the (d, c) plane. From an expansion of lnPb around the minimum
at (d0, c0), the width is estimated as

�d = ηd0

[
2 ln
Pb(d0 ± ηd0, c0)

Pb(d0, c0)

]−1/2

(5a)

and

�c = ηc0
[

2 ln
Pb(d0, c0 ± ηc0)
Pb(d0, c0)

]−1/2

(5b)

for a given η. Choosing η = 1%, the final estimate for the exponents would be d0±�d, c0±�c
with the error bar reflecting the width of the minimum at the 1% level.

We now use the proposed method for different test cases. In order to implement the
program4, we have used the routines of numerical recipes [9]. To calculate Pb, POLINT
or RATINT has been used for interpolation with HUNT to place a point in the table. This
procedure treats the data points as ‘exact’. In case of data points with known error bars
(as, e.g., from Monte Carlo simulations) one may use piecewise continuous fits to obtain the
interpolated values. For minimization, AMOEBA has been used thrice to locate the minimum,
each time using the current estimates to generate a new triangle enclosing the minimum. In
the examples given below, there was no need for more sophisticated minimization routines,
which could be needed in case of subtle crossover behaviours or with nearby minima.

Let us first consider the one-dimensional six-vertex model which shows a first-order
transition [5]. With the partition functionZ = 2+(2x)N forN sites with x = exp(−ε/kBT ) as
the Boltzmann factor, ε being the energy of the high-energy vertices, T the temperature and kB

the Boltzmann constant, the specific heat can be computed exactly. The first-order transition
is at x = 1/2, forN → ∞, with a δ-function jump in specific heat. TheN -dependent specific
heat (per site), cN , is given by [5]

cN = kB(ln x)
22N

(2x)N

[2 + (2x)N ]2
(6)

which for large N and small t = 2x − 1 has the scaling form of equation (1) with d = 1,
c = −1 and

f (z) = kB(ln 2)22
ez

(2 + ez)2
. (7)

3 Pathological cases of no overlap are avoided.
4 This program is available on request from the authors. It is flexible enough that the Numerical Recipes [9] routines
could be replaced by any other suitable package.
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Figure 1. The collapse of specific heat for the 1 − d vertex model as calculated from equation (6)
(see (a)) and from equation (7) (see (b)). The upper (lower) branch is for t > 0 (t < 0).
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Figure 2. The residue Pb with q = 1 is shown over the (d, c) plane. The z-axis is in log scale. A
few contours of constant ln(Pb) are shown by projecting the curves on the (d, c) plane.

From the exact formula, equation (6), data were generated for N = 10, 30, 50, 70 and
90, for various values of temperatures. A minimization of Pb gave us the estimate d =
0.997 ± 0.04, c = −0.98 ± 0.06, with Pb = 0.56881E-01. The exponents are very close
to the exact ones. The error-bars or the width of the minimum is to be interpreted as an
indication of the presence of non-scaling corrections. To test this, we have generated data
from the exact scaling function of equation (7). An unbiased minimization of Pb then gave
d = 1 ± 0.004, c = −1 ± 0.004 with Pb = 0.34876E-03. The smallness of the residue and
of the errors (or the width of the minimum) represents a good data collapse. The nature of the
data collapse for both the cases is shown in figure 1.
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Figure 3. Noisy data. Plots of Pb against A. Inset shows the estimated value of d as a function
of A.

A similar minimization of Pb was carried out for the two-dimensional Kasteleyn dimer
model (also isomorphic to a two-dimensional five-vertex model). This is an exactly solvable
lattice model of the continuous anisotropic Pokrovsky–Talapov transition for surfaces, and
shows a square-root singularity for specific heat with different correlation lengths in the two
directions [8]5. The specific heat for lattices of size M along the direction of the ‘walls’ and
infinite in the transverse direction is known exactly and its FSS form has been discussed in [8].
Using the following formula [8] for the specific heat per site cM :

cM

kBa
= M

∫ 2π

0

(2x cosφ)M

[1 + (2x cosφ)M ]2
dφ (8)

specific heats data were generated for M = 10, 30, 50, 70 and 90. In this formula, a few
unimportant factors are put under a and not explicitly shown. The critical point is at x = 1/2.
A minimization of Pb gave d = 0.5 ± 0.03, c = −0.945 ± 0.02 to be compared with the
exact values d = 0.5, c = −1. The residue factor is Pb = 0.12424E-01. The importance of
correction terms are clear from figure 5 of [8], and in our approach it gets reflected in the not
too small value of Pb.

5 Along the direction of the ‘walls’ the bulk length-scale exponent is νy = 1 while in the transverse direction νx = 1/2.
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The function Pb for q = 1 for the above two-dimensional problem is shown as a surface
plot over the (d, c) plane in figure 2. The sharpness of the minimum is noteworthy. In both
the examples considered, the performance of the method is remarkable6.

The last example we consider is a case of noisy data [10] where c is calculated from
equation (7) and a Gaussian noise was added to it so that cn,η = |cn (1 + Aη)|, where η is a
Gaussian deviate and A is the amplitude of the noise added, and the absolute value is taken to
keep cn positive. The values of the exponents are found to be insensitive to A for A < 0.1 and
starts changing for higher values of A. In figure 3 we show Pb against A. The larger values
of Pb for larger A is a sign of poor collapse, as one finds by direct plotting with the estimated
values or exact values.

To summarize, we have proposed a measure to quantify the nature of data collapse in any
scaling analysis of the form given by equation (1). This measure, equation (3), can be used
for an automated search for the exponents. The method is quite general and even though we
formulated it in terms of power-laws as in equation (1), it can very easily be adopted to other
forms of scaling7. We conclude that the subjectiveness of data collapse can be removed and Pb
could be used as a quantitative measure to test or compare ‘goodness of collapse’ in a scaling
analysis. This is an invaluable advantage of our method in contrast to the current usage of the
‘best-by-eye’ data-collapse method.
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