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1 INTRODUCTION.

Let A, B, C, and D be n × n symmetric matrices whose entries are, respec-

tively,

aij =
1

i + j
,

bij =





i + j

i



 ,

cij = min(i, j),

dij = gcd(i, j).

Assembling natural numbers in such nice patterns often has interesting con-

sequences, and so it is in this case. Each of the aforementioned matrices
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is endowed with positive definiteness of a very high order: for every posi-

tive real number r the matrices with entries ar
ij, br

ij, cr
ij, and dr

ij are positive

semidefinite. This special property is called infinite divisibility and is the

subject of this paper.

Positive semidefinite matrices arise in diverse contexts: calculus (Hessians

at minima of functions), statistics (correlation matrices), vibrating systems

(stiffness matrices), quantum mechanics (density matrices), harmonic analy-

sis (positive definite functions), to name just a few. Many of the test matrices

used by numerical analysts are positive definite. One of the interests of this

paper might be the variety of examples that are provided in it. The general

theorems and methods presented in the context of these examples are, in

fact, powerful techniques that could be used elsewhere.

In this introductory section we begin with the basic definitions and no-

tions related to positive semidefinite matrices.

Positive semidefinite matrices. Let A = [aij] be an n × n matrix with

complex entries. The matrix A is Hermitian if A = A∗, where A∗ is the

conjugate transpose of A (i.e., if aij = aji, a condition that is readily verified

by inspection). A Hermitian matrix is positive semidefinite if it satisfies any

of the following equivalent conditions
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(i) for each vector x in Cn, the inner product 〈x, Ax〉 is nonnegative;

(ii) all principal minors of A are nonnegative;

(iii) all eigenvalues of A are nonnegative;

(iv) A = BB∗ for some matrix B;

(v) A = LL∗ for some lower triangular matrix L;

(vi) there exist vectors u1, . . . , un in some inner product space such that

aij = 〈ui, uj〉. (The matrix A is then said to be the Gram matrix asso-

ciated with the vectors {u1, . . . , un}.)

It is not easy to verify any of the conditions (i)–(vi) and a little ingenuity

is often needed in proving that a certain matrix is positive semidefinite.

The Hadamard product. Let A = [aij] and B = [bij] be n × n matrices.

The Hadamard product (or the entrywise product) of A and B is the matrix

A◦B = [aijbij]. The most interesting theorem about Hadamard products was

proved by Issai Schur [27]. It says that if A and B are positive semidefinite,

then so is A ◦ B. This theorem is so striking that the product A ◦ B is

often called the Schur product. Note that the usual matrix product AB (of

positive semidefinite matrices A and B) is positive semidefinite if and only

3



if AB = BA.

For each nonnegative integer m let A◦m =
[

am
ij

]

be the mth Hadamard

power of A, and Am its usual mth power. If A is positive semidefinite, then

both A◦m and Am enjoy that property.

Infinitely divisible matrices. Fractional powers of positive semidefinite

matrices are defined via the spectral theorem. Let λ1, . . . , λn be the eigenval-

ues of a positive semidefinite matrix A, and let v1, . . . , vn be a correspond-

ing set of (orthonormal) eigenvectors. Then A =
∑

λiviv
∗
i , and for each

r in [0,∞) the (usual) rth power of A is the positive semidefinite matrix

A =
∑

λr
iviv

∗
i . If the entries aij are nonnegative real numbers, it is natural

to define fractional Hadamard powers of A. In this case for nonnegative r we

write A◦r =
[

ar
ij

]

.

Suppose that A is positive semidefinite and that aij ≥ 0 for all i and j.

We say that A is infinitely divisible if the matrix A◦r is positive semidefinite

for every nonnegative r. A 2 × 2 Hermitian matrix is positive semidefinite

if and only if its diagonal entries and determinant are nonnegative. Using

this fact it is easy to see that every 2 × 2 positive semidefinite matrix with

nonnegative entries is infinitely divisible. This is no longer the case when

4



n > 2. The 3 × 3 matrix

A =

















1 1 0

1 2 1

0 1 1

















is positive semidefinite, whereas A◦r is positive semidefinite if and only if

r ≥ 1.

Carl FitzGerald and Roger Horn [11] have shown that, if A is an n × n

positive semidefinite matrix with aij ≥ 0 for all i and j, then the matrix

A◦r is positive semidefinite for each real numbers r ≥ n − 2. The critical

exponent n−2 is best possible here: if r < n−2 one can construct a positive

semidefinite matrix A for which A◦r is not positive semidefinite.

If A◦r is positive semidefinite for r = 1/m (m = 1, 2, . . .), then by Schur’s

theorem A◦r is positive semidefinite for all positive rational numbers r. Tak-

ing limits, we see that A◦r is positive semidefinite for all nonnegative real

numbers. Thus a positive semidefinite matrix with nonnegative entries is

infinitely divisible if and only if for each positive integer m there exists a

positive semidefinite matrix B such that A = B◦m. The term infinitely divis-

ible stems from this property.

Some simple facts. Most of our proofs invoke the following facts.
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(a) If A1, . . . , Ak are positive semidefinite, then so is any linear combination

a1A1 + · · ·+ akAk with nonnegative coefficients aj.

(b) If a sequence {Ak} of positive semidefinite matrices converges entrywise

to A, then A is positive semidefinite.

(c) The n × n matrix E with eij = 1 for all i and j is called the n × n flat

matrix. It is a rank-one positive semidefinite matrix.

(d) If A is positive semidefinite, then the matrix X∗AX is positive semidef-

inite for every matrix X of the same size as A. In particular, choosing

X to be a diagonal matrix with positive diagonal entries λi, we see that

if A is positive semidefinite (respectively, infinitely divisible), then the

matrix XAX = [λiλjaij] is also positive semidefinite (respectively, in-

finitely divisible). The matrices A and X∗AX are said to be congruent

to each other if X is invertible.

We will make frequent use of the Schur theorem stated earlier, a result

that is easy to prove. One of the several known proofs goes as follows. Every

rank-one positive semidefinite matrix A has the form A = xx∗ for some

vector x; or in other words, aij = xixj for some x = (x1, . . . , xn) in Cn. If

A = xx∗ and B = yy∗ are two such matrices, then A ◦ B = zz∗, where

6



z = (x1y1, . . . , xnyn). Thus the Hadamard product of two rank-one positive

semidefinite matrices is positive semidefinite. The general case follows from

this because every positive semidefinite matrix is a sum of rank-one positive

semidefinite matrices.

The point to note is that it is straightforward to show that A◦m is positive

semidefinite if A is positive semidefinite. It is not so easy to decide whether

A◦r is positive semidefinite for every nonnegative real number r.

Chapter 7 of [20] is a rich source of information on positive semidefinite

matrices. A very interesting and lively discussion of the nomenclature, the

history, and the most important properties of the Hadamard product can be

found in the survey article [19] by Roger Horn. Two of the early papers on

infinitely divisible matrices, also by Horn, are [17] and [18].

2 EXAMPLES.

The Cauchy matrix. Assume that 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. The matrix

C with entries cij = 1/(λi + λj) is called the Cauchy matrix associated with

λ1, λ2, . . . , λn. The Hilbert matrix H that has hij = 1/(i+j−1) is an example

of a Cauchy matrix.
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In 1841 Cauchy gave a formula for the determinant of a matrix C of the

type under discussion:

det C =
Π1≤i<j≤n (λi − λj)

2

Π1≤i,j≤n (λi + λj)
.

Since each principal submatrix of a Cauchy matrix is another Cauchy matrix,

this formula shows that all principal minors of C are nonnegative, hence that

C is positive semidefinite. This latter fact can be proved more easily by

showing that C is a Gram matrix.

Consider the Hilbert space L2(0,∞). Its elements are the functions on

(0,∞) that are square-integrable with respect to the Lebesgue measure, and

the inner product between two elements u1 and u2 of this space is defined by

〈u1, u2〉 =

∫ ∞

0

u1(t)u2(t)dt.

Let ui(t) = e−tλi (1 ≤ i ≤ n). The identity

1

λi + λj
=

∫ ∞

0

e−t(λi+λj)dt = 〈ui, uj〉 (1)

establishes that C is a Gram matrix. Hence C is positive semidefinite. Ac-

tually C is infinitely divisible. We give two proofs of this fact.

For the first, choose any number ε between 0 and λ1. If r > 0 we have

1

(λi + λj − ε)r
=

( ε

λiλj

)r 1
(

1 −
(λi−ε)(λj−ε)

λiλj

)r
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=
( ε

λiλj

)r
∞

∑

m=0

am

((λi − ε)(λj − ε)

λiλj

)m

, (2)

where the am are the coefficients in the series expansion

1

(1 − x)r
=

∞
∑

m=0

amxm (|x| < 1).

All am are positive; namely, a0 = 1 and am = r(r + 1) · · · (r + m + 1)/m! for

m > 1.

The matrix with entries (λi − ε)(λj − ε)/λiλj is congruent to the flat

matrix. Hence this matrix is positive semidefinite, and by Schur’s theorem

so are its mth Hadamard powers for m = 0, 1, 2, . . . . Thus the matrix whose

entries are given by the infinite series in (2) is positive semidefinite. The

matrix with (i, j)th entry 1/(λiλj)
r is positive semidefinite (it is congruent

to the flat matrix). So, again by Schur’s theorem the matrix with entries

prescribed by (2) is positive semidefinite. Letting ε ↓ 0 we see that the

rth Hadamard power of the Cauchy matrix is positive semidefinite for each

positive r.

For our second proof we use the gamma function, which is defined on

(0,∞) by the formula

Γ(x) =

∫ ∞

0

e−ttx−1dt. (3)
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Using this definition it is not difficult to see that

1

(λi + λj)r
=

1

Γ(r)

∫ ∞

0

e−t(λi+λj)tr−1dt (4)

whenever r > 0. When r = 1 this formula reduces to (1). Once again

we observe that the matrix with entries 1/(λi + λj)
r is the Gram matrix

associated with the elements ui(t) = e−tλi in the space L2(0,∞) relative to

the measure

dµ(t) =
tr−1

Γ(r)
dt.

For the Hilbert matrix a proof similar to our first proof is given by M.-D.

Choi [8].

Generalized Cauchy matrices. The ideas of the preceding section work

for certain other matrices. Let λ1, λ2, . . . , λn be positive numbers, and for

each real number t different from −2 let Z be the n × n matrix with entries

zij =
1

λ2
i + λ2

j + tλiλj

.

When is such a matrix positive semidefinite or infinitely divisible? If t < −2,

then zii could be negative in some cases. Accordingly, we need to assume

that t > −2. When n = 2 this condition is also sufficient to ensure that Z

is positive semidefinite, hence infinitely divisible. When n ≥ 3 the condition

t > −2 is no longer sufficient. If (λ1, λ2, λ3) = (1, 2, 3) and t = 10, for
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example, Z is not positive semidefinite. However, if −2 < t ≤ 2, then the

matrix Z is infinitely divisible for n = 1, 2, 3, . . . . When −2 < t < 2 and

r > 0 we have the expansion

zr
ij =

1

(λi + λj)2r

∞
∑

m=0

am(2 − t)m
λm

i λm
j

(λi + λj)2m
.

This shows that the matrix Z◦r is a limit of sums of Hadamard products of

positive semidefinite matrices. It follows that Z is infinitely divisible for all

t in the range −2 < t < 2. By continuity this is true also for t = 2.

It is known [5] that for each t in (2,∞) there exists an n for which the n×n

matrix Z is not positive semidefinite for some choice of numbers λ1, . . . , λn.

The proof of this needs somewhat advanced arguments (of the kind discussed

later in this paper). The matrix Z was studied by M. K. Kwong [22], who

used rather intricate arguments to prove that Z is positive semidefinite for

all n whenever −2 < t ≤ 2.

When t = 1, the entries of the matrix Z can be rewritten as

zij =
λi − λj

λ3
i − λ3

j

.

The matrix W with entries

wij =
λi − λj

λ4
i − λ4

j

=
λi − λj

λ2
i − λ2

j

1

λ2
i + λ2

j
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is infinitely divisible, for it is the Hadamard product of infinitely divisible

matrices. This argument shows that the matrix V with entries

vij =
λi − λj

λn
i − λn

j

is infinitely divisible for positive integers n that can be expressed in the form

n = 2m or n = 3 · 2m. It is known that the matrix V is infinitely divisible for

all n. We discuss this in section 3.

The Pascal matrix. The n× n Pascal matrix is the matrix P with entries

pij =

(

i + j

i

)

(i, j = 0, 1, . . . , n − 1).

The rows of the Pascal triangle occupy the anti-diagonals of P. Thus the 4×4

Pascal matrix is

P =





















1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20





















.

Let 4 be the n × n lower triangular matrix whose rows are occupied by the

rows of the Pascal triangle. For instance, when n = 4 we have

4 =





















1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1





















.
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The Pascal matrix P is positive semidefinite. This can be proved by

showing that P = 44?. In [10], Alan Edelman and Gilbert Strang have

given four different proofs for this factorization. Two of these proofs employ

the interesting combinatorial identity





i + j

i



 =

min(i,j)
∑

k=0

(

i

k

)(

j

k

)

.

Positive definiteness of the Pascal matrix can also be demonstrated by

representing it as a Gram matrix. One such representation is

prs =
1

2π

∫ 2π

0

(1 + eiθ)r(1 + e−iθ)sdθ. (5)

A second representation derives from the gamma function (3). If x > 0 and

y > 0, then

Γ(x + y + 1) =

∫ ∞

0

e−ttxtydt. (6)

Since Γ(n + 1) = n! for every nonnegative integer n, this shows that the

matrix G with entries

gij = (i + j)! = Γ(i + j + 1)

is a Gram matrix. The Pascal matrix, which has

pij =
(i + j)!

i! j!
,
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is congruent to G and is therefore positive semidefinite.

Our argument shows that for any positive numbers λ1, . . . , λn the matrix

K with entries

kij =
Γ(λi + λj + 1)

Γ(λi + 1)Γ(λj + 1)
(7)

is positive semidefinite. When λj = j, this matrix is the Pascal matrix.

In fact, the matrix K is infinitely divisible. (This seems not to have been

noticed before, even for the Pascal matrix.) Using Gauss’s formula

Γ(z) = lim
m→∞

m!mz

z(z + 1) · · · (z + m)
(z 6= 0,−1,−2, . . .) (8)

we see that

kij = lim
m→∞

1

m · m!

m+1
∏

p=1

(λi + p)(λj + p)

(λi + λj + p)
. (9)

For each p the matrix
[

(λi + p)(λj + p)

λi + λj + p

]

is congruent to the Cauchy matrix

[

1

λi + λj + p

]

,

so is infinitely divisible. The expression (9) demonstrates that K is a limit

of Hadamard products of infinitely divisible matrices. Hence, by Schur’s

theorem and continuity, K is infinitely divisible.
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A small aside may be of interest here. If λ1, . . . , λn are complex numbers

with positive real parts, then the matrix C with entries

cij =
1

λi + λj

is positive semidefinite. This can be established by representing C as a Gram

matrix as in (1). The condition Re λi > 0 guarantees that the integral

∫ ∞

0

e−t(λi+λj)dt

is convergent. Our arguments show that with this restriction on λi the matrix

K with entries

kij =
Γ(λi + λj)

Γ(λi)Γ(λj)

is a positive semidefinite matrix.

“Min” matrices. Consider the n×n matrix M with entries mij = min(i, j).

The idea behind the discussion that follows is captured by the equation





















1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4





















=





















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1





















+





















0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1
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+





















0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1





















+





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1





















Each of the matrices in this sum is positive semidefinite. Therefore, M is

positive semidefinite.

This idea can be taken further. Let λ1, . . . , λn be arbitrary positive num-

bers, and let M be the n × n matrix with entries mij = min(λi, λj). We can

write M as a sum of matrices each of which is plainly positive semidef-

inite. First, by applying a permutation similarity, we may assume that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn. Thus

M =





















λ1 λ1 . . . λ1

λ1 λ2 . . . λ2

...
...

...

λ1 λ2 λn





















.

For each k with 1 ≤ k ≤ n let Ẽk be the n × n matrix whose bottom right

corner is occupied by the k × k flat matrix and whose remaining entries are

zeros. Then we can express M as

M = λ1Ẽn + (λ2 − λ1)Ẽn−1 + (λ3 − λ2)Ẽn−2 + · · ·+ (λn − λn−1)Ẽ1,

revealing that M is a positive semidefinite matrix.
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The same argument shows that if f is a monotonically increasing function

from (0,∞) into itself, then the matrix [f(mij)] is positive semidefinite. The

special choice f(t) = tr with r > 0 shows that M is infinitely divisible.

We could have started the discussion in this section with the factorization




















1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4





















=





















1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1









































1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1





















.

Building on this, alternate proofs of other results in this section can be ob-

tained.

The Lehmer matrix. For positive numbers x and y we have

min(x, y)

xy
=

1

max(x, y)
.

It follows from earlier results in this section that for positive numbers λ1, . . . , λn

the n × n matrix W with entries

wij =
1

max(λi, λj)

is infinitely divisible.

If 0 < λ1 ≤ λ2 ≤ · · · ≤ λn and L is the matrix with entries

lij =
min(λi, λj)

max(λi, λj)
,
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then as the Hadamard product of two infinitely divisible matrices L is in-

finitely divisible. We have lij = λi/λj (1 ≤ i ≤ j ≤ n). For the special choice

λj = j (1 ≤ j ≤ n) the matrix L is called the Lehmer matrix.

Suppose that λ1, . . . , λn are positive numbers and that N is the matrix

with entries

nij = exp(−|λi − λj|).

It follows from our discussion of the matrix L that N is an infinitely divisible

matrix. This property is equivalent to the fact that the function f(x) = e−|x|

is a positive definite function on R (see section 3).

Some of the special matrices studied in this section are frequently used for

testing the stability of numerical algorithms and are available in MATLAB

through the function (gallery). We refer the reader to [14] and [15].

3 Other proofs and connections.

Positive definite functions. The concept of infinite divisibility is impor-

tant in the theory of characteristic functions of probability distributions.

Infinitely divisible distributions are exactly the class of limit distributions

for sums of independent random variables (see [7, pp.190–196] and [12, chap.
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9]). General techniques from this subject can be used to prove special results

on matrices.

A complex-valued function f on R is a positive definite function if for

every positive integer n and for every choice of points x1, . . . , xn in R the

n × n matrix [f(xi − xj)] is positive semidefinite. A theorem of Salomon

Bochner (see [7, p.174]) states that a function f : R → C that is continuous

at 0 is positive definite if and only if there exists a finite positive Borel

measure µ on R such that

f(x) =

∫ ∞

−∞

e−itxdµ(t). (10)

We say that f is the Fourier transform of µ and express this relationship

with the notation f = µ̂.

The measure µ is absolutely continuous if there exists a nonnegative in-

tegrable function g on R such that dµ(t) = g(t)dt. In this case the relation

(10) can be expressed as

f(x) =

∫ ∞

−∞

e−itxg(t)dt. (11)

We use the notation f = ĝ to express the relation (11), and say that f is the

Fourier transform of the function g. If f is integrable, then g can be obtained
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from f by the Fourier inversion formula

g(t) =
1

2π

∫ ∞

−∞

eitxf(x)dx. (12)

If ν1 and ν2 are two Borel measures on R, then there exists a unique Borel

measure ν on R such that

∫ ∞

−∞

f(t)dν(t) =

∫ ∞

−∞

∫ ∞

−∞

f(x − y)dν1(x)dν2(y) (13)

for every bounded Borel function f. This measure ν is called the convolution

of ν1 and ν2, and we use the notation ν1 ∗ ν2 for it (see [26, p.149]).

If the Fourier transforms of ν1 and ν2 are f1 and f2, respectively, then

ν̂1 ∗ ν2 = f1f2. A measure µ on R is called infinitely divisible if for each

positive integer m there exists a measure ν on R such that µ = ν ∗ ν ∗ · · · ∗ ν

(an m-fold convolution).

Bochner’s theorem and the Fourier inversion formula lead to a useful

criterion for positive definiteness. When a function f : R → C is continuous

and integrable, then it is positive definite if and only if f̂(t) ≥ 0 for almost

all t.

In view of this criterion, the integral representation

e−|x| =
1

π

∫ ∞

−∞

e−itx

1 + t2
dt
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shows that for every r > 0 the function e−r|x| is positive definite. This, in

turn, furnishes another proof of the infinite divisibility of the matrix N from

section 2.

One proof of the infinite divisibility of the Cauchy matrix reads as follows.

If λj = exj for j = 1, 2, . . . , n, then

1

λi + λj

=
1

exi/2 2 cosh
(

xi−xj

2

)

exj/2
.

Thus the Cauchy matrix is congruent to the matrix whose (i, j)th entry is

1

cosh
(

xi−xj

2

) .

Since congruence is an equivalence relation that preserves positive semidefi-

niteness, the following two statements are equivalent:

(i) For every n and for every choice of positive numbers λ1, . . . , λn the

n × n Cauchy matrix
[

1
λi+λj

]

is positive semidefinite.

(ii) The function f(x) = 1/ cosh x is positive definite.

The second of these statements can be proved by calculating the Fourier

transform of f. This turns out to be

f̂(t) =
1

cosh
(

tπ
2

) .
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Since f̂(t) > 0 for all t, the function f is positive definite by Bochner’s

theorem.

For positive r let g(x) = (cosh x)−r. A calculation involving contour

integrals shows that the Fourier transform of g is

ĝ(t) = 2r−2 1

Γ(r)

∣

∣

∣

∣

Γ
(r + it

2

)

∣

∣

∣

∣

2

.

This reveals that g is a positive definite function. We conclude that the

Cauchy matrix is infinitely divisible.

A proof along these lines is given in [5] and in [13]. Positive definiteness

of several other matrices is proved there. This method is especially useful in

showing that certain functions are not positive definite, hence that certain

matrices are not positive semidefinite.

The kernel M(x, y) = min(x, y) with x > 0 and y > 0 is known to be the

covariance kernel of the standard Brownian motion [7]. By what we said at

the begining of this section, this kernel is infinitely divisible in the following

sense: if ϕ is any integrable function defined on an interval [a, b] contained

in [0,∞), then for all positive r

∫ b

a

∫ b

a

M r(x, y)ϕ(x)ϕ(y)dxdy ≥ 0.

This gives another way of looking at the matrix M in section 2.
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Conditionally positive definite matrices. A Hermitian matrix A is con-

ditionally positive semidefinite if x∗Ax ≥ 0 for all vectors x in Cn such that

∑n
j=1 xj = 0.

Charles Loewner showed that if A is a symmetric matrix with positive

entries, then A is infinitely divisible if and only if its Hadamard logarithm

log◦(A) = [log aij] is a conditionally positive semidefinite matrix (see [21,

Theorem 6.3.13]). Good necessary and sufficient conditions for a matrix to

be conditionally positive semidefinite are also known. One of them asserts

that an n×n Hermitian matrix B = [bij] is conditionally positive semidefinite

if and only if the (n − 1) × (n − 1) matrix D with entries

dij = bij + bi+1,j+1 − bi,j+1 − bi+1,j

is positive semidefinite. A reference is [21, pp. 457-458], where these criteria

are used to prove the infinite divisibility of some matrices.

We illustrate how these ideas can be applied by considering the Pascal

matrix. From the foregoing discussion we know that the n×n Pascal matrix

P is infinitely divisible if and only if the (n − 1) × (n − 1) matrix D with

entries

dij = log
i + j + 2

i + j + 1
= log

(

1 +
1

i + j + 1

)

(14)
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is positive semidefinite. For x ≥ 0 we have

log(1 + x) =

∫ ∞

1

tx

t + x
dµ(t),

where µ is the probability measure on [1,∞) defined by dµ(t) = dt/t2. (see

[4, p. 145]). We exploit this representation to express dij in (14) as

dij =

∫ ∞

1

1

i + j + 1 + 1
t

dµ(t).

This implies that D is a limit of positive linear combinations of matrices

C(t) = [cij(t)], where

cij(t) =
1

i + j + 1 + 1
t

(t ≥ 1).

If we put λi = i + 1
2

(

1 + 1
t

)

, then

cij(t) =
1

λi + λj

.

Thus for each t in [1,∞) the matrix C(t) is a Cauchy matrix. Accordingly,

D is positive semidefinite.

Several applications of conditionally positive semidefinite matrices can

be found in the book [2]. Continuous analogues and their applications are

discussed in the monograph [24].

Operator monotone functions. If A and B are Hermitian matrices and

A − B is positive semidefinite, then we say that A ≥ B. Let f be any map
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of the positive half-line [0,∞) into itself. The function f is matrix monotone

of order n if f(A) ≥ f(B) whenever A and B are n× n positive semidefinite

matrices with A ≥ B. If f is matrix monotone of order n for n = 1, 2, . . . ,

then f is called operator monotone.

Two famous theorems of Loewner characterise operator monotone func-

tions. The first states that (a differentiable function) f : [0,∞) → [0,∞) is

matrix monotone of order n if and only if for all positive numbers λ1, . . . , λn

the n × n matrix
[

f(λi) − f(λj)

λi − λj

]

(15)

is positive semidefinite. (If λi = λj, the difference quotient in (15) is un-

derstood to mean f ′(λi). ) The matrix (15) is called the Loewner matrix

associated with f and λ1, . . . , λn.

The second theorem of Loewner asserts that f is operator monotone if

and only if it has an analytic continuation to a mapping of the upper half-

plane into itself. It was shown by Horn [16] that this analytic continuation

is a one-to-one (also called univalent or schlicht) map if and only if every

Loewner matrix associated with f is infinitely divisible.

From Loewner’s second theorem it is clear that the function f(t) = tν is

operator monotone when 0 < ν ≤ 1. Since the function f(z) = zν (principal
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branch) is univalent in the upper half-plane it follows from Horn’s theorem

that for every n and for all positive numbers λ1, . . . , λn the n × n matrix

[

λν
i − λν

j

λi − λj

]

is infinitely divisible if 0 < ν ≤ 1. In section 2 we proved this for special

values of ν.

The reader can consult [9] and [4, chap. 5] for the theory of operator

monotone functions.

4 MORE EXAMPLES.

GCD-matrices. The matrix mij = min(i, j) studied in section 2 is a cousin,

in spirit, of another matrix. For a given set S = {x1, . . . , xn} of distinct

positive integers the GCD-matrix associated with S is the matrix A with

entries aij = (xi, xj), the greatest common divisor of xi and xj. This matrix is

infinitely divisible. We outline a proof of this fact. To make for easier reading

we first prove that A is positive semidefinite. The proofs are borrowed from

papers by Beslin and Ligh [3] and Bourque and Ligh [6]. The elementary

concepts from number theory that we need can be found in a basic text such

as [1].
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Let ϕ signify the Euler totient function. For each positive integer n the

value ϕ(n) registers the number of integers m less than or equal to n such

that (m, n) = 1. One has the identity

∑

d|n

ϕ(d) = n. (16)

Here, as usual, d|n means that 1 ≤ d ≤ n and n is divisible by d.

A set F of positive integers is factor-closed if d belongs to F whenever

x is in F and d|x. The smallest factor-closed set F containing a set S is

called the factor-closure of S. Thus, for example, the set {2, 3, 5, 6, 10} is the

factor-closure of the set {2, 6, 10}.

Let S = {x1, . . . , xn} be an arbitrary set of distinct positive integers, and

let F = {d1, . . . , dt} be its factor-closure. Define n × t matrices E and B as

follows:

eij =















1 if dj|xi,

0 otherwise;

bij = eij

√

ϕ(dj). (17)

Then the (i, j)th entry of the matrix BB∗ is

t
∑

k=1

bikbjk =
∑

dk|xi
dk |xj

√

ϕ(dk)
√

ϕ(dk) =
∑

dk|(xi,xj)

ϕ(dk) = (xi, xj).
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This verifies that the GCD-matrix aij = (xi, xj) is positive semidefinite.

A (complex-valued) function f on N is multiplicative if f(mn) = f(m)f(n)

whenever (m, n) = 1. For example, the Euler ϕ-function is multiplicative.

The Dirichlet convolution f ∗ g of two multiplicative functions f and g is

defined by

(f ∗ g)(n) =
∑

d|n

f(d)g
(n

d

)

.

With this binary operation, the collection of multiplicative functions is an

Abelian group. The identity element of this group is the function ε such that

ε(1) = 1 and ε(1) = 0 when n > 1.

The Möbius function µ is defined as follows. First, µ(1) = 1. If n > 1,

write

n = pk1

1 pk2

2 . . . pkm

m ,

in which p1, . . . , pm are distinct primes. If k1 = k2 = · · · = km = 1 (i.e., if n

is square-free), define µ(n) = (−1)m; otherwise set µ(n) = 0.

The Möbius function is multiplicative. Its inverse in the group of multi-

plicative functions is the function u ≡ 1; (i.e., µ∗u = ε). Hence (f ∗µ)∗u = f,

or stated differently,

∑

d|n

(f ∗ µ)(d) = f(n) (18)

for every multiplicative function f.

28



We prove that the matrix
[

f
(

(xi, xj)
)]

is positive semidefinite for every

multiplicative function f such that f ∗ µ > 0. Instead of B defined by (17)

we now consider the matrix B with entries

bij = eij

√

(f ∗ µ)(dj). (19)

The same calculation as before, with the equality (18) replacing (16), shows

that

BB∗ =
[

f
(

(xi, xj)
)]

.

Choosing f(n) = nr with r > 0 we see that the GCD-matrix [(xi, xj)] is

infinitely divisible. If lij is the least common multiple of xi and xj, then the

argument given in section 2 in conjunction with the Lehmer matrix shows

that the matrix A with entries aij = 1/lij is likewise infinitely divisible.

Characteristic matrices. Let x1, . . . , xn be vectors in the space Rk. As-

sociate with them an n × n matrix A as follows. If exactly m coordinates

of the vector xi are equal to the corresponding coordinates of the vector xj,

then aij = m. Note that 0 ≤ m ≤ k. The matrix A is called the charac-

teristic matrix associated with x1, . . . , xn. If A′ is the characteristic matrix

associated with a rearrangement x′
1, . . . , x

′
n of the vectors x1, . . . , xn, then

A′ = S∗AS for some permutation matrix S. Every characteristic matrix is

29



positive semidefinite. One proof of this fact goes as follows.

First consider the case k = 1. We may arrange the numbers x1, . . . , xn in

such a way that they are grouped into disjoint classes S1, S2, . . . , S`, where

xi and xj belong to the same class if and only if they are equal. If ` = n,

then all the xi are distinct and the characteristic matrix A is equal to the

identity matrix. If ` = 1, then all the xi are equal to each other and A is

the flat matrix. If 1 < ` < n, let nj be the number of elements in the class

Sj (j = 1, 2, . . . , `). The matrix A is then an ` × ` block-diagonal matrix

whose diagonal blocks are flat matrices of sizes n1, n2, . . . , n`. Evidently, A is

positive semidefinite.

Now consider the case k > 1. Let Ap (1 ≤ p ≤ k) be the n × n matrix

whose (i, j)th entry is 1 if the pth coordinate of xi is equal to the pth co-

ordinate of xj, and 0 otherwise. Then A = A1 + · · · + Ak and each of the

summands is positive semidefinite.

A characteristic matrix is not always infinitely divisible. For example,

let x1 = (1, 1), x2 = (2, 1), and x3 = (1, 2). In this case we obtain the

characteristic matrix

A =













2 1 1

1 2 0

1 0 2













,
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which is not infinitely divisible.

Two comments are in order here. Our discussion suggests that there

might be something special about the pattern of zero entries in an infinitely

divisible matrix. The incidence matrix of an arbitrary matrix A is the matrix

G(A) = [gij], where gij = 1 if aij 6= 0 and gij = 0 if aij = 0. If aij > 0, then

limr→0+ ar
ij = 1. This shows that G(A) is positive semidefinite if A is infinitely

divisible. The argument we gave in conjunction with characteristic matrices

reveals that the condition that G(A) be positive semidefinite is equivalent

to the existence of a permutation matrix S such that S∗G(A)S is a block-

diagonal matrix in which each of the nonzero blocks is a flat matrix (see [18],

[21, p.457]). This gives a good necessary condition for infinite divisibility.

Our second remark points to a connection between characteristic matrices

and positive definite functions. Let G be any additive subgroup of R. Then

the characteristic function χ
G

is a positive definite function. Using this fact

one can see that if A is the matrix with aij = m if exactly m coordinates of

the vector xi − xj are in G, then A is positive semidefinite. The special case

G = {0} corresponds to the characteristic matrix.

Characteristic matrices arise in diverse contexts. See [25] for their use in

the study of distance matrices and interpolation problems.
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