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Abstract9

In this paper we report a computational study of the structural and vibra-
tional properties of the Mg-end members forsterite, wadsleyite and ring-
woodite of Mg2SiO4, and akimotoite, majorite and the perovskite phase of
MgSiO3. Our calculations have been carried out in the framework of Density
Functional Theory (DFT) using a plane wave basis set and the Projector-
augmented wave (PAW) method to account for the core electrons. All struc-
tures have been fully relaxed at a series of volumes corresponding to the
pressure range relevant to the transition zone in the Earth’s mantle, and
at each volume the phonon frequencies have been obtained and classified.
Using the quasi-harmonic approximation, we have estimated a series of ther-
modynamic properties for each structure, including the Gibbs free energy,
from which we have computed approximate phase diagrams for Mg2SiO4

and MgSiO3. In spite of our reliance on the quasi-harmonic approximation,
which is expected to break down at high temperatures, our calculated phase
diagrams qualitatively reproduce the main features expected from diagrams
fitted to experimental data. For example, from the computed phase dia-
gram for Mg2SiO4 we obtain a post-spinel boundary at P = 22.1 GPa at T
= 1873 K, with a slope of -3.4 MPa/K.This supports experimental results
suggesting a relatively large slope rather than those favouring a much flatter
one. It also suggests that vertical deflections of the 660 km discontinuity due
to thermal signatures from plumes and slabs should be similar to those at the
410 km, and that a deflection of 35 km as seen in recent seismic studies could
be caused by a thermal anomaly as small as 330 K. We also identify the triple
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point between the ringwoodite, ilmenite (plus periclase) and perovskite (plus
periclase) phases to be at P = 22.9 GPa and T = 1565 K. Our results clearly
illustrate the stringent requirements made on theoretical models in order to
extract predictions compatible with the available experimental data.

Key words:10

Mantle Minerals, Thermodynamics of Minerals, Mantle Transition Zone,11

First Principles Simulation12

1. Introduction13

Our understanding of the internal structure and dynamics of the Earth14

and similar planets builds up through the constructive interplay of geophys-15

ical observation (mostly of seismography data) and mineral physics. Geo-16

physical observation has resulted in a wealth of data on the variation of17

S and P waves and the density as a function of depth, but does not pro-18

vide direct information on composition or temperature. It has long been19

recognised, however, that the layered internal structure of the Earth, as re-20

vealed by seismological data analysis, correlates with the occurrence of a21

series of phase transitions in its material constituents. Indeed, the upper-22

mantle (“410 km”) discontinuities are attributed to the olivine to β-spinel23

(wadsleyite) and γ-spinel (ringwoodite) phase transitions; likewise, the tran-24

sition zone-to-lower mantle discontinuity is thought to arise from the post-25

spinel disproportionation reaction, in which the ringwoodite γ-spinel struc-26

ture of (Mg1−x,Fex)2SiO4 decomposes into (Mg1−y,Fey)SiO3 plus ferroperi-27

clase (Bina and Helffrich, 1994). In this respect, one of the aims of mineral28

physics is to propose compositional models that can reproduce/explain the29

geophysical observations, thus gaining a more detailed understanding of the30

nature of the observed seismic transitions and of how these correlate with31

chemical composition in the mantle. However, the experimental task re-32

quired for this is a daunting one, given the range of possible compositions,33

the technical difficulties involved in reproducing the temperature and pres-34

sure conditions that are relevant to the Earth’s interior, and in carrying out35

controlled experiments at such conditions. Nevertheless, given the geophys-36

ical relevance of these materials, it is not surprising that a great number37

of experimental as well as theoretical studies have been devoted to the un-38

derstanding of their thermodynamics in general, and their phase dynamics39

in particular (see e.g. Stixrude and Lithgow-Bertelloni (2011); Wentzcovitch40
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et al. (2010) and references therein).41

In this article we report the results of an extensive computational study42

based on Density Functional Theory (DFT) (Hohenberg and Kohn, 1964;43

Kohn and Sham, 1965) of the structural and dynamic properties of various44

phases of composition Mg2SiO4 and MgSiO3 relevant to the transition zone45

of the Earth’s mantle. We have determined the Gibbs free energy of each46

phase on the basis of the quasi-harmonic approximation, and used those free47

energies to obtain qualitative phase diagrams for these systems.48

There are a number of reason that make this a worthwhile approach. First49

of all, the entire phase diagram is predicted within exactly the same level of50

theory, and by comparing with experimental data, provides a stringent test of51

these methods. Secondly, we shown how small uncertainties in free energies52

affect the phase boundaries and slopes, again providing valuable insight into53

how sensitive phase boundaries are to DFT uncertainties. And thirdly, there54

are aspects of the phase diagram which are still uncertain. These include the55

position of triple points, but also the Clapeyron slope of the ringwoodite to56

perovskite plus periclase phase transition. This is geophysically important57

in that the magnitude of the slope affects mantle flow between the upper58

and lower mantle. Moreover, the magnitude of the slope has implications59

for seismic detection of the deflection of the phase phase boundaries due to60

thermal signatures of plumes and slabs.61

The structure of this paper is the following: in Sec. 2 we describe the62

computational approach used in this study. Sec. 3 is devoted to a detailed63

discussion of our results; first, in §3.1 we describe the structures obtained64

through relaxation calculations for each phase; secondly, §3.2 is devoted to65

a discussion of the vibrational properties. In the interest of space we only66

discuss in detail the cases of forsterite (Mg2SiO4) and the orthorhombic per-67

ovskite phase of MgSiO3, as representative cases of each composition. The68

vibrational properties of the remaining phases are discussed in an appendix69

at the end of this paper, except in the cases of majorite, MgO (periclase)70

and SiO2 (stishovite), which are reported in a supplementary information71

file. Our calculated phase diagrams are reported in §3.3, where we compare72

them to the available experimental and previous theoretical data. Finally, in73

Sec. 4 we summarise our results and conclusions.74
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2. Computational methodology75

Our calculations have been carried out using the VASP code (Kresse76

and Furthmüller, 1996), an efficient program for performing DFT simula-77

tions using a plane-wave basis set, combined with the Projector augmented78

Wave (PAW) method (Blöchl, 1994), which enables VASP to perform all-79

electron calculations (Kresse and Joubert, 1999) within this framework. The80

code uses an efficient charge-density extrapolation technique (Alfè, 1999)81

which enables it to reduce the number of self-consistency cycles required in82

subsequent steps of a molecular dynamics or structural relaxation simulation.83

Our calculations have been performed employing the Perdew-Wang (PW91)84

Generalized Gradient Approximation (GGA) functional (Wang and Perdew,85

1991) to account for the exchange-correlation energy. While it is well-known86

that the use of the Local Density Approximation (LDA) to the exchange-87

correlation energy generally results in equilibrium lattice parameters and88

volumes that match more closely their experimental counterparts than those89

predicted by GGA functionals, it is also well-established that the position90

of LDA-calculated phase boundaries is much worse, sometimes being un-91

derestimated by ∼10 GPa or more (see e.g. Yu et al. (2007, 2008, 2011)).92

Since our primary aim in this study is to determine the phase diagrams of93

Mg2SiO4 and MgSiO3, we have resorted to using a GGA functional. A ki-94

netic energy plane-wave cutoff of 500 eV has been used in our simulations; it95

will be shown below that this is sufficient to converge energy and enthalpy96

differences between the various structures considered in this study, and is97

also sufficient for adequately converging the atomic forces, a requirement for98

the phonon calculations to be discussed below. Since all the minerals we99

have concerned ourselves with in this study have sizeable band gaps at the100

Fermi energy1, requirements on the k-point sampling have not been large.101

In Table 1 the actual k-point sampling grids (Monkhorst and Pack, 1976)102

used for each structure are listed. Also listed in the table is the number of103

formula units per primitive cell for each structure. We note that for com-104

1The gap in forsterite at 0 GPa is calculated to be ∼ 5 eV, and actually increases
slightly within the pressure range considered here; the same occurs for wadsleyite and
ringwoodite, which have comparable gap sizes; MgSiO3 in the perovskite structure has a
larger gap, ∼ 5.8 eV at 0 GPa, which also shows a tendency to increase with pressure;
akimotoite has a similar sized gap, while that of majorite is comparable to the gaps of the
Mg2SiO4 structures).
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putational convenience and expedience the calculations reported below have105

all been performed on primitive cells of the corresponding structures, even106

in the cases such as ringwoodite, wadsleyite, akimotoite and majorite, for107

which experimental structures are usually quoted in a conventional unit cell,108

several times larger than the primitive one.109

Structure composition f.u./u.c. k-point grid Nr. k-points
Forsterite (fo) Mg2SiO4 4 6× 4× 6 18
Wadsleyite (wa) Mg2SiO4 4 4× 4× 4 17
Ringwoodite (ri) Mg2SiO4 2 8× 8× 8 60
Akimotoite (ak) MgSiO3 2 8× 8× 8 88
Majorite (mj) MgSiO3 16 4× 4× 4 14
Perovskite (pv) MgSiO3 4 6× 6× 4 18
Periclase (pe) MgO 1 8× 8× 8 60
Stishovite (st) SiO2 2 8× 8× 10 50

Table 1: The structures considered in this study. Listed is the chemical composition of
each structure, the number of formula units per primitive unit cell, the Monkhorst-Pack
sampling used in each case, and the number of k-points in which it resulted.

With the above set-up, our strategy has been to conduct an initial series110

of fixed-volume structural relaxations for each system at different volumes. In111

some cases, such as ringwoodite (a cubic structure) the relaxation involved112

only internal (atomic) coordinate variables, but in general lattice parame-113

ters have also been relaxed in order to attain a hydrostatic pressure at each114

volume. From these initial calculations we were able to obtain for each struc-115

ture a sequence of volumes corresponding to pressures in the range ≈ −20116

to 30 GPa at intervals of ∼2.5 GPa. It was necessary to consider volumes117

corresponding to negative pressures so as to appropriately account for the118

thermal expansion at finite temperatures (see below). Each of these config-119

urations were then carefully relaxed at each volume, with a view to perform120

a phonon calculation using the small displacements method implemented in121

the PHON code (Alfè, 2009). Each structure was relaxed until forces on all122

atoms were smaller than 10−6 eV/Å, in order to ensure that the calculated123

phonon frequencies were unaffected by numerical noise in the forces. These124

calculations provided us with phonon band structures and vibrational den-125

sities of states (VDOS), as well as with a quasi-harmonic approximation to126

the vibrational free energy for each structure and each volume considered,127
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from which we were then able to construct an approximate phase diagrams128

for the Mg2SiO4 and MgSiO3 systems, which constitute the central result of129

this work.130

3. Results131

3.1. Structural relaxation132

Figure 1: (Colour online) Total energy vs volume. The left panel shows results obtained
for structures with Mg2SiO4 composition, namely fosterite (fo), wadsleyite (wa) and ring-
woodite (ri), while the right panel shows results for structures of MgSiO3 composition,
akimotoite (ak), majorite (mj) and the perovskite (pv) structure. Data shown with dashed
and continuous lines of the same colour have been obtained for the same structure, but
using a plane wave cutoff of 500 and 1000 eV, respectively.

Fig. (1) shows the variation of the total energy as a function of volume for133

the Mg2SiO4 and MgSiO3 structures considered in this work. Two sets of data134

are shown for each structure; the dashed lines represent results obtained with135

a plane wave cutoff of 500 eV, while the continuous lines in the same colour136

show data obtained for the same structure, but with a cutoff of 1000 eV,137

similar to that used by Yu et al. (2008) for their determination of the phase138

boundaries between forsterite, wadsleyite and ringwoodite. It is obvious from139

the data shown in Fig. (1) that the total energy is not fully converged with the140

lower plane wave cutoff, though the differences in total energy are small (in141

all cases smaller than 0.04 eV/f.u.). It should be stressed, however, that our142

results do not rely on the full convergence of the total energy, but on that of143

the energy differences between the various structures. That energy differences144

are fully converged for this system with a plane wave cutoff of 500 eV is145

argued below and demonstrated in Fig. (2). By fitting the data plotted in146
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Fig. (1) to the Murnaghan (Murnaghan, 1944) or Birch-Murnaghan (Birch,147

1947) equation of state we can obtain values for the equilibrium volume, bulk148

modulus and its pressure derivative for each of the structures in this study.149

A selection of the data obtained is reported in Table 2. The differences in150

equilibrium volume and bulk modulus obtained when using either equation of151

state are small and fairly systematic (the equilibrium volume increases by an152

amount of the order of 0.01 %, while the bulk modulus reduces by an amount153

smaller than 1 %), so we only quote the data obtained by fitting to the Birch-154

Murnaghan equation of state. The effect of increasing the plane wave cutoff155

from 500 to 1000 eV is generally to reduce the equilibrium volume by an156

amount smaller than 0.1 % (except in the case of the perovskite structure,157

which increases its volume by 0.03 %), and to change the bulk modulus by158

about 1 % (again with the exception of perovskite, which increases it by159

∼ 2.5 %).160

Together with our calculated results, Table 2 lists a selection of data161

from previous theoretical as well as experimental studies for comparison.162

Most of the previous computational studies have been performed with the163

local-density approximation (LDA) to the exchange-correlation energy, al-164

though we also quote data from a study (Ottonello et al., 2009) that used165

the B3LYP (Becke, 1993; Stephens et al., 1994) hybrid functional, and from166

another one (Yu et al., 2011) using the generalised-gradient functional due167

to Perdew et al. (1996) (PBE). Overall, it can be seen from Table 2 that168

there is reasonable agreement, within well-known trends, of our data with169

the results of previous simulation studies. LDA data for equilibrium volumes170

slightly under-estimates the experimental volumes. Our own volume values171

are larger than the LDA calculated data typically by 1-3 %. Agreement is172

closer with the B3LYP results of Ottonello et al. (2009) for the Mg2SiO4173

structures, which our own results overshoot by less than 1 %. Conversely,174

bulk moduli obtained with either the LDA or B3LYP functionals are gen-175

erally slightly higher than ours, while its pressure derivative seems to be176

rather insensitive to the calculation model, having a value that oscillates177

around 4. Concerning the comparison with available experimental data, we178

observe that our calculated equilibrium volumes tend to over-estimate the179

experimental values by about 2.5-3 %, which is in line with the well-known180

over-estimation of lattice parameters by ∼ 1 % of the PW91 GGA functional181

used in our calculations. The trend is less clear on the bulk moduli predic-182

tion: although there seems to be a general tendency to under-estimate it183

by about 10 %, in the case of ringwoodite the calculated value is larger by184
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the same amount. Below we provide more detailed structural comparisons185

between the calculated structures and their experimental counterparts.186

Calculated Experiment

Structure V0 (Å
3
) B (GPa) dB/dP V0 (Å

3
) B (GPa) dB/dP

Forsterite 297.4 117.4 4.42 288.6a 120.0a –

296.7k, 289.5l 130.8k, 126.4l 4.0k, 4.2l

Wadsleyite 552.2 155.0 4.65 539.26b 172.0b 6.3b

550.4k, 541.35m 161.8k, 165.7m 4.4k, 4.4m

Ringwoodite 537.5 175.2 4.28 525.73c 159.0d 6.3d

530.9k, 527.5n 196.4k, 184.6n 4.3k, 4.5n

Akimotoite 270.65 188.4 4.6 262.6e 219e 4e

261.7o, 271.8r 210o, 207.5r 4.6o, 3.7r

Majorite 1559.4 146.8 4.6 1518.6f 166g 4.2g

1519.2q, 1584.4r 160.8q, 137.8r 4.3q,r

Perovskite 167.2 229.7 4.4 162.36h 254h 4h

164.1p, 169.7r 247p, 223.7r 3.9p,r

Periclase 76.2 153.3 4.14 74.698i 164i 4.05i

75.24s 159s 4.30s

Stishovite 48.24 260.3 5.7 46.61j 292j 6j

46.31t 318.33t 4.37t

Table 2: Equilibrium volumes of the unit cell (V0), bulk modulus (B) and its pressure
derivative for each structure, as obtained by fitting the calculated total energies of each
structure [see Fig. (1)] to the Birch-Murnaghan equation of state. The displayed calculated
data has been obtained with a plane-wave cutoff of 1000 eV; data evaluated with a cutoff
of 500 eV is very similar (see text) and is not shown. The experimental data is from
the following references: a Hazen (1976); b Hazen et al. (2000); c Hazen et al. (1993); d
Ye et al. (2012); e Yamanaka et al. (2005); f Angel et al. (1989); g Sinogeikin and Bass
(2002); h Ross and Hazen (1990); i Jacobsen et al. (2008); j Yamanaka et al. (2002).
Selected calculated values reported by other authors are from k Ottonello et al. (2009),
obtained using the B3LYP functional, l Li et al. (2007) (LDA); m Wu and Wentzcovitch
(2007) (LDA); n Yu and Wentzcovitch (2006) (LDA); o Karki (2002) (LDA); p Karki
et al. (2000) (LDA); q Yu et al. (2011) (LDA); r Yu et al. (2011) (PBE); s Karki et al.
(2000b) (LDA); t Oganov et al. (2005) (LDA).

Let us now consider the question of the convergence of the total energy187
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differences with respect to the employed plane wave cutoff. The relevant data188

is displayed in Fig. (2), where we have plotted enthalpies vs pressure rather189

than energies vs volume, so as to be able to show on the same graph the190

data for structures of Mg2SiO4 composition together with those of MgSiO3191

composition, by adding the enthalpy of MgO periclase to the latter. Again,192

two sets of data are shown for each structure: a continuous line showing193

data obtained with the lower cutoff, and dots of the same colour obtained194

with the larger cutoff. The enthalpies are referred to that of the ringwoodite195

structure.196

The first observation to be extracted from Fig. (2) is that enthalpy (and197

hence total energy) differences are fully converged with a plane wave cutoff198

of 500 eV. Indeed it can be appreciated that the data obtained with both the199

lower and higher cutoffs fall neatly on top of each other in all the pressure200

range considered in this study. We can also see in Fig. (2) the sequence201

of phases predicted by our calculations in the low temperature limit of the202

phase diagram: in the pressure range 0–11.4 GPa forsterite is predicted to203

be the most stable structure, followed by wadsleyite from 11.4–14.5 GPa,204

then ringwoodite in the range 14.5 to 20.2 GPa, at which point akimotoite205

(plus periclase) becomes stable, followed by stishovite (plus periclase, SiO2 +206

2MgO) from 25.3 GPa onwards. Although not shown in the figure, which only207

goes up to 30 GPa, it is evident from the slopes of the enthalpy differences208

that at higher pressures ultimately the perovskite and periclase combination209

will become the most stable one. We should also note that the enthalpies210

displayed do not contain the zero-point vibrational contribution; although211

this contribution is not generally important at the temperatures relevant to212

the mantle, it can have a noticeable effect at low temperatures. In particular,213

the combination of stishovite plus periclase is practically wiped out of the214

phase diagram when this contribution is properly included [see Fig. (11)]. A215

final observation to be derived from Fig. (2) is the fact that the majorite216

phase is never seen to be the most stable one at low temperature. This is217

consistent with the expectation that this phase is only stabilized at finite218

temperatures.219

The low-temperature phase diagram of the Mg2SiO4 system is not known220

in detail, as experiments are usually conducted at higher temperatures. Nev-221

ertheless, inferences can be made from the high-temperature experimental222

data, and our zero-temperature results are not inconsistent with those. Com-223

paring with previous theoretical studies, Yu et al. (2008) have reported a fo–224

wa transition pressure of 6.5 GPa calculated with the LDA functional, and225
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Figure 2: (Colour online) Enthalpy vs pressure for all structures considered in this study.
The enthalpies are referred to that of ringwoodite. Two sets of data are shown for each
case: a continuous line, evaluated with a plane wave cutoff of 500 eV, and thick dots of the
same colour, evaluated at 1000 eV cutoff. The enthalpy of periclase (pe) has been added
to that of the structures with MgSiO3 composition (twice to that of stishovite, SiO2) to
account for the difference in chemical composition with the Mg2SiO4 structures. Keys:
ak≡akimotoite; fo≡forsterite; mj≡majorite; pe≡periclase; pv≡perovskite; st≡stishivite;
wa≡wadsleyite.

12.6 GPa with the PBE–GGA functional; this latter figure is rather close226

to our estimation of 11.4 GPa. For the wa–ri transition they report values227

of 9.6 (LDA) and 15.7 GPa (PBE-GGA), the latter value again being close228

to our own result for this transition. To our knowledge, pressures for the229

ri–(ak+pe) and ak–(st+pe) transitions have not been hitherto evaluated.230

Forsterite crystallizes in the orthorhombic crystal system, having space231

group Pnma (Hazen, 1976). The structural parameters resulting from our232
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relaxation calculation at 0 GPa are compared to an experimental structural233

determination reported by Hazen (1976) in Table 3. As already mentioned234

above, the theoretical lattice parameters over-estimate the experimental ones235

by a maximum of 1%, which is commonly the case with GGA functionals.236

This mismatch in the lattice parameters amounts to a 3% overestimation of237

the equilibrium volume. Otherwise, the atomic positions are satisfactorily238

reproduced, as seen in the table. The degree of agreement that is seen for239

the atomic positions in the case of forsterite is typical of what we find for the240

remaining structures considered in this study.241

This work Hazen (1976)
a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
4.793 10.283 6.020 4.746 10.18 5.976

atom site x y z x y z
Mg 4a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mg 4c 0.9917 0.2772 0.2500 0.9914 0.2772 0.2500
Si 4c 0.4265 0.0936 0.2500 0.4261 0.0939 0.2500
O 4c 0.7669 0.0916 0.2500 0.7661 0.0919 0.2500
O 4c 0.2224 0.4465 0.2500 0.2202 0.4469 0.2500
O 8d 0.2768 0.1629 0.0323 0.2777 0.1628 0.0333

Table 3: Forsterite structural parameters, as obtained from our structural relaxation cal-
culations at zero pressure, compared to the experimental structure obtained by Hazen
(1976) at 77 K and 1 atm. For comparison with the experiment, data is listed here in the
Pbnm non-standard setting of space group Pnma.

The agreement observed between experimental and theoretically obtained242

lattice parameters is not confined to zero pressure. As an illustration of243

this, we show in Fig. (3) a comparison between the experimental data of244

Kudoh and Takeuchi (1985) and our calculated lattice parameters and volume245

up to pressures of 15 GPa. It is apparent that the over-estimation of the246

lattice parameters observed at zero pressure persists at higher pressures,247

but the response of the system to increasing pressures is nicely reproduced248

by the calculations. This is shown more quantitatively by comparing the249

experimental and calculated axial compressibilities, obtained by fitting the250

data shown in Fig. (3) to a first-order polynomial of the form a(P ) = (1 −251

βaP )a(0) for lattice parameter a, and equivalently for b and c. Doing this252

with the experimental data results in βa = 1.36, βb = 2.61 and βc = 2.56 ×253

10−3 GPa−1, respectively, while from the theoretical data we obtain values254
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Figure 3: (Colour online) Comparison of experimental and theoretical lattice parameters
and volume vs. pressure for the forsterite structure. The experimental data, taken from
Kudoh and Takeuchi (1985), is shown as red symbols, while the theoretical data from this
work is shown as blue symbols with lines; parameters a. b and c are shown as circles,
triangles and squares, respectively, while the volume is represented by diamonds. The
scatter in the theoretical data, particularly noticeable in the b lattice parameter, is due to
the relatively low sensitivity of the total energy to small changes in the lattice parameter
values close to the equilibrium structure. As well as displaying experimental and calculated
(this work) volume vs. pressure data, the right panel shows also a fit to the calculated
data obtained by Li et al. (2007) at 300 K using the LDA approximation (continuous green
line).

of βa = 1.56, βb = 2.61 and βc = 2.13× 10−3 GPa−1. It is interesting to note255

that the axial compressibilities along b and c, i.e. along the larger lattice256

parameters, are significantly larger than along a. The same procedure applied257

to the volume leads to a compressibility value of βv = 6.4× 10−3 GPa−1 for258

the experimental data, compared to βv = 6.1×10−3 GPa−1 for the calculated259

volumes.260
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Also displayed in Fig. (3) (right panel) is the volume-vs.-pressure curve261

(shown in green) obtained by fitting the calculated data obtained by Li et al.262

(2007) (calculated at 300 K using the LDA approximation) to a third-order263

Birch-Murnaghan equation of state (Birch, 1947). This curve is very similar264

to the one we obtain, but shifted downward, giving a closer match to the265

experimental volumes of Kudoh and Takeuchi (1985), as expected of LDA266

calculated volumes.267

Wadsleyite, like forsterite, is an orthorhombic crystal, having space group268

Imma. In Table 4 we compare lattice parameters and atomic positions of the269

relaxed structure at 0 GPa according to our calculations, with those exper-270

imentally obtained by Hazen et al. (2000). The level of agreement between271

both sets of results is comparable to that already observed in the case of272

forsterite and that we will encounter again in subsequent structures. The273

spinel structure of Mg2SiO4 ringwoodite is cubic, with space group Fd3̄m.274

Our relaxed structure has a lattice parameter of 8.13 Å at zero pressure, to275

be compared with the value of 8.071 Å reported by Hazen et al. (1993) (a276

difference of less than 1%). In this structure, the Mg atoms are found at277

Wyckoff positions 16d (1/2,1/2,1/2), while the Si atoms are at positions 8a278

(1/8,1/8,1/8). The oxygen atoms are found at 32e positions, with coordi-279

nates (x, x, x ). In our relaxation calculations, a value x = 0.2443 results,280

compared to the experimental value of x = 0.2441 reported by Hazen et al.281

(1993).282

This work Hazen et al. (2000)
a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
5.740 11.536 8.324 5.6978 11.4620 8.2571

atom site x y z x y z
Mg 4a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mg 4e 0.0000 0.2500 0.9706 0.0000 0.2500 0.9698
Mg 8g 0.2500 0.1274 0.2500 0.2500 0.1269 0.2500
Si 8h 0.0000 0.1196 0.6166 0.0000 0.1199 0.6165
O 4e 0.0000 0.2500 0.2167 0.0000 0.2500 0.2182
O 4e 0.0000 0.2500 0.7169 0.0000 0.2500 0.7157
O 8h 0.0000 0.9904 0.2554 0.0000 0.9898 0.2565
O 16j 0.2605 0.1226 0.9929 0.2601 0.1226 0.9931

Table 4: Wadsleyite structural parameters at zero pressure. Experimental data are taken
from Hazen et al. (2000).

13



This work Ross and Hazen (1990)
a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
4.814 4.971 6.952 4.778 4.928 6.899

atom site x y z x y z
Mg 4c 0.5147 0.5565 0.2500 0.5132 0.5563 0.2500
Si 4b 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
O 4c 0.1046 0.4645 0.2500 0.1031 0.4654 0.2500
O 8d 0.1961 0.2013 0.5540 0.1954 0.2011 0.5510

Table 5: MgSiO3 Perovskite structural parameters, as obtained from our structural relax-
ation calculations at zero pressure, compared to the experimental structure obtained by
Ross and Hazen (1990) at room temperature and 0.001 GPa.

This work Yamanaka et al. (2005)
a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)
4.785 4.785 13.670 4.729 4.729 13.559

atom site x y z x y z
Mg 6c 0.0000 0.0000 0.36061 0.0000 0.0000 0.36029
Si 6c 0.0000 0.0000 0.1577 0.0000 0.0000 0.15773
O 18f 0.3217 0.03621 0.2404 0.3230 0.0366 0.23956

Table 6: Structural parameters of akimotoite (ilmenite structure) obtained at 0 GPa;
experimental results are taken from Yamanaka et al. (2005)

.

We now turn our attention to the structures with MgSiO3 composi-283

tion, starting with the perovskite structure. This polymorph presents an284

orthorhombic distortion with respect to the ideal cubic perovskite structure,285

which results from a concerted rotation of the SiO6 octahedra present in the286

structure. In Table 5 we present a comparison of our calculated zero-pressure287

lattice parameters and atomic positions with experimental data at a similar288

pressure obtained by Ross and Hazen (1990). It can be appreciated there that289

once more the level of agreement in lattice parameters (differences smaller290

than 1 %) falls within the expected range for the exchange-correlation func-291

tional used in this work, and is comparable to that obtained for the Mg2SiO4292

polymorphs. To demonstrate that this is the case also at higher pressures, in293

Fig. 4 we plot a comparison of calculated and experimental lattice parameters294

and volume at a range of pressures. It can be seen there that the theoretical295
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This work Angel et al. (1989)

a (Å) c (Å) V (Å
3
) a (Å) c (Å) V (Å

3
)

11.617 11.548 1558.5 11.501 11.480 1518.6
atom site x y z x y z
Mg 8c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mg 8e 0.5000 0.2500 0.6230 0.5000 0.2500 0.6258
Mg 16f 0.6294 0.0145 0.2690 0.6253 0.0112 0.2587
Si 4a 0.5000 0.2500 0.3750 0.5000 0.2500 0.3750
Si 4b 0.5000 0.2500 0.8750 0.5000 0.2500 0.8750
Si 8d 0.5000 0.0000 0.0000 0.5000 0.0000 0.0000
Si 16f 0.6249 0.0107 0.7560 0.6249 0.0065 0.7544
O 16f 0.5253 0.0586 0.6678 0.5282 0.0550 0.6633
O 16f 0.5439 0.9548 0.8605 0.5380 0.9529 0.8562
O 16f 0.7239 0.1060 0.8050 0.7195 0.1023 0.8021
O 16f 0.7129 0.9150 0.7021 0.7150 0.9106 0.7000
O 16f 0.4373 0.1628 0.4687 0.4412 0.1617 0.4680
O 16f 0.3977 0.2145 0.7824 0.3960 0.2080 0.7851

Table 7: Structural parameters of tetragonal majorite (space group I41/a). Experimental
data is taken from Angel et al. (1989).

data mimics the response of the real system to the increasing pressure, as296

was the case for forsterite, discussed above. This is borne out by a com-297

parison of the axial compressibilities; the experimental data provide values298

of β of 1.2, 1.0 and 1.2 × 10−3 GPa−1 for a, b and c, respectively, nearly299

identical to the theoretical values, namely 1.2, 1.1 and 1.2× 10−3 GPa−1. It300

is interesting to note that here the compressibilities (both experimental and301

theoretical) along different crystallographic axes are very similar, contrary302

to what happens in the forsterite structure, an observation that reflects the303

fact that the perovskite structure is more nearly isotropic. We also compare304

our results for the volume shown on the right panel of Fig. 4 to LDA values305

obtained by Karki et al. (2000) at 300 K. The green curve shown in the figure306

results from fitting the data of Karki et al. (2000) to a Birch-Murnaghan307

third order equation. It can be appreciated that their calculations result in308

slightly lower volumes than those we obtain, as expected, but the volume309

response to imposed pressure is similar in both cases.310

The remaining structures of MgSiO3 composition relevant to this study311
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Figure 4: (Colour online) Calculated and experimental lattice parameters and volume
of the perovskite structure as a function of pressure. The experimental data is taken
from Ross and Hazen (1990); different colours represent data from different samples. Our
calculated data is shown as black symbols and continuous lines. The continuous green line
shown on the right panel is a fit to the data obtained by Karki et al. (2000) using the LDA
approximation.

are akimotoite and majorite. Akimotoite has the ilmenite structure (space312

group R3̄), and majorite is a garnet; we have only considered the tetragonal313

I41/a structure of majorite, with ordered cations. Tables 6 and 7 compare314

the structural parameters for these structures as obtained from our relaxation315

calculations with experimental data, and demonstrate they are reproduced316

with the same level of fidelity as obtained for the perovskite structure and317

for the structures of Mg2SiO4 composition considered above.318
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3.2. Vibrational properties319

The calculation of phonon frequencies and related properties by means320

of the small-displacement method (Alfè, 2009) requires that the plane-wave321

cutoff be sufficiently large to adequately converge the forces on the atoms in322

the cell. We have checked that the kinetic energy cutoff of 500 eV used in323

our calculations was sufficient to comply with this requirement. Indeed, spot324

checks for the individual structures considered in this study show that the325

difference between atomic force components calculated with a kinetic energy326

cutoff of 500 eV and those obtained with a cutoff twice as large were of the327

order of 10−5 eV/Å, i.e. typically a factor of 104 smaller than the actual328

magnitude of the force components themselves. We thus performed all the329

phonon calculations reported below with the 500 eV plane-wave cutoff.330

We will discuss in detail the calculation of vibrational frequencies and331

related properties for the particular cases of forsterite and the perovskite332

structures, as representatives of the Mg2SiO3 and MgSiO3 stochiometries,333

respectively. Calculated values for the remaining structures considered in334

this study will be provided in the appendix, but calculation procedures and335

analysis have been carried out in an entirely parallel fashion as for the cases336

of these representative structures. Nevertheless, in Figures 5 and 6 we dis-337

play the calculated phonon band structures and corresponding densities of338

vibrational states for each of the structures considered here, calculated at 0339

and 15 GPa. The high symmetry directions in the Brillouin zone used in the340

band structure plots correspond to those listed by Setyawan and Curtarolo341

(2010).342

The forsterite structure has D2h (mmm) point group symmetry, and its343

vibrational modes can thus be classified according to the irreducible repre-344

sentations of this point group. The primitive cell of this structure contains345

28 atoms, giving raise to 84 vibrational modes, of which 3 will be acoustic346

modes having zero frequency at the Brillouin zone centre. Using group theory347

and with the help of program SAM (Kroumova et al., 2003) from the Bilbao348

Crystallographic server (Aroyo et al., 2006a,b, 2011) it is easy to see that349

the lattice vibrations of this structure can be decomposed into the following350

irreducible representations:351

Γvib = 11Ag ⊕ 10Au ⊕ 7B1g ⊕ 14B1u ⊕ 11B2g ⊕ 10B2u ⊕ 7B3g ⊕ 14B3u. (1)

For an orthorhombic structure such as forsterite, several choices of cell ori-352

entation are possible, which result from the different possible alignments of353
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Figure 5: Phonon band structures and vibrational densities of states at 0 and 15 GPa,
calculated for the polymorphs of Mg2SiO4 sochiometry.
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Figure 6: Phonon band structures and vibrational densities of states at 0 and 15 GPa
obtained for the MgSiO3 polymorphs considered in this study.
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lattice vectors with symmetry elements. In this work we use the standard354

Pnma setting (see above), but it is not infrequent to see forsterite described355

in the non-standard Pbnm setting. While the actual choice of setting is of356

course physically irrelevant, it does affect the classification of the vibrational357

modes into irreducible representations of the space group. This should be358

borne in mind when comparing our data to that of previous calculations by359

other authors. Modes symmetric with respect to the inversion symmetry el-360

ement of the structure (i.e. those pertaining to an irreducible representation361

with g sub-index) are Raman active, while those that are anti-symmetric362

(with a u sub-index) are Infrared (IR) active, with the exception of modes363

having Au symmetry, which are neither Raman nor IR active (silent modes).364

The three acoustic modes have B1u ⊕ B2u ⊕ B3u symmetries; the remain-365

ing 81 modes are optic. Bearing in mind all the above we can conclude366

that forsterite should have a total of 36 Raman-active modes and 38 IR-367

active modes (35 after excluding the three acoustic modes). In Table 8 we368

list the 0 GPa pressure calculated Raman mode frequencies. For compar-369

ison, we also list in the table the results of earlier theoretical calculations370

by Li et al. (2007) and Noel et al. (2006), as well as experimental results371

by Iishi (1978), Chopelas (1991a) and Gillet et al. (1991). Together with372

the phonon frequencies we list their pressure derivatives and Grüneisen pa-373

rameter, γi = −d log νi/d log V . Previous theoretical/experimental values for374

these are also provided when available. Also listed are the estimated frequen-375

cies at the experimental volume. Calculated values for the IR-active modes376

are listed in Table 9.377

Let us first compare our results for the Raman active modes to the vi-378

brational data obtained in previous theoretical studies, starting with that379

of Li et al. (2007). On average, our frequencies are ∼ 20 cm−1 lower than380

their calculated values; lower frequencies are in better agreement, differing381

usually by less than 10 cm−1, although the discrepancy increases with fre-382

quency, reaching ∼ 30 cm−1 for the higher frequency modes. The fact that383

our calculated frequencies are smaller than the corresponding ones obtained384

by Li et al. (2007) is attributable in part to the fact that our calculated equi-385

librium volume (296.9 Å
3
) is larger than the LDA predicted value, but also386

to the use of different exchange-correlation functionals (LDA in their case,387

GGA in ours). Since we have evaluated the phonon frequencies at a series388

of volumes, it is possible to estimate the frequencies that we would obtain at389

the LDA equilibrium volume, 289.5 Å
3
, according to Li et al. (2007). This390
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This work Other theory Experiment
Mode

νi νi(Vexp) dνi/dP γi
νi γi νi dνi/dP γi

Symmetry (a), (b) (a) (c), (d), (e) (f) (f)
B3g 169 175 0.94 0.87 174, 183 0.09 142, 175, 171
Ag 171 181 1.70 1.53 188, 188 0.30 183, 183, 183 3.03 2.09
B1g 172 189 2.81 2.52 195, 190 1.11 226†, 286†, –
B2g 208 219 1.91 1.37 222, 225 0.81 192, 220, –
Ag 212 220 1.36 0.92 222, 234 0.75 227, 226, 232 1.20 0.67
B3g 224 243 3.11 2.03 249, 253 1.07 244, 242, 244 2.30 1.21
B2g 237 251 2.38 1.48 256, 260 0.94 224, 274, –
B1g 278 292 2.27 1.16 284, 303 0.73 272, 315†, –
Ag 280 301 3.51 1.85 316, 307 1.21 305, 304, 307 3.90 1.63
B2g 295 320 3.95 1.86 327, 317 1.20 260, 318, –
B3g 300 321 3.40 1.63 329, 324 1.24 324, 323, –
Ag 302 326 3.86 1.81 333, 329 1.21 329, 329, 334 3.00 1.16
B1g 302 321 3.00 1.39 320, 322 1.07 318, 374†, 376†

B2g 333 354 3.47 1.52 360, 367 1.16 318, 351, –
Ag 334 360 4.05 1.64 357, 345 1.19 340, 339, 341 4.98 1.87
B3g 348 365 2.83 1.13 370, 373 1.04 368, 365, –
B1g 353 374 3.42 1.40 383, 381 0.94 376, 410, 414 3.18 0.99
B2g 353 374 3.30 1.28 384, 391 0.90 418†, 383, –
B1g 399 425 4.15 1.35 418, 421 1.14 412, 435, 426 4.74 1.40
Ag 406 437 4.85 1.57 436, 425 1.36 424, 422, 426 4.75 1.43
B2g 417 445 4.35 1.39 444, 442 1.23 434, 434, 443
B3g 426 459 5.19 1.58 450, 451 1.27 441, 439, – 5.50 1.60
Ag 516 530 2.16 0.55 529, 560 0.77 546, 545, 548 2.25 0.53
B2g 540 564 3.70 0.93 569, 596 0.61 583, 582, 585
B3g 560 574 2.18 0.54 568, 608 0.57 588, 586, – 3.00 0.66
B1g 568 584 2.50 0.61 577, 609 0.58 595, 592, 593
Ag 577 598 3.24 0.76 596, 618 0.69 609, 608, 610 3.35 0.70
B2g 594 618 3.71 0.86 618, 645 0.68 632, 632, –
Ag 789 810 3.32 0.60 618, 645 0.68 632, 632, –
B2g 801 822 3.47 0.61 829, 835 0.48 839, 838, –
B2g 822 844 3.52 0.61 858, 866 0.40 866, 866, –
Ag 827 845 3.04 0.53 850, 856 0.42 856, 856, 856 3.27 0.49
B3g 846 865 3.03 0.50 877, 883 0.40 884, 881, 882 3.03 0.44
B1g 888 906 2.79 0.44 914, 927 0.36 922, 920, 920 2.75 0.38
Ag 930 960 4.80 0.71 965, 967 0.59 966, 965, 967 4.99 0.66
B2g 939 969 4.69 0.69 975, 979 0.59 976, 975, –

Table 8: Raman active modes of forsterite Mg2SiO4. Frequencies are quoted in cm−1,
and their pressure derivatives in cm−1GPa−1. νi and νi(Vexp) are calculated frequencies
at the predicted T = 0 K equilibrium volume and at the experimental volume (Hazen,
1976), respectively. Our values are compared with the theoretical calculations of (a) Li
et al. (2007) and (b) Noel et al. (2006), and experimental data is taken from (c) Iishi
(1978), (d) Chopelas (1991a), (e) Gillet et al. (1991) and (f) Chopelas (1990).
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exercise results in frequencies that agree with the LDA results much better391

than those listed in Tables 8 and 9, but still retaining an average mismatch of392

∼ 10 cm−1, which is thus likely to be attributable to the different functionals393

employed, as well as to other technical differences between the calculations394

(treatment of core electrons, etc). Li et al. (2007) also calculated the mode395

Grüneisen parameters, γi; their reported values are in very good agreement396

with our own. There is overall good agreement between the LDA results of Li397

et al. (2007) and those obtained with the B3LYP hybrid functional by Noel398

et al. (2006), so much of what can be said about the comparison of our results399

with those of the former applies also to the comparison against the results400

of the latter.401

Concerning the comparison with experimentally measured Raman spec-402

tra, on average our theoretical values are smaller by ∼ 25 cm−1 than the403

corresponding frequencies reported by Iishi (1978) and those of Chopelas404

(1991a); agreement is also good with the values of Gillet et al. (1991), though405

the latter authors did not observe the complete series of Raman resonances.406

As in the comparison with other theoretical data in the previous paragraph,407

the agreement is better at low frequencies, and discrepancies increase with408

frequency. Likewise, a better comparison is achieved when we compare the409

experimental data with the theoretical frequencies interpolated at the ex-410

perimental volume, reducing the average mismatch to about ∼ 15 cm−1. It411

is worth noticing that this level of mismatch is not significantly larger than412

that existing between the different experimental reports. A second point of413

comparison is provided by the pressure derivatives of the mode frequencies414

and the mode Grüneisen parameters, γi = −d log νi/d log V . Chopelas (1990)415

reported such data for a number of Raman-active modes (see Table 8), and416

the agreement between our calculated data for these parameters and their417

experimental values is reasonable; perhaps more important than the level of418

agreement itself is the fact that the observed trends are reproduced by the419

calculated values, i.e. oscillations in the experimental values of dνi/dP and420

γi are reproduced by the calculated values.421

With regard to the IR-active modes, let us first observe that we have not422

calculated the longitudinal-transversal splitting of IR optic modes (LO-TO423

splitting) expected in polar structures such as the ones considered here. The424

calculation of such splittings requires determining the Born effective charges425

for the chemical species involved, which we have not done. The LO-TO split-426

ting is noticeable essentially at the centre of the Brillouin zone, and though427

it can be considerable for high frequency modes, its impact on the thermo-428
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This work Other theory Experiment
Mode

νi νi(Vexp) dνi/dP γi
νi γi νi dνi/dP γi

Symmetry (a), (b) (a) (c), (d), (e) (e) (e)
B3u 128 139 1.86 2.32 146, 143 1.06 144, 142
B1u 185 203 2.90 2.29 205, 206 1.16 201, 201
B2u 189 192 0.56 0.62 194, 207 0.63 201, 276†

B2u 245 260 2.52 1.62 278, 278 0.57 224, 293
B1u 251 263 2.11 1.36 277, 275 0.57 224, 275
B3u 257 273 2.70 1.58 282, 277 0.80 224, 268
B3u 265 285 3.31 1.79 295, 292 0.74 280, 290
B1u 268 281 2.17 1.30 296, 294 1.04 274, 294
B2u 271 286 2.57 1.48 296, 290 0.81 274, 309
B2u 292 320 4.43 2.02 316, 313 1.11 296, 365
B1u 302 320 2.86 1.31 321, 322 1.12 293, 309
B3u 327 355 4.56 1.95 363, 350 1.27 294, 300
B1u 366 393 4.34 1.61 398, 388 1.13 320, 319†

B3u 376 397 3.37 1.25 398, 403 1.11 352, 345
B1u 385 412 4.18 1.45 407, 412 1.07 378, 377
B2u 387 410 3.72 1.38 426, 420 1.24 365, 412
B2u 404 435 4.96 1.65 428, 428 1.38 423, 463
B3u 405 431 4.16 1.38 427, 432 1.20 400, 398
B3u 435 461 4.07 1.27 463, 465 1.14 421, 418
B2u 452 475 3.47 1.00 475, 490 0.96 483, 502
B1u 452 480 4.31 1.29 482, 476 1.00 403, 405†

B3u 476 495 2.99 0.88 502, 517 0.74 465, 452
B1u 481 506 4.00 1.13 508, 513 0.89 498, 434
B2u 489 513 3.59 0.93 504, 514 0.87 502, 543, 517 2.02 0.50
B1u 515 538 3.56 0.92 531, 540 0.86 562, 505
B3u 516 542 4.05 1.04 530, 535 0.86 510, 504
B1u 580 598 2.71 0.64 593, 614 0.61 601, 601
B3u 602 623 3.36 0.77 617, 638 0.66 537, 520, 614 2.57 0.54
B3u 805 825 3.24 0.58 825, 835 0.48 838, 828
B1u 806 826 3.26 0.58 824, 838 0.48 838, 841, 846 2.58 0.39
B3u 833 854 3.18 0.53 868, 870 0.43 882, 865
B2u 842 861 2.99 0.50 870, 874 0.40 885, 865, 887 2.71 0.39
B1u 923 945 3.44 0.53 954, 962 0.41 957, 950, 962 2.38 0.32
B1u 943 972 4.59 0.67 975, 982 0.61 980, 897
B3u 950 981 4.75 0.69 985, 989 0.59 987, 984, 992 5.01 0.65

Table 9: Infrared active modes of forsterite Mg2SiO4. νi and νi(Vexp) are calculated
frequencies at the predicted T = 0 K equilibrium volume and at the experimental vol-
ume (Hazen, 1976), respectively. Only the transversal modes are given; frequencies are
quoted in cm−1, and their pressure derivatives in cm−1GPa−1. Our values are compared
with the theoretical calculations of Li et al. (2007) (a) and Noel et al. (2006) (b), and
experimental data is taken from Iishi (1978) (c), Hofmeister (1987) (d) and Wang et al.
(1993) (e).
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dynamic properties of the material is expected to be negligible (Alfè, 2009),429

since these result from an integration over the whole Brillouin zone, and the430

contribution to these properties of high frequency modes is reduced by the431

corresponding Boltzmann factor. The relevant comparison is thus between432

our data and the TO-modes from previous theoretical or experimental stud-433

ies. The appropriate data is listed in Table 9. There it can be seen that434

the level of agreement we find with the earlier theoretical results of Li et al.435

(2007) and Noel et al. (2006) is very similar as already found for the Raman436

active mode frequencies; on average, our calculated frequencies are smaller437

than the corresponding TO ones in those theoretical studies by an average438

of ∼ 20 cm−1. The discrepancy is smallest (usually less than 10 cm−1) in439

the low frequency range, and increases with frequency to an upper limit of440

30-40 cm−1. Comparison with experimental data reveals that there exists441

an average discrepancy of ∼ 25 cm−1 (our frequencies being usually lower)442

with the IR data of Iishi (1978) and ∼ 30 cm−1 with that of Hofmeister443

(1987). It should be noticed, however, that the correct assignment of experi-444

mental frequencies is not always obvious and in some particular cases it may445

be seen to be dubious (cases particularly noteworthy, where there is a con-446

sistent disagreement between all theoretical data and experiments, or even447

between different experimental results, are highlighted in Tables 8 and 9 by448

daggers on the experimental data). If it is borne in mind that the level of449

mismatch between different sets of experimental data is also in this range,450

we feel justified in considering our results to be in reasonable agreement with451

the empirical data.452

The level of agreement between our calculated frequencies and experi-453

mental data can be better appreciated in Fig. (7), where we have plotted our454

theoretical frequencies in the pressure range 0–20 GPa. Raman-active mode455

frequencies are compared to the experimental data of Chopelas (1990), and456

IR modes to that of Wang et al. (1993). As already observed in Tables 8457

and 9, the agreement is certainly not quantitative, neither in the magnitude458

of the frequencies nor in their pressure derivatives, but there is an overall459

agreement. The theoretical data displayed in Fig. (7) is that obtained at460

the predicted equilibrium volume; as already pointed out above, a slightly461

better match can be obtained by calculating the phonon frequencies at the462

experimental volume. In any case, it can be seen that calculated frequencies463

fall in the right range of values, and their pressure dependence is compatible464

with that of the observed experimental values.465

Next, we consider the perovskite structure as representative of the phases466
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Figure 7: (Colour online) Calculated Raman and infrared active phonon mode frequencies
of forsterite vs. pressure. The left panel displays Raman active modes, Ag (red), B1g

(blue), B2g (green) and B3g (yellow); the black dots are obtained by interpolation from
linear fits to the experimental Raman data of Chopelas (1990). In the right panel the
frequencies of infrared-active modes are shown; Au (red), B1u (blue), B2u (green) and B3u

(yellow); black dots are obtained from linear fits to the experimental data of Wang et al.
(1993).

with MgSiO3 composition. In Tables 10 and 11 we list our calculated Ra-467

man and IR-active frequencies, respectively, together with their pressure-468

derivatives and Grüneisen parameters. Our data is once more compared to469

previous theoretical results, in this case as obtained by Karki et al. (2000)470

and Parlinski and Kawazoe (2000). We also compare our results to the avail-471

able experimental data. The perovskite structure of MgSiO3 is orthorhombic472

(space group Pnma, though frequently given in the non-standard setting of473
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Pbnm). The atomic arrangement within the primitive unit cell of the struc-474

ture has D2h (mmm) point group symmetry. It contains 4 formula units, giv-475

ing raise to 60 vibrational modes, 3 of which are acoustic, and the remaining476

ones optic. A symmetry analysis of the atomic displacements results in the477

following classification of the vibrational modes:478

Γvib = 7Ag ⊕ 8Au ⊕ 5B1g ⊕ 10B1u ⊕ 7B2g ⊕ 8B2u ⊕ 5B3g ⊕ 10B3u, (2)

of which the three acoustic modes transform according to irreducible repre-479

sentations B1u⊕B2u⊕B3u. As occurred in the case of forsterite, symmetric480

modes with respect to inversion (i.e. Ag, B1g, B2g and B3g modes) are Raman-481

active, while the antisymmetric ones are IR-active, with the exception of the482

Au modes, which are silent. Thus there are a total of 24 Raman-active modes,483

and 25 optic IR-active modes. In practice, as we shall see, the number of484

modes actually observed in experiments is lower.485

Comparing our phonon frequencies with previous predictions by Karki486

et al. (2000) and by Parlinski and Kawazoe (2000), both of whom used the487

LDA approximation, we can see that, as occurred in the case of forsterite, our488

results approach the LDA frequencies from below. The average discrepancy489

between our calculated frequencies and the LDA results is ∼ 20 cm−1, both490

for the Raman and IR-active modes. Again, the agreement is better in the491

lower frequency range, and gradually deteriorates with increasing frequency492

(reaching values of ∼ 30 cm−1), and much of the observed discrepancy is493

attributable to the difference in predicted equilibrium volumes. It is reveal-494

ing to note that, even though the theoretical studies of Karki et al. (2000)495

and Parlinski and Kawazoe (2000) used the same LDA exchange-correlation496

functional, their results are not in perfect agreement with each other. In-497

deed, there is an average discrepancy of ∼ 15 cm−1 between them, which is498

not that much smaller than the measured discrepancy to our own results, ob-499

tained with a different functional. These differences should not be surprising,500

however. It should be observed that there are enough technical differences501

in the performance of the calculations to account for these small discrep-502

ancies, such as the fact that both studies used different implementations of503

DFT, obtained the phonon frequencies in different ways and accounted for504

core electrons differently. It can thus be seen that our calculated phonon505

frequencies are in good agreement with earlier theoretical results.506

Let us now compare the calculated phonon frequencies against experimen-507

tal data. Raman and IR spectra of MgSiO3 perovskite have been published508
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This work Other theory Experiment
Mode

νi νi(Vexp) dνi/dP γi
νi γi νi dνi/dP γi

Symmetry (a), (b) (a) (c), (d) (d) (d)
Ag 209 219 1.14 3.01 234, 247 2.66 249, 245 2.01 2.14
B3g 233 250 2.73 1.93 258, 230 2.39 254, 251 1.98 2.06
B1g 258 275 2.54 2.15 277, 287 2.15
Ag 265 277 1.83 1.58 281, 275 1.54 282, 279 1.49 1.39
B2g 269 280 1.66 1.32 286, 266 1.23
B2g 315 327 2.04 1.09 331, 320 1.89 338, 327 1.77 1.41
B1g 323 337 2.08 1.71 338, 345 1.15 343, 334 2.09 1.63
B2g 352 367 2.39 1.35 376, 366 1.81 369, 370 1.50 1.06
Ag 365 381 2.73 1.13 380, 363 1.50 381, 379 1.76 1.21
Ag 376 394 2.74 1.76 400, 384 1.54 392, 387 1.99 1.34
B1g 414 439 3.86 1.90 445, 429 2.00
B3g 417 434 2.89 0.84 438, 429 1.21
Ag 475 501 4.01 1.72 518, 495 2.06 501, 499 3.44 1.80
B2g 490 510 2.85 1.63 512, 492 1.26
B3g 490 525 5.61 2.05 518, 537 2.46
B1g 497 533 5.69 2.20 541, 544 2.33
Ag 521 552 4.80 2.11 549, 558 1.86 542a

B2g 599 622 3.56 1.44 616, 613 1.29
B3g 602 623 3.23 1.25 623, 619 1.21
Ag 628 651 3.44 1.46 658, 648 1.29 666a

B2g 637 660 3.54 1.37 660, 649 1.28
B1g 753 789 6.08 0.95 783, 819 1.35
B2g 790 817 4.00 1.28 827, 835 1.25
B3g 808 837 4.35 1.29 848, 855 1.32

Table 10: Raman active modes of perovskite MgSiO3. Frequencies are quoted in cm−1,
and their pressure derivatives in cm−1GPa−1. Our values are compared with the theo-
retical calculations of Karki et al. (2000) (a) and Parlinski and Kawazoe (2000) (b), and
experimental data is taken from Durben and Wolf (1992) (c) and Chopelas (1996) (d).
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This work Other theory Experiment
Mode

νi νi(Vexp) dνi/dP γi
νi γi νi γi

Symmetry (a), (b) (a) (c)
B2u 158 176 2.83 2.16 182, 157 3.05 180
B3u 230 243 2.01 1.78 251, 239 1.92 222 1.40e

B1u 247 262 2.32 1.80 272, 254 1.81 247 1.76e

B2u 288 304 2.37 1.66 309, 292 1.64 262 1.29e

B1u 301 319 2.62 1.91 326, 303 1.90 386 1.49e

B3u 327 348 3.18 1.90 348, 324 1.98 317 1.17e

B3u 364 385 3.17 1.72 391, 380 2.06 343 1.28e

B3u 408 425 2.71 0.99 422, 426 1.22 388
B1u 418 434 2.56 0.75 435, 434 1.08 415
B2u 419 448 5.06 0.59 446, 452 1.97 430
B1u 448 470 3.29 1.78 475, 458 1.87 444
B2u 459 488 4.60 1.76 486, 478 1.72 466, 484
B3u 464 489 3.97 1.78 504, 485 1.81 466, 484
B1u 487 515 4.36 2.04 511, 505 1.67 484, 496
B3u 508 533 3.73 1.86 549, 506 1.72 534
B1u 544 566 3.59 1.25 574, 566 1.54 534, 544d 1.44− 1.57d

B2u 559 576 2.60 1.24 598, 604 1.37 614, 614d

B1u 564 584 2.91 1.71 597, 591 1.38 597
B3u 631 652 3.11 1.26 675, 606 1.39 679, 683d 1.39− 1.52d

B2u 671 705 5.23 1.92 710, 701 1.80 679, 683d 1.15− 1.29d

B1u 692 710 2.80 0.97 711, 722 0.93 705
B2u 699 731 4.80 1.79 723, 745 1.67 721
B3u 716 742 3.83 1.78 761, 748 0.96
B1u 749 779 4.52 1.60 776, 794 1.26 771
B3u 762 783 3.13 1.03 781, 809 1.52 780, 797d 1.21− 1.30d

Au 181 187 0.98 1.10 180b

Au 252 267 2.28 2.02 253
Au 341 355 2.18 0.60 368
Au 369 382 2.12 0.86 383
Au 465 493 4.59 1.65 495
Au 582 604 3.49 1.03 617
Au 630 667 5.69 2.31 685
Au 712 744 4.91 1.74 763

Table 11: Infrared-active modes of perovskite MgSiO3. For completeness the silent Au

modes are also listed. Frequencies are quoted in cm−1, and their pressure derivatives
in cm−1GPa−1. Theoretical values by Karki et al. (2000) (a) and Parlinski and Kawa-
zoe (2000) (b) are also listed. Experimental data is from references Lu et al. (1994) (c),
Williams et al. (1987) (d) and Lu and Hofmeister (1994) (e). The assignment of exper-
imentally measured frequencies to actual theoretical modes is not unambiguous; in such
cases experimental frequencies have been listed more than once (see text).
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Figure 8: (Colour online) Calculated Raman and infrared active phonon mode frequencies
of MgSiO3 perovskite vs. pressure. The left panel displays Raman active modes, Ag (red),
B1g (blue), B2g (green) and B3g (yellow); the black dots show experimental Raman data
by Chopelas (1996), with the black dot-dash lines being linear interpolations to it. In the
right panel the frequencies of infrared-active modes are shown; Au (red), B1u (blue), B2u

(green) and B3u (yellow); black dots are obtained from the experimental data of Williams
et al. (1987).

by a number of authors, but as already mentioned above, not all the active509

modes are actually detectable; this is particularly the case of the Raman510

data, where only up to 11 modes out of the expected 24 have been resolved511

in the experiments of Durben and Wolf (1992). In some other reports, such512

as that of Williams et al. (1987) only 4 peaks are clearly discernible. Theo-513

retical calculations of Raman peak intensities in MgSiO3 perovskite (Caracas514

and Cohen, 2006) have shown that peak intensities can vary over more than515
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two orders of magnitude, and are sensitive to the excitation frequency em-516

ployed and to other experimental factors. Thus it is not surprising that not517

all modes can be readily detected. The situation is slightly better in the case518

of IR data, but here also it is not infrequent for some modes to go unde-519

tected. Focusing on the Raman data first, we can see in Table 10 that the520

experimentally detectable modes are frequently Ag modes; while modes of521

other irreducible representations are sometimes seen, they tend to have lower522

intensities. Our calculated frequencies are on average shifted down by some523

20 cm−1 from the experimental values. Again, part of this discrepancy can524

be attributed to the difference in equilibrium volumes.525

Table 11 lists, together with our calculated frequencies, experimental TO526

frequencies as reported by Lu et al. (1994) and Williams et al. (1987). The527

earlier study of Williams et al. (1987) only observed 4 frequencies, while Lu528

et al. (1994) detected 23 signals, only two short of the theoretical maximum529

of 25 IR-active modes allowed by symmetry (see above). However, out of530

these 23 modes, one has a reported frequency of 877 cm−1, which seems531

to be significantly above any of the calculated frequencies in either this or532

previous theoretical studies (Karki et al., 2000; Parlinski and Kawazoe, 2000).533

Our highest IR frequency is calculated to be 767 cm−1, to be compared534

with 781 and 809 cm−1, as reported by Karki et al. (2000) and Parlinski535

and Kawazoe (2000), respectively. While there are discrepancies among the536

calculated highest frequencies, these remain within the expected bounds,537

and this leads us to suspect that the reported experimental mode frequency538

at 877 cm−1 may be due to an empirical artefact. Because the number of539

observed modes is lower than the calculated ones, it is not always possible to540

find an unambiguous correspondence between the two. This is particularly541

the case for the experimental modes falling in the range 450–700 cm−1. So542

as to highlight that more than one correspondence between calculated and543

experimental data is possible, when necessary, we list the relevant empirical544

frequencies repeatedly in Table 11. The pressure behaviour of the mode545

frequencies is displayed in Fig. (8), where it is compared to the experimental546

data of Chopelas (1996) (Raman) and Williams et al. (1987) (IR data). As547

with the case of forsterite seen above, the agreement between calculated548

and experimental data in terms of frequencies and pressure behaviour is not549

quantitative, but falls in line with what is expected from the computational550

methodologies that we have employed. This is true not only for the mode551

frequencies themselves, but is reflected also in their pressure derivatives and552

mode Grüneisen parameters (shown in Tables 10 and 11), as was also the553
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case for forsterite.554

3.3. Theoretical phase diagrams of Mg2SiO4 and MgSiO3555

As detailed for the particular cases of forsterite and the perovskite struc-556

ture of MgSiO3 above, we have also computed the total energies and phonon557

frequencies of wadsleyite and ringwoodite (Mg2SiO4), and of akimotoite and558

majorite (MgSiO3), together with those of MgO periclase and SiO2 stishovite.559

This was done at a series of volumes approximately corresponding to a zero-560

temperature pressure range of ≈ −20 to 30 GPa. As noted above, in the561

interest of space we will not discuss the results obtained for the remain-562

ing structures here (numerical values of phonon frequencies, their pressure563

derivatives and Grüneisen parameters are provided in the appendix for struc-564

tures wadsleyite, ringwoodite and akimotoite; those of majorite are listed in565

the accompanying supplementary information file, where we also give plots of566

the vibrational band structures of MgO periclase and SiO2 stishovite); suffice567

it to say that for all structures results were obtained of comparable quality568

to those of forsterite and the perovskite phase. This mass of data allows us569

to extend the zero-temperature phase diagram that can be deduced from the570

enthalpies of the various phases contemplated here, as seen in Fig. (2), to571

finite temperatures, by resorting to the quasi-harmonic approximation to the572

vibrational free energy. Let us first describe briefly our calculation procedure573

to do this.574

As noted in Sec. 2, equilibrium volumes and relaxed configurations were575

determined for each structure at pressure intervals corresponding to approx-576

imately 2.5 GPa in a pressure range of −20 to 30 GPa. At each volume the577

phonon frequencies were calculated as detailed above, over a dense grid of578

wave vectors spanning the 1st Brillouin zone. This allowed us to calculate579

the Helmholtz free energy within the quasi-harmonic approximation, as well580

as other thermal properties such as the entropy and constant volume heat581

capacity at each volume. The Helmholtz free energy of a defect-free lattice582

can be split as (Gillan et al., 2006):583

F (T, V ) = Flatt(T, V ) + Fvib(T, V ), (3)

where Flatt is the free energy of the perfect (non-vibrating) lattice, and Fvib584

is the contribution due to the atomic dynamics. In the case of non-metallic585

systems, at temperatures at which electron excitations into conduction bands586

are negligible, the first term reduces to the total energy of the perfect lattice,587
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which is then temperature-independent. All the systems considered in this588

study have sizeable gaps (see Sec. 2), and thus fall in this category. The589

second term can be easily estimated within the harmonic approximation,590

by viewing the dynamical lattice as an ensemble of harmonic oscillators, for591

which the free energy can be evaluated analytically as:592

Fvib(T, V ) ≈ Fqh(V, T ) = kBT
∑
n,k

ln

[
2 sinh

(
h̄ωnk

2kBT

)]
, (4)

where kB is Boltzmann’s constant, h̄ = h/2π, h being Plank’s constant,593

and the sum extends over all vibrational modes and wave vectors within the594

1st Brillouin zone. The neglect of anharmonicity is a reasonable approxi-595

mation at low and moderate temperatures, but it is not valid close to the596

melting point, where anharmonicity effects make a substantial contribution597

to the free energy. The calculation of anharmonic corrections is possible, for598

example by resorting to thermodynamic integration techniques (Hernández599

et al., 2007), but we have not done so in this study. Eq. (4) can be fur-600

ther simplified when h̄ωnk � kBT , corresponding to the classical limit of the601

ensemble of harmonic oscillators, in which case we have:602

Fcl(V, T ) = kBT
∑
n,k

ln

(
h̄ωnk

kBT

)
. (5)

Thus, our calculations of phonon frequencies in this study, together with603

Eqs. (4) [or (5) in the classical limit] allowed us to tabulate the Helmholtz604

free energy on a T-V grid for each structure considered in this study. From605

this it is straight-forward to obtain other thermal properties, such as the606

entropy, S, or pressure, P , given by607

S(T, V ) = −
(
∂F

∂T

)
V

, (6)

P (T, V ) = −
(
∂F

∂V

)
T

. (7)

The latter expression contains a thermal contribution to the pressure coming608

from Fvib in Eq. (3). Evaluating F (V, T ) using Eqs. (3) and (4), and P (T, V )609

according to Eq. (7), it is a straight-forward matter to compute the Gibbs610

free energy,611

G(T, P ) = F (T, V ) + P (T, V )V, (8)
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which is actually the relevant thermodynamic potential required to analyse612

the stability of the various phases of a material in the temperature-pressure613

domain. At any given pressure and temperature, the thermodynamically614

stable phase is that having the lowest Gibbs free energy. Once the Gibbs615

free energy is available for each phase, there are other properties that become616

easily accessible, such as the specific heat, CP , and the thermal expansion617

coefficient, α, which are useful in order to gauge the degree of fidelity with618

which our computations reproduce the actual materials of relevance to this619

study.620

In practice our numerical procedure was as follows: for each structure621

and volume, the Helmholtz free energy was tabulated on a thin temperature622

grid, ranging up to 3000 K, using Eqs. (3) and (4). Then, for every struc-623

ture, F (T, V ) was fitted to a 5rd-order Chebyshev polynomial in V along the624

isotherms in the T-V grid. The behaviour of F (T, V ) was always very smooth,625

and such a polynomial expression was found to be perfectly adequate. From626

this fit G(T, P ) was derived using Eqs. (7) and (8), and tabulated over a T-P627

grid spanning the same temperature range as F (T, V ), and pressures from 0628

to 30 GPa (in the low temperature limit). As noted above, from the tabu-629

lated F (T, V ) and G(T, P ) data, appropriately manipulated, it is possible to630

obtain the materials properties, such as the thermal expansion coefficient, α631

or the specific heat at constant pressure, CP , defined respectively as632

α =
1

V

(
∂V

∂T

)
P

, (9)

CP =

(
∂H

∂T

)
P

, (10)

where H = G(T, P ) + ST is the enthalpy. These properties and a few oth-633

ers are presented in Table 12, where they are compared against both results634

from other theoretical studies and experimental data. In fact this compar-635

ison provides an independent means through which to gauge the accuracy636

and reliability of our theoretical results. Specifically, Table 12 lists values637

of α, the entropy S, and the specific heats (calculated at constant volume638

and constant pressure), evaluated at ambient conditions, namely T = 300 K639

and P = 0 GPa. The data shown in Table 12 makes clear that there is a640

general consistency between the theoretical data. Small differences between641

calculated data exist; one discernible trend is that our calculated values for642

thermal expansion coefficient, entropy and specific heats tend to be slightly643
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larger than those predicted by other functionals that result in smaller equilib-644

rium volumes (LDA, B3LYP). But generally these differences are small. As645

regards comparison with the experimental data, let us first take the case of646

the thermal expansion. It can be seen that our theoretical values tend to be647

larger than the empirical ones, with differences that sometimes reach ∼20 %.648

We note however that the discrepancies between different experimental re-649

ports can also be of the same order of magnitude, and is not infrequent for650

the calculated values to fall within the range spanned by the experimental651

data (this occurs e.g. for fo and wa). A noticeable trend in the phases with652

Mg2SiO4 composition is that α diminishes along the fo-wa-ri sequence, i.e. α653

is smaller the higher the pressure at which the corresponding phase becomes654

stable. This trend is discernible both in the theoretical results as well as the655

experimental data.656

As with the thermal expansion coefficients, our calculated entropies are657

also found to be larger (typically by ∼10 %) than their measured counter-658

parts. This is not surprising in view of the fact that our equilibrium volumes659

are also predicted to be larger. However, entropy differences between phases660

generally fall within the experimental error bounds, as can be appreciated661

in Table 13, where we list the entropy and enthalpy differences at ambient662

conditions found in the Mg2SiO4 phases, comparing them to the calorimetric663

data of Akaogi et al. (2007). One exception to this rule is observed in the664

case of the wa-ri entropy difference, which we calculate to be −2.4 J/mol/K,665

a value which appears to be significantly smaller (in absolute value) than the666

experimental value of −3.7± 0.6 J/mol/K.667

Having evaluated G(T, P ) [Eq. (8)] over a dense grid of T-P values as668

indicated above, determining the T-P phase diagram of Mg2SiO4 was then669

a simple matter of looping over all points in the T-P grid and checking,670

on each of them, which was the phase predicted to have the lowest Gibbs671

free energy value. Due to the different stoichiometries considered here, to672

the Gibbs free energies of akimotoite, majorite and the perovskite phase of673

MgSiO3, that of periclase (MgO) at the same temperature and pressure con-674

ditions has to be added so as to make all phases chemically consistent. In675

the particular case of stishovite, it is necessary to add the Gibbs free energy676

of two formula units of MgO. We have thus obtained two phase diagrams677

for Mg2SiO4, one based on the full (quantum) quasi-harmonic approxima-678

tion to the Helmholtz free energy [Eq. (4)], and a second one based on its679

classical limit [Eq. (5)]. Only the first is shown in Fig. (11), as they are680

indistinguishable except at low temperatures. Altogether, six stability fields681
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Figure 9: Some thermal properties of the minerals with Mg2SiO4 composition vs. tem-
perature at 0, 10 and 20 GPa pressure. Results are shown for the thermal expansion
coefficient, α, the molar entropy and the specific heat at constant pressure. Experimental
data is from Suzuki (1975), Anderson and Suzuki (1983), Matsui and Manghnani (1985),
Chopelas (1990), Chopelas (1991b), Akaogi et al. (2007), Chopelas (2000), Chopelas et al.
(1994) and Watanabe1982

. 36



Figure 10: Some thermal properties of the minerals with MgSiO3 composition vs. tem-
perature at 0, 10 and 20 GPa pressure. Results are shown for the thermal expansion
coefficient, α, the molar entropy and the specific heat at constant pressure. Experimen-
tal data is from Chopelas (2000), McMillan and Ross (1988), Hofmeister and Ito (1992),
Watanabe (1982), Ashida et al. (1988), Yusa et al. (1993), Akaogi and Ito (1993) and
Akaogi et al. (2008).
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Figure 11: (Colour online) Theoretical phase diagram of Mg2SiO4. The colour coding is:
green: forsterite; light blue: wadsleyite; purple: ringwoodite; red: akimotoite plus per-
iclase; dark blue: perovskite plus periclase, and yellow: stishovite plus periclase. Phase
boundaries are marked in white, and the intensity of colour within each stability field
is proportional to the local free energy difference between the most stable and second
most stable phase. Marked contour lines quantify this difference, in units of eV/f.u. Sym-
bols represent experimental phase determinations carried out at temperature and pressure
conditions indicated by the coordinates of each symbol, and are coloured according to the
same code indicated above. Square symbols represent data from Katsura et al. (2003); cir-
cles, data from Suzuki et al. (2000); upward-pointing triangles, data from Fei et al. (2004);
diamonds, data from Morishima et al. (1994); right-pointing triangles, data from Ito and
Takahashi (1989), and left-pointing triangles, data from Ono et al. (2001).

are displayed in the figure, corresponding to fosterite (green), wadsleyite682

(light blue), ringwoodite (purple), akimotoite plus periclase (red), perovskite683

plus periclase (dark blue), and stishovite plus periclase (yellow). The phase684
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Transition ∆S (J/mol/K) ∆H (kJ/mol)
fo–wa this work −8.2 30.2

exp. −7.7± 0.4 27.2± 3.6
wa–ri this work −2.4 12.3

exp. −3.7± 0.6 12.9± 3.3
fo–ri this work −10.6 42.5

exp. −11.4± 0.5 40.1± 3.1

Table 13: Entropy and enthalpy differences at ambient conditions (298 K and 0 GPa)
between the various phases of Mg2SiO4 considered in this study. Calorimetry results are
quoted from Akaogi et al. (2007).

boundaries appear as white lines, and within each stability field the colour685

intensity increases in proportion to the free energy difference between the686

most stable phase and the second most stable phase. Contour lines (every687

0.025 eV/f.u.) quantify the magnitude of such free energy differences. The688

small energy interval for the contour lines testifies to the difficulties involved689

in accurately determining stability fields and phase boundaries: indeed, small690

inaccuracies in relative free energies can considerably shift the position of a691

phase boundary in temperature and/or pressure. In constructing the phase692

diagram displayed in Fig. (11) we have for clarity omitted to include the693

data for phase majorite (plus periclase). Our results indicate that this phase694

would have a stability field coming down to ∼2000 K, which would then695

wipe out the wadsleyite-perovskite-plus-periclase phase boundary and also696

the wadsleyite-ringwoodite-perovskite-plus-periclase triple point. Although697

a stability field of majorite-plus-periclase in this range of temperatures cannot698

be entirely ruled out, and one may indeed exist at slightly higher tempera-699

tures [see Stixrude and Lithgow-Bertelloni (2011)], we take the view that a700

stability field of majorite at temperatures as low as ∼2000 K is probably an701

artefact due to the neglect of anharmonicity effects in this temperature range,702

or, perhaps more likely the result of neglecting the effects of cation disorder703

the octahedral sites in this structure. Indeed, Belmonte (2013) has argued704

that small amounts of cationic disorder would be sufficient to significantly705

raise the stability field of majorite in temperature.706

Excluding, as indicated above, the stability field of majorite plus periclase,707

the predicted phase diagram displayed in Fig. (11) reproduces qualitatively708

the expected topology in the true phase diagram of Mg2SiO4, as deduced709

from experiments. At low temperatures the sequence of phases found as710
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pressure is increased matches that found at zero temperature and obtained711

on the basis of enthalpy alone [see Fig. (2)]. According to the data displayed712

in Fig. (11), we can see that the ri–ak+pe–pv+pe triple point occurs at713

T = 1565 K and P = 22.9 GPa; a second triple point, between phases wa–ri–714

pv+pe, is predicted to occur at T = 2452 K and P = 19.3 GPa. The stability715

field of the st+pe combination is found to be rather small, extending only716

up to low temperatures. Indeed, as can be appreciated in Fig. (11), a triple717

point between phases ak+pe–pv+pe–st+2pe is to be found approximately at718

T = 125 K, P = 27.8 GPa, and even at temperatures below this, the paleness719

of colour in the stability field of st+2pe indicates that this combination is720

not predicted to be strongly dominant anywhere in the phase diagram of721

Mg2SiO4.722

The slopes of phase boundaries are of particular interest, as these are of-723

ten estimated experimentally, thus providing a means to gauge the degree of724

accord between simulation predictions and experimental results. As can be725

seen in Fig. (11), the phase boundaries that result from our calculations are726

not simple straight lines, and thus do not have a constant slope. For exam-727

ple, the slope of the fo–wa coexistence line at T = 1000 K and P = 13.8 GPa728

is 2.4 MPa/K, while at T = 1500 K, P = 14.9 GPa it is 2.1 MPa/K. Ex-729

perimentally determined slope values for this phase boundary range between730

1.8 and 4 MPa/K (Akaogi et al., 1989; Katsura and Ito, 1989; Morishima731

et al., 1994; Katsura et al., 2004). Our own values fall towards the lower end732

of this range. Comparing to other theoretical calculations, Yu et al. (2008)733

obtained a slope value of 2.5 MPa/K, employing a similar computational ap-734

proach to the one used here. This value is very close to the one we obtain at735

T = 1500 K. For the wa–ri phase transition we obtain slope values of 2.8 and736

3 MPa/K at 1500 and 1700 K, respectively. These appear to be somewhat737

lower than the range of experimental values reported in the literature, 4.1–738

6.1 MPa/K (Suzuki et al., 2000; Inoue et al., 2006). A previous theoretical739

estimate by Yu et al. (2008) (3.5 MPa/K) is more in line with our own, but740

still slightly larger than it.741

The slope of the ri–pv+pe post-spinel transition is of great geophysical742

interest, as this phase transition is widely believed to be the main contribu-743

tor to the seismic discontinuity marking the boundary between the transition744

zone and the lower mantle. Furthermore, the slope of this coexistence line745

could determine the nature of convection in the mantle (Christensen, 1995).746

A large slope would suggest that the 660 km discontinuity poses a signifi-747

cant barrier to global mantle convection. Conversely, a shallow slope would748
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favour a global mantle convection model. At 1873 K we obtain a coexis-749

tence pressure of P = 22.1 GPa with a slope of −3.4 MPa/K. Averaging750

over the entire calculated coexistence line we obtain a mean slope value of751

−3.9 ± 1.3 MPa/K. Experimental estimations of the slope of this coexis-752

tence line seem to fall into two different ranges. Measurements by Ito and753

Takahashi (1989), Akaogi and Ito (1993), Irifune et al. (1998), Shim et al.754

(2001), Chudinovskikh and Boehler (2001) and Ye et al. (2014) favour val-755

ues in the range −3 to −2.6 MPa/K. On the other hand, Katsura et al.756

(2003), Fei et al. (2004) and Litasov et al. (2005) favour values in the range757

−1.3 to −0.4 MPa/K. This apparent discrepancy among different empirical758

results testifies to the practical difficulties involved in extracting an accu-759

rate estimate of the slope when the phase boundary itself is insufficiently760

constrained. Our results tend to favour the larger (in absolute value) slope761

range, in agreement with previous theoretical results by Yu et al. (2007)762

(−2.9 MPa/K at 1900 K using GGA). As yet unpublished results from an763

all-electron B3LYP study by Belmonte (2013) find a value of −3.6 MPa/K,764

in very good agreement with our own value.765

The slope of ri–pv+re post-spinel transition is also used in seismic studies766

to estimate the temperature anomalies associated with plumes and slabs.767

High temperatures would result in a shallow transition and the opposite for768

cold. Our results suggest that the deflection of the 660 km discontinuity769

should be as large or even greater than for the 410 km. Moreover, recent770

studies have seen deflections on the order of 34 km or so Day and Deuss771

(2013). If our large slope is correct, this can be the result of an anomaly of772

only 350 K. The much lower slope of 1 MPa/K found in some studies would773

require unrealistic temperarture anomalies of over 1000 K.774

For the ilmenite-perovskite transition we obtain a mean slope of −3.5±775

0.8 MPa/K, averaged over the whole ak+pe–pv+pe phase boundary. Closer776

to the ri–ak+pe–pv+pe triple point the slope increases (in absolute value)777

to values comparable to those of the ri–pv+pe coexistence line, i.e. ∼778

−4 MPa/K. This transition has been investigated experimentally by Ito and779

Takahashi (1989), who extracted a slope estimate of−2.5 MPa/K. Later, Ono780

et al. (2001) reported a slope of −2.9 ± 2 MPa/K using Au as the pressure781

standard, and a value of −3.5± 2.4 MPa/K using the Pt pressure standard.782

Similar experiments were conducted by Hirose et al. (2001), who reported783

a slope estimate of −2.7 MPa/K. Chudinovskikh and Boehler (2004) have784

obtained a slope of −4±0.2 MPa/K using diamond-anvil cell measurements.785

Our result falls closer to the more negative values found by Ono et al. (2001)786
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and by Chudinovskikh and Boehler (2004), but is not incompatible with the787

less negative ones found by other authors, and falls within the range of ex-788

perimentally reported values. Yu et al. (2011) calculate a steeper Clapeyron789

slope of −6± 1 MPa/K for this transition.790

We are not aware of any previous experimental report on the ri–ak+pe791

phase boundary and its slope. Contrary to the cases of wa–pv+pe and ri–792

pv+pe boundaries, where the slope is found to be negative, the slope of the ri–793

ak+pe phase boundary is positive, with an average value of 1.65±0.6 MPa/K.794

Yu et al. (2011) have estimated a Clapeyron slope of 1.2 MPa/K for this795

transition, which is slightly shallower than ours but falls within our estimated796

error bars for this slope.797

Finally, in Fig. (12) we illustrate the phase diagram of MgSiO3 in the798

neighbourhood of the mj-ak-pv triple point. This phase diagram has been799

calculated from the same data and following the same procedure as for that800

of Mg2SiO4 [see Fig. (11)], but considering only the relevant MgSiO3 phases.801

According to our results, the mj-ak-pv triple point is located at 20.5 GPa and802

2040 K. This value is reasonably close to that quoted by Hirose et al. (2001),803

20 GPa and 2193 K. On the other hand, Yu et al. (2011) calculate the position804

of the triple point to be 21.8 GPa and 1840 K using a similar computational805

procedure to the one we have employed, while Belmonte (2013) using and all-806

electron B3LYP calculation locate it at 21.09±0.13 GPa and 2247±31 K. We807

calculate the value of the slope of the mj-pv boundary to be 1.1 MPa/K. This808

value is in very good agreement with that of a previous theoretical calculation809

by Yu et al. (2011) (1.2±0.3 MPa/K using a GGA functional); it is also in810

good agreement with the experimental value determined by Hirose et al.811

(2001) (1.3 MPa/K). As for the mj-ak phase boundary, this is calculated to812

have a slope of 7.2 MPa/K, a value which is in very good agreement with that813

previoulsy reported by Yu et al. (2011), who found a value of 7.4±0.5 MPa/K.814

4. Summary and conclusions815

We have conducted a thorough computational study of the relative stabil-816

ity of various geophysically relevant phases of MgSiO3 and Mg2SiO4 compo-817

sition. Total energies and relaxed structures have been obtained on the basis818

of DFT calculations. Harmonic phonon frequencies have been obtained and819

classified for each structure at a range of volumes, and quasi-harmonic free820

energies have been derived from them. The Gibbs free energy for each phase821

has been tabulated on a fine temperature-pressure grid spanning the range822
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Figure 12: (Colour online) Theoretical phase diagram of MgSiO3. The colour coding
is: gray: majorite; red: akimotoite; blue: perovskite. Phase boundaries are marked in
white, and the intensity of colour within each stability field is proportional to the local
free energy difference between the most stable and second most stable phase. Marked
contour lines quantify this difference, in units of eV/f.u. Symbols represent experimental
phase determinations carried out at temperature and pressure conditions indicated by the
coordinates of each symbol, and are coloured according to the same code indicated above.
The diamond is from Presnall et al. (1998); circles, data from Hirose et al. (2001); upward-
pointing triangles, data from Fei et al. (2004); left-pointing triangles, data from Ono et al.
(2001), and right-pointing triangles, data from Chudinovskikh and Boehler (2001).

of environmental conditions relevant to the bottom of the upper mantle, the823

transition zone and the top of the lower mantle. While the quasi-harmonic824

treatment is expected to break down at high temperatures, it is nevertheless825

expected to provide a qualitatively correct picture of the phase diagrams.826

The actual location of phase boundaries is very sensitive to relative errors in827
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the free energies, but the slopes of coexistence lines are expected to be more828

robust. Our calculated phase diagrams for Mg2SiO4 and MgSiO3 seem to829

reproduce the major features of the corresponding phase diagrams obtained830

from experimental measurements and thermodynamic models (Stixrude and831

Lithgow-Bertelloni, 2011), and is also in general good agreement with the-832

oretical results obtained previously for individual coexistence lines (Wentz-833

covitch et al. (2010) and refs. therein).834
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A. Vibrational properties of Wadsleyite842

Wadsleyite has an orthorhombic structure with space group Imma. The843

arrangement of atoms within the primitive cell has point group symmetry844

D2h (mmm). Using this information, together with the data reported in845

Table 4, the lattice phonons at the zone centre can be decomposed into the846

following irreducible representations:847

Γwa = 11Ag ⊕ 7Au ⊕ 7B1g ⊕ 14B1u ⊕ 9B2g ⊕ 13B2u ⊕ 12B3g ⊕ 11B3u. (11)

This translates into a total of 39 Raman active modes (Ag, B1g, B2g and B3g),848

and 38 infrared active modes (B1u, B2u and B3u), including the three acoustic849

modes, with species B1u ⊕B2u ⊕B3u. The Au modes are silent.850

Tables 14 and 15 list our calculated Raman-active and IR-active mode851

frequencies, respectively. The data is presented following a similar pattern852

to that used for the cases of forsterite and the perovskite structures (see853

text). Comparison is presented with both previous theoretical calculations854

and experimental data.855

B. Vibrational properties of Ringwoodite856

The spinel structure of ringwoodite has space group Fd3̄m. As discussed857

in the text, Mg ions occupy 16d Wyckoff positions, with Si ions located858
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This work Other theory Experiment
Mode

νi νi(Vexp) dνi/dP γi νi γi νi dνi/dP γiSymmetry
B2g 194 197 1.06 0.68 201 0.60 199
B1g 207 217 4.03 2.25 230 1.69 214 2.1 1.7
B3g 220 226 2.39 1.27 232 1.34 231 1.68 1.25
Ag 249 258 3.52 1.65 267 1.48 252 1.18 0.81
B1g 251 260 2.53 1.42 264 1.66 262 1.80 1.19
B3g 263 269 2.46 0.99 275 0.69

273 1.40 0.88
B2g 264 270 1.52 0.91 270 1.04
Ag 275 282 1.90 1.02 285 1.18 279 1.02 0.63
B3g 285 295 2.51 1.31 303 1.59 297
B1g 286 295 1.90 1.04 297 1.18 311 1.60 0.89
B2g 312 325 3.38 1.56 334 1.66 326 3,02 1.59
Ag 330 341 2.74 1.24 344 1.34 341 2.68 1.36
B1g 339 350 3.10 1.25 360 1.34

360
B3g 343 357 3.09 1.47 361 1.41
B2g 349 358 3.11 1.09 367 1.45 370 1.58 0.74
B1g 361 379 3.73 1.71 386 1.82 382 3.48 1.58
B2g 377 398 3.69 1.78 400 1.82

398 3.15 1.37B3g 382 395 3.02 1.25 401 1.62
Ag 386 400 3.91 1.39 406 1.58
B3g 413 425 2.51 0.98 425 1.08 426 2.40 0.97
Ag 420 431 3.68 1.25 424 1.39

443 3.47 1.35
Ag 431 447 3.65 1.32 455 1.29
B1g 435 448 1.68 0.87 448 0.94 460
B3g 465 477 3.43 0.95 482 0.96
B2g 473 484 2.46 0.85 484 0.92 491 1.95 0.69
B3g 509 529 4.77 1.47 544 1.34
Ag 542 560 5.35 1.33 557 1.32

553 4.31 1.34
B2g 554 563 2.66 0.65 564 0.75
B3g 564 582 3.09 1.01 578 1.02 580 3.50 1.04
B2g 589 613 4.62 1.38 625 1.51 610
Ag 607 618 4.46 0.99 607 0.77 620 2.48 0.69
Ag 692 710 3.49 0.80 712 0.91 723 3.37 0.80
B3g 747 770 5.31 1.13 786 1.16 778 4.83 1.07
B3g 803 822 4.42 0.86 829 0.92 812
Ag 849 873 5.21 1.02 895 1.02 845 3.98 0.81
B1g 854 877 5.43 0.97 891 1.05

885B2g 872 895 5.47 0.95 914 0.99
Ag 882 902 4.22 0.76 911 0.91
B3g 893 917 5.40 0.96 935 0.98 919 4.40 0.83

Table 14: Raman-active vibrational modes of wadsleyite. Frequencies are given in (cm−1),
and their pressure derivatives in (cm−1GPa−1). The third column lists data interpolated at
the experimental volume quoted by Hazen et al. (2000). Other theoretical data is quoted
from Wu and Wentzcovitch (2007). The experimental data is from Chopelas (1991b).
Tentative mode assignments are based on best matchings between calculated data at the
experimental equilibrium volume and experimental frequencies.

45



This work Other theory Experiment
Mode

νi νi(Vexp) dνi/dP γi νi γi νi dνi/dP γiSymmetry
B3u 173 180 2.45 1.59 191 1.24 192 0.46 0.41
B2u 194 202 3.89 2.19 216 1.47 210 0.18 0.15
B3u 247 248 0.99 0.23 252 0.17 265 0.00 0.00
B1u 247 256 3.44 1.56 267 1.33
B1u 275 285 4.76 1.84 300 1.41

290 2.13 1.26B2u 275 281 2.11 0.92 285 1.30
B3u 280 288 2.63 1.26 295 1.26
B2u 302 307 2.05 0.78 313 0.84

315 2.29 1.30
B3u 314 324 3.19 1.38 332 1.62
B1u 326 336 4.08 1.44 354 1.58 336
B2u 340 354 3.59 1.53 359 1.44 345
B1u 341 358 3.77 1.71 358 1.37
B3u 343 355 2.86 1.22 359 1.40
B1u 357 375 3.16 1.61 380 1.75 375
B3u 389 407 3.01 1.44 411 1.51 407
B2u 401 418 4.07 1.57 427 1.50
B1u 410 425 3.80 1.33 431 1.54
B2u 437 452 3.09 1.16 455 1.20

461 2.67 0.96B2u 446 460 2.85 1.08 462 1.05
B1u 452 468 3.83 1.29 469 1.32
B3u 462 481 4.34 1.42 488 1.26
B1u 479 493 2.54 0.96 498 1.11 501 1.51 0.52
B2u 498 513 2.93 0.98 514 1.07 513 2.79 0.93
B3u 507 524 4.25 1.25 535 1.25
B3u 525 547 3.22 1.26 551 1.18 541 3.6 1.13
B1u 547 561 5.57 1.24 553 1.23
B2u 557 581 5.35 1.50 590 1.26 584 2.99 0.86
B1u 585 595 3.57 0.82 587 1.09
B1u 675 695 4.56 1.05 699 1.16 690 4.06 1.00
B2u 756 779 5.23 1.10 794 1.14 760
B2u 806 825 4.39 0.87 833 0.94
B1u 838 860 5.00 0.98 872 0.98 868
B1u 873 895 5.08 0.91 910 0.93 890 4.10 0.77
B2u 906 929 4.68 0.89 947 0.94 935 4.91 0.90
B3u 882 903 4.94 0.87 918 0.96
Au 205 209 1.63 0.93
Au 264 276 3.15 1.67
Au 355 369 3.12 1.40
Au 374 386 2.86 1.17
Au 539 549 2.38 0.68
Au 876 898 5.30 0.92

Table 15: Infrared-active vibrational modes in wadsleyite. The Au modes (7 in total) are
silent, and have been listed separately. There are 13 B1u modes, 12 B2u modes and 10 B3u

modes. Other theoretical data is quoted from Wu and Wentzcovitch (2007). Experimental
data is quoted from Cynn and Hofmeister (1994).
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at 8a and oxygens at 32e positions. The primitive cell of such an atomic859

arrangement has point group symmetry Oh(m3̄m), and applying a group860

theoretical analysis to such a structure results in the following mechanical861

representation:862

Γri = A1g ⊕ 2A2u ⊕ Eg ⊕ 2Eu ⊕ T1g ⊕ 5T1u ⊕ 3T2g ⊕ 2T2u, (12)

of which the A1g, Eg and T2g modes are Raman active, while the T1u modes863

are IR active; one of the latter modes is acoustic. The remaining modes864

(T1g, A2u, Eu and T2u) are silent. The increased symmetry in this structure865

as compared to those of forsterite and wadsleyite results in a number of866

degeneracies; indeed modes of irreducible species Eg(u) are doubly degenerate,867

while those of species T1(2)g(u) are triply degenerate.868

Our calculated phonon frequencies for ringwoodite are listed in Tables 16869

(inversion-symmetric modes) and 17 (antisymmetric modes). Comparison870

with previous calculation results and experimental data is also provided.871

C. Vibrational properties of Akimotoite872

The ilmenite structure of akimotoite has space group R3̄, with Mg and Si873

cations occupying 6c sites, and oxygens located at the general 18f positions.874

The point group symmetry of the primitive cell of this structure is C3i(−3).875

A group analysis of this structure results in the following mechanical repre-876

sentation:877

Γak = 5Ag ⊕ 5Au ⊕ 5Eg ⊕ 5Eu. (13)

Discounting the three acoustic modes, of species Au⊕Eu, this structure has878

a total of 18 optical modes, of which 9 are doubly degenerate (5Eg ⊕ 4Eu).879

The inversion-symmetric g modes are Raman active, while antisymmetric880

u ones are IR active. Raman and IR active modes are listed in Tables 18881

and 19, respectively, where our results are compared to existing theoretical882

and experimental data from the literature.883

D. Vibrational properties of Majorite884

The majorite structure has space group I41/a with Mg cations occupying885

Wyckoff sites 8c, 8e and 16f ; Si cations are found at positions 4a, 4b, 8d and886

16f while oxygen anions are located at six different 16f orbits. The primitive887
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This work Other theory Experiment

Mode
νi νi(Vexp) dνi/dP γi

νi νi νi νi
Symmetry (a) (b) (c) (d)

T2g 281 292 2.88 1.68 309 282 302 302
T1g 329 339 2.43 1.23 317
Eg 357 366 2.43 1.12 375 343 372 370
T2g 574 584 2.65 0.75 586 571 600 600
T2g 765 789 6.37 1.37 817 778 796 794
A1g 795 816 5.33 1.11 831 805 834 836

Table 16: Ringwoodite vibrational modes symmetric with respect to inversion. The A1g,
Eg (doubly degenerate) and T2g (triply degenerate) modes are Raman active; the T1g
(triply degenerate) mode is silent (Raman and IR inactive). Frequencies are given in
(cm−1), and their pressure derivative in (cm−1GPa−1). The second column, headed by
νi(Vexp), gives the frequency of the corresponding mode interpolated at the experimental
volume given by Hazen et al. (1993) (see Table 2). Other theoretical results are quoted
from Yu and Wentzcovitch (2006) (a) and Piekarz et al. (2002) (b); experimental data is
from references Chopelas et al. (1994) (c) and McMillan and Akaogi (1987) (d).

This work Other theory Experiment

Mode
νi νi(Vexp) dνi/dP γi

νi νi νi
Symmetry (a) (b) (c)

T2u 194 206 3.43 3.47 223
T1u 333 342 2.82 1.26 345 350 350(w)
Eu 335 348 4.12 1.99 355
T1u 389 404 3.75 1.64 423 396 395(sh), 445
T2u 421 437 4.11 1.66 407
T1u 502 515 3.83 1.26 549 475 510(sh), 545(w)
Eu 531 546 3.62 1.15 523
A2u 560 572 3.25 0.95 563
T1u 768 791 6.01 1.30 829 761 785(sh), 830
A2u 781 801 5.37 1.14 790

Table 17: Inversion antisymmetric vibrational modes in ringwoodite. The triply-
degenerate T1u modes are infrared active; the remaining modes are silent. Frequencies
are given in (cm−1), and their pressure derivative in (cm−1GPa−1). The second column,
headed by νi(Vexp), gives the frequency of the corresponding mode interpolated at the
experimental volume given by Hazen et al. (1993) (see Table 2). Theoretical results by
other authors are quoted from refs. (a) Yu and Wentzcovitch (2006) and (b) Piekarz et al.
(2002); experimental results are from (c) Akaogi et al. (1984), where some of the signals
were described as shoulder (sh) or weak (w).
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This work Other theory Experiment

Mode
νi νi(Vexp) dνi/dP γi νi γi νi dνi/dP γiSymmetry

Ag 268 286 2.40 1.94 294 1.92 294 2.1 1.60
Eg 326 339 1.74 1.18 343 1.15 351 1.7 1.10
Eg 383 400 2.22 1.24 400 1.32 402 2.2 1.24
Ag 391 406 1.96 1.10 414 1.02 413 2.3 1.26
Eg 458 478 2.73 1.27 488 1.25 484 2.7 1.24
Ag 476 496 2.67 1.19 490 1.27 499 3.1 1.40
Eg 583 601 2.47 0.92 614 0.85 620 2.4 0.88
Ag 644 672 3.62 1.20 680 1.18 680 3.3 1.10
Ag 756 784 3.74 1.06 783 1.09

798 3.7 1.04
Eg 762 794 4.32 1.21 795 1.24

Table 18: Raman-active modes in ilmenite Akimotioite. Frequencies are in (cm−1), and
their pressure derivative in (cm−1GPa−1). LDA calculated data is from Karki (2002).
Experimental data is quoted from Reynard and Rubie (1996).

This work Other theory Experiment

Mode
νi νi(Vexp) dνi/dP γi νi γi νiSymmetry

Au 304 325 2.81 2.00 330 1.93 384–421
Eu 317 340 3.05 2.03 346 2.07 337–364
Eu 419 435 2.15 1.11 439 1.06 450–482
Au 485 514 3.87 1.68 509 1.74 526–552
Eu 554 585 4.15 1.59 595 1.54 623–642
Eu 621 651 3.86 1.31 648 1.33 670–820
Au 683 703 2.65 0.84 702 0.79

735–820
Au 759 783 3.16 0.90 768 1.00

Table 19: Infrared-active modes in ilmenite akimotoite. Frequencies are in (cm−1), and
their pressure derivative in (cm−1GPa−1). LDA calculated data is from Karki (2002).
Experimentally determined frequency ranges are as given by Hofmeister and Ito (1992).
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cell contains a total of 80 atoms, and has point group symmetry C4h(4/m).888

The mechanical representation of this structure is889

Γmj = 25Ag ⊕ 34Au ⊕ 27Bg ⊕ 31Bu ⊕ 28Eg ⊕ 34Eu. (14)

Of these, the modes with E species are doubly degenerate. The Ag, Bg and Eg890

modes are Raman active, while the Au and Eu modes are IR active; Bu modes891

are silent. The three acoustic modes pertain to irreducible species Au and892

Eu; the remaining modes are optic. The large number of vibrational modes893

in this structure (237 optical modes) makes impractical their full listing here;894

nevertheless we provide a listing of all modes, together with their pressure895

derivative and Grüneisen parameters, in the supplementary information file896

that accompanies this paper.897
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Alfè, D., 2009. Phon: A program to calculate phonons using the small dis-919

placement method. Computer Physics Communications 180 (12), 2622–920

2633.921

Anderson, O. L., Suzuki, I., 1983. Anharmonicity of three minerals at high922

temperature: forsterite, fayalite, and periclase. Journal of Geophysical Re-923

search: Solid Earth 88, 3549.924

Angel, R. J., Finger, L., Hazen, R. M., Kanzaki, M., Weidner, D. J., Lieber-925

mann, R., Veblen, D., 1989. Structure and Twinning of single-crystal926

MgSiO3 Garnet synthesized at 17 GPa and 1800 Degrees C.927

Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G.,928

Kirov, A., 2011. Crystallography online: Bilbao crystallographic server.929

Bulg. Chem Commun. 43 (2), 183–197.930

Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev,931

S., Madariaga, G., Kirov, A., Wondratschek, H., 2006b. Bilbao Crystallo-932

graphic Server I: Databases and crystallographic computing programs. Z.933

Krist. 221, 15–27.934

Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek,935

H., 2006a. Bilbao Crystallographic Server II: Representations of crystallo-936

graphic point groups and space groups. Acta Cryst. A62, 1150128.937

Ashida, T., Kume, S., Ito, E., Navrotsky, A., 1988. MgSiO3 ilmenite: Heat938

capacity, thermal expansivity, and enthalpy of transformation. Physics and939

Chemistry of Minerals 16, 239.940

Becke, A. D., 1993. Density-functional thermochemistry. III. the role of exact941

exchange. Journal of Chemical Physics 98 (5648–5652).942

Belmonte, D., Sep 2013. Ab initio thermodynamics of deep mantle minerals:943

the system MgO-SiO2. unpublished Ph.D Thesis, University of Genova.944

Bina, C. R., Helffrich, G., 1994. Phase transition Clapeyron slopes and tran-945

sition zone seismic discontinuity topography. Journal of Geophysical Re-946

search 99, 15853.947

Birch, F., 1947. Finite elastic strain of cubic crystals. Phys. Rev. 71 (11),948

809–824.949

51
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