

IER Stochastic Processes and their Applications 58 (1995) 173-185

Ergodic theorems for transient one-dimensional diffusions

K.B. Athreya^{*,1}, A.P.N. Weerasinghe

Department of Mathematics, Iowa State University, Ames, IA 50011 USA

Received September 1992; revised November 1994

Abstract

For one-dimensional diffusions X that drift off to $+\infty$ we give conditions on a set B and the drift and diffusion coefficients of X for $(1/t) \int_0^t I_B(X(u)) du$ to converge w.p.l as $t \to \infty$.

Mathematics Subject Classification: 60H05, 60G07.

Keywords: Diffusion; Local time; Transience

1. Introduction

In a recent paper Bingham and Rogers (1991) showed that if $X(t) = t + B(t), t \ge 0$ where $B(\cdot)$ is standard Brownian motion then for any Borel set $A \subset [0, \infty)$,

$$\frac{1}{t}\int_0^t I_A(X(u))\,\mathrm{d}u - \frac{1}{t}\int_0^t I_A(u)\,\mathrm{d}u \to 0 \quad \text{a.s.}$$
(1)

The goal of this paper is to investigate similar phenomenon for a general diffusion on the line which drifts off to infinity. Clearly, if $X(t) \equiv \mu t + \sigma B(t)$ where $\mu > 0$, $\sigma > 0$, result (1) should hold. Hence, one expects that for any diffusion $dX(t) = \mu(X(t)) dt + \sigma(X(t)) dB(t)$; (1) should hold if the functions $\mu(\cdot)$ and $\sigma(\cdot)$ are asymptotically constant. It is also tempting conjecture that if the diffusion term is not overwhelming then the diffusion trajectory and deterministic trajectory $d\tilde{x} = \mu(\tilde{x}) dt$ spend asymptotically same proportion of time for many sets A.

In this paper we determine how far the above remarks are valid and find a set of reasonable sufficient conditions on the diffusion and drift coefficients $\mu(\cdot)$ and $\sigma(\cdot)$ of a general one-dimensional diffusion for the validity of a result similar to (1). It turns out that we are able to prove a ratio type theorem rather than the strong comparison result (1). The main result is Theorem 1 below. Corollaries 1 and 2 cover the cases

^{*} Corresponding author.

¹ Research supported in part by a National Science Foundation Grants # DMS 9007182, 9204938.

when μ and σ converge at ∞ and when μ and σ are periodic with a common period, respectively.

In higher dimensions a result similar to (1) or to our Theorem 1 is unlikely to hold even in the presence of a strong drift. For example if $(X_1(t), X_2(t))$ is a two-dimensional diffusion where there is a strong drift towards ∞ along the line $x_1 = x_2$, if the diffusion is nontrivial then once the path is away for $x_1 = x_2$ it could be subjected to a drift in a very different direction.

2. The main results

Let $\{X(t): t \ge 0\}$ be a diffusion satisfying

$$dX(t) = \mu(X(t)) dt + \sigma(X(t)) dB(t), \quad t \ge 0,$$

$$X(0) = x_0.$$
(2)

We assume the following conditions on $\mu(\cdot)$ and $\sigma(\cdot)$:

(A.1) $\mu(\cdot)$ is Borel measurable and bounded in finite intervals and $\sigma(\cdot)$ is continuous,

(A.2) $\sigma^2(x) > 0$ for all x (and hence $\rho(u) = 2\mu(u)/\sigma^2(u)$ is locally integrable). (A.3) $S(\cdot)$, the scale function, is defined by

$$S(x) \equiv \int_0^x e^{-A(u)} du \quad \text{where } A(u) = \int_0^u \rho(u) du,$$

satisfies $S(-\infty) = -\infty$, $S(+\infty) < \infty$, where we use the convention that for x < 0, $\int_0^x f(u) du = -\int_x^0 f(u) du$.

(A.4) Any weak solution of (1) is nonexplosive in finite time.

It is known (see Karatzas and Shreve, 1988) that under (A.1) there is a weak solution to (2) and under (A.2) and (A.3) any such solution will satisfy $P_{x_0}(X(t) \to \infty)$, as $t \to \infty$ = 1 for all x, where P_x is the probability distribution of the process X starting at X(0) = x. For sufficient conditions for (A.4) see Karatzas and Shreve (1988, p. 342).

In what follows $P_x(\cdot)$ denote the probability measure on the process corresponding to X(0) = x and $E_x(\cdot)$ the expectation with respect to P_x .

Let

$$\tau_{y} = \inf\{t: t \ge 0, X(t) = y\}.$$
(3)

Then since $P_x(X(t) \to \infty) = 1$ for any $x, P_x(\tau_y < \infty) = 1$ for all x < y.

Theorem 1. Assume, in addition to (A.1)–(A.4), that

(i)
$$\int_0^n e^{-A(u)} \left(\int_{-\infty}^u e^{A(r)} \frac{1}{\sigma^2(r)} dr \right) du \sim c_1 n \quad as \ n \to \infty,$$

(ii)
$$\sup_{n}\int_{n}^{n+1}e^{-A(u)}\left(\int_{-\infty}^{u}e^{A(r)}E_{r}(\tau_{n+1})\frac{1}{\sigma^{2}(r)}dr\right)du \leq K < \infty,$$

(iii)
$$2\int_0^n e^{-A(u)} \left(\int_{-\infty}^u I_B(r) e^{A(r)} \frac{1}{\sigma^2(r)} dr\right) du \sim c_2 n \quad \text{as } n \to \infty,$$

(iv)
$$\int_{-\infty}^{0} e^{A(r)} \frac{1}{\sigma^2(r)} E_r(\tau_0) dr < \infty$$

Then

$$\frac{1}{t} \int_0^t I_B(X(u)) \, \mathrm{d}u \to \frac{c_2}{c_1} \quad \text{as } t \to \infty \quad \text{with probability one.}$$
(4)

Some sufficient conditions for the validity of the assumptions of Theorem 1 will be given in Propositions 4 and 5 in the next section.

Corollary 1. Let $\mu(r) \to \mu$, $\sigma(r) \to \sigma$ as $r \to \infty$ with $0 < \mu < \infty$, $0 < \sigma < \infty$ and conditions (iii) of Proposition 4 and (ii) of Proposition 5 hold and $(1/t) \int_0^t I_B(r) dr \to C_B$, $0 < C_B < \infty$. Then (4) holds.

Corollary 2. Let $\mu(\cdot)$ and $\sigma(\cdot)$ be periodic with period one. Assume $\int_0^1 \rho(u) du > 0$ where ρ is as in (A.2). Let $X(\cdot)$ be a solution to (2). Then for a given Borel set $B \subseteq [0, \infty)$, $(1/t) \int_0^t I_B(X(s)) ds$ converges w.p.1 as $t \to \infty$ if and only if

$$\int_0^1 \left(\frac{1}{n} \sum_{j=0}^{n-1} I_B(r+j)\right) \frac{1}{\sigma^2(r)} \psi(r) \,\mathrm{d}r$$

converges as $n \to \infty$ where

$$\psi(r) = \int_0^\infty e^{-(A(r+s)-A(r))}$$

with $A(\cdot)$ as in (A.3).

In particular a sufficient condition for the above is that $T_n(r) \equiv (1/n) \sum_{j=0}^{n-1} I_B(r+j)$ converges a.e. with respect to Lebesgue measure on [0, 1].

A few remarks on the hypotheses of Theorem 1 and Corollaries 1 and 2 are in order. Condition (iii) of Theorem 1 is an asymptotic density condition on the set *B* and comes from estimating the mean value of the time spent in *B* by the process until it crosses level *n*. Similar considerations appear in Bingham and Goldie (1982). Condition (i) is a growth condition on $E_0(\tau_u)$. This needs the finiteness of $\int_{-\infty}^{0} e^{A(r)} (1/\sigma^2(r)) \times E_r(\tau_0) dr < \infty$ which appears again as condition (iii) in Proposition 4 below. Conditions (ii) and (iv) are needed for $E_r \tau_u^2$ to be bounded.

3. Proof of the main results

Fix a Borel set B in \mathbb{R} and set

$$\zeta_j = \int_{\tau_{j-1}}^{\tau_j} I_B(X(u)) \,\mathrm{d}u, \quad \eta_j = (\tau_j - \tau_{j-1}) \qquad \text{for } j \ge 1.$$
(5)

Let $F_i = \sigma(X(u): u \leq t)$ and $\mathscr{F}_j = F_{\tau_j}$ be the stopped σ -algebra corresponding to τ_j . From Hall and Heyde (1962, Theorem 2.19, p. 36) we know that

$$\frac{1}{n}\sum_{j=1}^{n} \left(\zeta_j - E(\zeta_j | \mathscr{F}_{j-1})\right) \to 0, \tag{6a}$$

$$\frac{1}{n}\sum_{j=1}^{n} (\eta_j - E(\eta_j | \mathscr{F}_{j-1})) \to 0$$
(6b)

a.s. if there exists a nonnegative random variable X and a constant C such that

$$\sup_{i} P(\eta_{j+1} \ge x \mid \mathscr{F}_j) \le CP(X \ge x)$$
⁽⁷⁾

a.s. and $E|X| < \infty$. A sufficient condition for this is

$$E(\tau_{j+1} - \tau_j)^{1+\delta} \text{ is bounded in } j \text{ for some } \delta > 0.$$
(8)

If (6a) and (6b) hold then $(1/n)\sum_{j=1}^{n} \zeta_j$, $(1/n)\sum_{j=1}^{n} \eta_j$ converge w.p.1 iff $(1/n)\sum_{j=1}^{n} E(\zeta_j | \mathscr{F}_{j-1})$ and $(1/n)\sum_{j=1}^{n} E(\eta_j | \mathscr{F}_{j-1})$ converge as $n \to \infty$. By the continuity of sample paths of X(t) and the strong Markov property $E(\cdot | \mathscr{F}_{j-1}) = E_{j-1}(\cdot)$ where E_x denotes expectation with respect to the process starting at X(0) = x

$$\sum_{j=1}^{n} E(\zeta_j | \mathscr{F}_{j-1}) = \sum_{j=1}^{n} E_{j-1} \left(\int_{\tau_{j-1}}^{\tau_j} I_B(X(u)) du \right)$$
$$= \sum_{j=1}^{n} E \left(\int_{\tau_{j-1}}^{\tau_j} I_B(X(u)) du \right) \text{ (by the strong Markov property)}$$
$$= E \left(\int_{0}^{\tau_n} I_B(X(u)) du \right) \text{ (since } \tau_0 = 0 \text{ under } X(0) = 0 \text{).}$$

Similarly

$$\sum_{j=1}^{n} E(\eta_j | \mathscr{F}_{j-1}) = E(\tau_n).$$

We need the following five propositions.

Proposition 1. (i) For x < y, $E_x(\tau_y) = 2 \int_x^y e^{-A(u)} (\int_{-\infty}^u e^{A(r)} (1/\sigma^2(r)) dr) du$. (ii) For $k \ge 2$ and x < y, $E_x(\tau_y^k) = 2k \int_x^y e^{-A(u)} (\int_{-\infty}^u E_r(\tau_y^{k-1}) e^{A(r)} (1/\sigma^2(r)) dr) du$.

Next, to compute $E_x(\int_0^{t_y} I_B(X(u)) du$) we need to introduce the *local time* process L for the diffusion X. It is known that there exists a process $\{L(t, u, \omega): t \ge 0\}$ adapted to the filtration $\{\mathscr{F}_t\}$ such that a.s.

- (i) $L(\cdot, \cdot, \omega)$ is jointly continuous in t and x,
- (ii) for each x, $L(\cdot, x, \omega)$ is nondecreasing,
- (iii) for any locally bounded Borel measurable $f: \mathbb{R} \to \mathbb{R}$

$$\int_0^t f(X_s)\sigma^2(X_s)\,\mathrm{d}s = \int_{-\infty}^{+\infty} f(x)\,L(t,x,\omega)\,\mathrm{d}x$$

We refer to pp. 218–220 of Karatzas and Shreve (1988) for details.

The following result involving the expected value of L does not seem to be readily accessible in the literature.

Proposition 2. Under the assumptions (A.1)–(A.4),

$$E_{x}L(\tau_{y}, a, \omega) = \begin{cases} 2(S(y) - S(x))e^{A(a)}, & a < x < y, \\ 2(S(y) - S(a))e^{A(a)}, & x < a < y. \end{cases}$$

Proposition 3. For x < y

$$E_x\left(\int_0^{\tau_y} I_B(X_s) \,\mathrm{d}s\right) = 2\int_x^y \mathrm{e}^{-A(r)} \left(\int_{-\infty}^r I_B(u) \,\mathrm{e}^{A(u)} \frac{1}{\sigma^2(u)} \mathrm{d}u\right) \mathrm{d}r$$

provided the inner integral on the right-hand side is finite for all r.

Proposition 4. Let there exist a $\lambda \in (0, \infty)$ such that $\forall 0 < h < \infty$,

(i)
$$F_r(h) \equiv \int_r^{r+h} \rho(u) du \to \lambda h \quad as \ r \to \infty,$$

(ii)
$$k_0 \equiv \sup_{0 \le r} \sup_{0 \le h \le 1} |F_r(h)| < \infty$$
,

(iii)
$$\int_{-\infty}^{0} e^{A(r)} \frac{1}{\sigma^{2}(r)} dr < \infty,$$

(iv)
$$\frac{1}{t}\int_0^t I_D(r)\frac{1}{\sigma^2(r)}\mathrm{d}r \to C_D \quad \text{as } t \to \infty,$$

where $0 < C_D < \infty$ for D = B, the given Borel set and for $D = [0, \infty)$. Then, (i) and (iii) of Theorem 1 hold.

Proposition 5. Let (i)-(iii) of Proposition 4 hold and in addition assume

(i)
$$\limsup_{n} \int_{n}^{n+1} \frac{1}{\sigma^{2}(r)} dr < \infty.$$

Then

(a)
$$\sup_{n>0} E_n(\tau_{n+1}) < \infty.$$

Suppose further that

(ii)
$$\int_{-\infty}^{0} e^{\mathcal{A}(r)} \frac{1}{\sigma^2(r)} E_r \tau_0 \, \mathrm{d}r < \infty.$$

Then,

(b)
$$\sup_{n} E_n(\tau_{n+1}^2) < \infty,$$

i.e. condition (ii) of Theorem 1 holds.

Thus the hypotheses of Propositions 4 and 5 are sufficient for the validity of conditions (i)–(iv) of Theorem 1.

Proposition 1 is not new. For example, formula (i) for $E_x(\tau_y)$ is derived in Bhattacharya and Waymire (1991) and (ii) is available in Dynkin (1965) and also in Athreya and Weerasinghe (1992).

Proof of Proposition 2. Consider the case x < a < y. Let M be a constant so that $M > \max\{|x|, |y|\}$. By Tanaka's formula (Karatzas and Shreve, 1988, p. 220).

$$|X(t) - a| = |x - a| + \int_0^t \operatorname{sign}(X(s) - a) \mu(X(s)) \, \mathrm{d}s + \int_0^t \operatorname{sign}(X(s) - a) \sigma(X(s)) \, \mathrm{d}B(s) + L(t, a, \omega).$$
(9)

Introduce $\tilde{\tau}_M = \inf\{t > 0: |X(t) \ge M\}$, and $\|\mu\|_M = \sup\{|\mu(x)|: |x| \le M\}$.

Now replacing t by $t \wedge \tilde{\tau}_M$ in (9) and then taking expectations and using Doob's optional sampling theorem we conclude

$$E_{x}L(\tilde{\tau}_{M},a) \leq \lambda(M,x) \equiv 4M + \|\mu\|_{M}E_{x}[\tau_{M}] \quad \text{for all } a \in [-M,M].$$
(10)

We write $\tau = \tau_y \wedge \tilde{\tau}_M$ and then by (9), and the properties (ii) and (iii) of local time, we obtain

$$E_x|X(t\wedge\tau) - a| = |x - a| + \frac{1}{2}E_x \int_{-M}^a \operatorname{sign}(z - a)\rho(z)L(t\wedge\tau, z, \omega) dz$$
$$+ E_x L(t\wedge\tau, a, \omega).$$

Since $\rho(\cdot)$ is locally integrable and $\lambda(M, x)$ in (10) is bounded for $x \in [-M, M]$, we observe $|\rho(z)| L(t \wedge \tau, z, \omega)$ is an integrable function of z and ω with respect to the product measure of Lebesgue measure on (-M, a] and the probability measure P_x .

Consequently

$$E_x|X(t \wedge \tau) - a| = |x - a| + \int_{-M}^{a} \operatorname{sign}(z - a)\rho(z)E_xL(t \wedge \tau, z, \omega) dz$$
$$+ E_xL(t \wedge \tau, a, \omega).$$

Now letting $t \to +\infty$ we get the integral equation for -M < x < a < y;

$$\phi_M(a) + \frac{1}{2} \int_{-M}^{a} \operatorname{sign}(z-a) \rho(z) \phi_M(z) \, \mathrm{d}z = E_x |X(\tau) - a| - |x-a|, \tag{11}$$

where $\phi_M(z) = E_x(L(\tau, z, \omega))$ which is finite for all z in [-M, M], by (10). For -M < x < a < y,

$$E_x|X(\tau) - a| = (y - a)\frac{S(x) - S(-M)}{S(y) - S(-M)} + (a + M) \cdot \frac{S(y) - S(x)}{S(y) - S(-M)}$$

Since $\rho(\cdot)$ is locally integrable and the right-hand side of (11) is bounded in [-M, M], the integral equation (11) has a unique solution in the class of functions

that are bounded in [-M, M] and vanishing at y. It can be verified that

$$\psi_M(\cdot) = 2\left(\frac{S(x) - S(-M)}{S(y) - S(-M)}\right)(S(y) - S(\cdot))e^{A(\cdot)}$$

satisfies (11), and the boundary condition $\psi_M(y) = 0$ and is also bounded in [-M, M]. Hence by uniqueness, ψ_M coincides with ϕ_M . Now letting $M \to \infty$ and using the monotone convergence theorem we obtain

$$E_x L(\tau_y, a, \omega) = 2(S(y) - S(a))e^{A(a)} \quad \text{for } x < a < y.$$

Proof for the case a < x < y is similar. \Box

Proof of Proposition 3. By the second part of Proposition 2

$$E_{x}\left(\int_{0}^{\tau_{y}}I_{B}(X_{s})ds\right) = E_{x}\left(\int_{-\infty}^{y}I_{B}(u)\frac{1}{\sigma^{2}(u)}L(\tau_{y},u,\omega)du\right)$$

$$= \int_{-\infty}^{y}I_{B}(u)\frac{1}{\sigma^{2}(u)}E_{x}(L(\tau_{y},u,\omega))du$$

$$= \int_{-\infty}^{x}I_{B}(u)\frac{1}{\sigma^{2}(u)}2(S(y) - S(x))e^{A(u)}du$$

$$+ \int_{x}^{y}I_{B}(u)\frac{1}{\sigma^{2}(u)}2(S(y) - S(u))e^{A(u)}du$$

$$= 2\left(\int_{x}^{y}e^{-A(r)}dr\right)\left(\int_{-\infty}^{x}I_{B}(u)\frac{1}{\sigma^{2}(u)}e^{A(u)}du\right)dr$$

$$= 2\int_{x}^{y}e^{-A(r)}\left(\int_{-\infty}^{r}I_{B}(u)\frac{1}{\sigma^{2}(u)}e^{A(u)}du\right)dr.$$

This completes the proof of Proposition 3. \Box

Remark 1. (a) If we set $B = \mathbb{R}$ in the above we obtain $E_x \tau_y$ as in (i) of Proposition 1.

(b) Instead of using Proposition 3 above one could use Ito's formula to compute $E_x(\int_0^{\tau_y} f(X_s) ds)$ for a bounded continuous f by using the solution to the differential equation

$$\frac{1}{2}\sigma^2(x)u''(x) + \mu(x)u'(x) = -f(x)$$

But it is not easy to generalize this method to f's that are not continuous but only measurable and bounded on finite intervals.

(c) It is possible to replace $I_B(\cdot)$ by a bounded Borel measurable $f(\cdot)$ in Proposition 3 provided the right side is well defined.

Proof of Theorem 1. Under (ii), (8) holds with $\delta = 1$ and hence (6a) and (6b) hold. Also by (i), (iii) and Proposition 1, $(1/n)E(\tau_n)$ and $(1/n)E(\int_0^{\tau_n} I_\beta(X(u)) du)$ converge a.s. to c_1 and c_2 respectively. Thus, (a) and (b) follow.

Let $N(t) = \inf\{n: n \ge 1, \tau_{n+1} > t\}$. Then $\tau_{N(t)} \le t < \tau_{N(t)+1}$ and (a) implies that

$$\frac{N(t)}{t} \to \frac{1}{c_1} \quad \text{a.s.}$$

Next,

$$\int_0^{\tau_{N(t)}} I_B(X(u)) \,\mathrm{d} u \leq \int_0^t I_B(X(u)) \,\mathrm{d} u \leq \int_0^{\tau_{N(t)+1}} I_B(X(u)) \,\mathrm{d} u$$

and hence

$$\frac{c_2}{c_1} \leq \liminf_t \frac{1}{t} \int_0^t I_B(X(u)) \, \mathrm{d}u \leq \limsup_t \frac{1}{t} \int_0^t I_B(X(u)) \, \mathrm{d}u \leq \frac{c_2}{c_1}$$

yielding (c).

Proof of Proposition 4. Fix a Borel set D in \mathbb{R} . Then

$$\int_{0}^{t} e^{-A(u)} \left(\int_{-\infty}^{u} e^{A(r)} \frac{1}{\sigma^{2}(r)} I_{D}(r) dr \right) du$$

= $\left(\int_{-\infty}^{0} e^{A(r)} \frac{1}{\sigma^{2}(r)} I_{D}(r) dr \right) S(t) + \int_{0}^{t} e^{-A(u)} \left(\int_{0}^{u} e^{A(r)} \frac{1}{\sigma^{2}(r)} I_{D}(r) dr \right) du$
= $L_{1}(t) + L_{2}(t)$ (say).

Since $S(\infty) < \infty$ and $\int_{-\infty}^{0} e^{A(r)} (1/\sigma^2(r)) dr < \infty$, $L_1(\cdot)$ is bounded on $[0, \infty)$. We shall show that $L_2(t) \sim C_D \cdot t$ for $D = [0, \infty)$ and D = B, the given Borel set (for which (iv) holds).

By Fubini's theorem

$$L_2(t) = \int_0^t I_D(r) \frac{1}{\sigma^2(r)} \left(\int_r^t e^{-(A(u) - A(r))} du \right) dr$$
$$= \int_0^t I_D(r) \frac{1}{\sigma^2(r)} \left(\int_0^{t-r} e^{-F_r(v)} dv \right) dr.$$

By hypothesis (i)

$$k_r(v) = e^{-F_r(v)} \to e^{-\lambda v} \equiv k(v) \quad \text{as } r \to \infty$$
(12)

and also there is an r_0 such that for $r \ge r_0$, $F_r(1) \ge \lambda/2$. Hence for $r \ge r_0$ and $n \le n \le n + 1$

Hence for $r \ge r_0$ and $n \le v \le n+1$

$$k_{\mathbf{r}}(v) \leq k_{\mathbf{n}}(v) e^{-(A(\mathbf{r}+v)-A(\mathbf{r}+u))}$$
$$\leq e^{-v\lambda/2} e^{k_0} \quad \text{(by hypothesis (ii))}$$
$$= \tilde{k}(v) \quad \text{(say)}.$$

Let

$$\tilde{L}_{2}(t) = \int_{0}^{t} \frac{1}{\sigma^{2}(r)} I_{D}(r) \left(\int_{0}^{t-r} k(v) dv \right) dr.$$
(13)

Then,

$$\frac{1}{t}|L_2(t) - \tilde{L}_2(t)| \leq \frac{1}{t} \int_0^t \frac{I_D(r)}{\sigma^2(r)} \left(\int_0^{t-r} |k_r(v) - k(v)| \, \mathrm{d}v \right) \mathrm{d}r$$
$$\leq \frac{1}{t} \int_0^t \frac{1}{\sigma^2(r)} \left(\int_0^\infty |k_r(v) - k(v)| \, \mathrm{d}v \right) \mathrm{d}r.$$

Since $k_r(v) \to k(v)$ as $r \to \infty$ and is dominated by $\tilde{k}(v)$ which is integrable,

$$\int_0^\infty |k_r(v) - k(v)| \, \mathrm{d} v \to 0 \quad \text{as } r \to \infty.$$

By hypotheses in (iv)

$$\frac{1}{t}\int_0^t \frac{1}{\sigma^2(r)} dr$$
 is bounded in t

and so we conclude that

$$\limsup_{t\to\infty}\frac{1}{t}|L_2(t)-\tilde{L}_2(t)|=0.$$

Now for fixed k > 0 and t > k,

$$\tilde{L}_2(t) \ge \int_0^{t-k} \frac{I_D(r)}{\sigma^2(r)} \left(\int_0^k e^{-\lambda v} dv \right) dr$$

yielding

$$\liminf_{t\to\infty}\frac{\tilde{L}_2(t)}{t} \ge C_D \int_0^k e^{-\lambda v} dv$$

and hence

$$\liminf_{t\to\infty}\frac{\tilde{L}_2(t)}{t} \ge C_D\lambda^{-1}.$$

Finally,

$$\tilde{L}_2(t) \leqslant \int_0^t \frac{I_D(r)}{\sigma^2(r)} \left(\int_0^\infty k(v) \, \mathrm{d}v \right) \mathrm{d}r$$

yielding

$$\limsup_{t\to\infty}\frac{\tilde{L}_2(t)}{t}\leqslant C_D\lambda^{-1}$$

By taking $D = [0, \infty)$ and D = B, the given Borel set we get (i) and (iii) of Theorem 1 to hold. \Box

Proof of Proposition 5. By part (i) of Proposition 1

$$E_n(\tau_{n+1}) = 2 \int_n^{n+1} \mathrm{e}^{-A(u)} \left(\int_{-\infty}^u \mathrm{e}^{A(r)} \frac{1}{\sigma^2(r)} \mathrm{d}r \right) \mathrm{d}u.$$

By hypothesis (i) of Proposition 4, there exist r_0 such that

$$F_r(1) = A(r+1) - A(r) \ge \frac{\lambda}{2} \quad \text{for } r \ge r_0.$$

Thus for $n > r_0$

$$E_{n}(\tau_{n+1}) = 2 \int_{n}^{n+1} e^{-A(u)} \left(\int_{-\infty}^{r_{0}} e^{A(r)} \frac{1}{\sigma^{2}(r)} dr \right) du$$
$$+ 2 \int_{n}^{n+1} e^{-A(u)} \left(\int_{r_{0}}^{u} e^{A(r)} \frac{1}{\sigma^{2}(r)} dr \right) du$$
$$= a_{n} + b_{n} \quad (\text{say}).$$

Now,

$$a_n \leq 2\left(\int_{-\infty}^{r_0} \mathrm{e}^{A(r)} \frac{1}{\sigma^2(r)} \mathrm{d}r\right) \mathrm{e}^{-A(n)} \mathrm{e}^{k_0},$$

where k_0 is as in hypothesis (ii) of Proposition 4. By hypothesis (i) of Proposition 4, $A(n) \to \infty$ and so $a_n \to 0$ and hence $\sup_n a_n < \infty$.

Next,

$$b_{n} \leq 2 \left(\int_{r_{0}}^{n+1} e^{A(r)} \frac{1}{\sigma^{2}(r)} dr \right) e^{-A(n)} e^{k_{0}}$$

$$= 2e^{k_{0}} \sum_{k=r_{0}}^{n} \left(\int_{k}^{k+1} e^{(A(r) - A(n))} \frac{1}{\sigma^{2}(r)} dr \right)$$

$$\leq 2e^{2k_{0}} \sum_{k=r_{0}}^{n} \left(\int_{k}^{k+1} \frac{1}{\sigma^{2}(r)} dr \right) e^{(A(k) - A(n))}$$

$$\leq 2e^{2k_{0}} C \sum_{k=r_{0}}^{n} e^{-(n-k)\lambda/2} \quad \text{(by condition (i))}$$

$$\leq 2e^{2k_{0}} C \sum_{0}^{\infty} e^{-\lambda/2j},$$

where C is a generic constant. So $\sup_n b_n < \infty$ and hence $\sup_n (a_n + b_n) < \infty$ proving (a) of Proposition 5. Turning now to the proof of (b) we note from Proposition 1

$$\frac{1}{4}E_n(\tau_{n+1}^2) = \int_n^{n+1} e^{-A(u)} \left(\int_{-\infty}^u \frac{1}{\sigma^2(r)} e^{A(r)} E_r(\tau_{n+1}) dr\right) du.$$

But for r < 0 < n + 1, $E_r \tau_{n+1} = E_r \tau_0 + E_0 \tau_{n+1}$ and hence

$$\frac{1}{4}E_{n}\tau_{n+1}^{2} = \int_{n}^{n+1} e^{-A(u)} \left(\int_{-\infty}^{0} \frac{e^{A(r)}}{\sigma^{2}(r)} E_{r}(\tau_{0}) dr \right) du + \left(\int_{n}^{n+1} e^{-A(u)} \left(\int_{-\infty}^{0} \frac{e^{A(r)}}{\sigma^{2}(r)} dr \right) du \right) E_{0}(\tau_{n+1}) + \int_{n}^{n+1} e^{-A(u)} \left(\int_{0}^{u} e^{A(r)} \frac{1}{\sigma^{2}(r)} E_{r}(\tau_{n+1}) dr \right) du = \tilde{a}_{n} + \tilde{b}_{n} + \tilde{c}_{n} \quad (\text{say}).$$

Now

$$\tilde{a}_n \leqslant \mathrm{e}^{-A(n)} \mathrm{e}^{k_0} \left(\int_{-\infty}^0 \mathrm{e}^{A(r)} \frac{1}{\sigma^2(r)} E_r(\tau_0) \, \mathrm{d}r \right) \to 0,$$

as $n \to \infty$ and so $\sup_n |\tilde{a}_n| < \infty$.

Next,

$$\tilde{b}_n \leq e^{k_0} \left(\int_{-\infty}^0 e^{A(r)} \frac{1}{\sigma^2(r)} \, \mathrm{d}r \right) e^{-\lambda n/2} \, C_n$$

for all *n* large, since $\sup_j E_j \tau_{j+1} = c < \infty$, and $A(n)/n \to \lambda$ as $n \to \infty$. Thus $\tilde{b}_n \to 0$ and $\sup_n |\tilde{b}_n| < \infty$. Finally,

$$\begin{split} \tilde{c}_n &\leq e^{k_0} \sum_{k=0}^n \int_k^{k+1} e^{(A(k) - A(n+1))} E_r(\tau_{n+1}) \, dr \\ &\leq e^{2k_0} \sum_{k=0}^n e^{(A(k) - A(n+1))} E_k(\tau_{n+1}) \\ &\leq e^{2k_0} C \left(\sum_{k=0}^{r_0} e^{A(k)} (n+1-k) \right) e^{-A(n+1)} \quad (C \text{ is a generic constant}) \\ &+ e^{2k_0} C \sum_{k=r_0}^n (n+1-k) e^{-(\lambda/2)(n+1-k)} \end{split}$$

Thus

$$\tilde{c}_n \leq e^{2k_0}(n+1)e^{-A(n+1)}\left(\sum_{k=0}^{k_0}e^{A(k)}\right) + e^{2k_0}C\sum_{j=0}^{\infty}je^{-\lambda_j/2}$$

The first term goes to zero and so

$$\limsup_{n} (\tilde{a}_{n} + \tilde{b}_{n} + \tilde{c}_{n}) \leq e^{2k_{0}} C \sum_{0}^{\infty} j e^{-j\lambda/2} < \infty. \qquad \Box$$

Remark 2. A set of sufficient conditions for the validity of Propositions 4 and 5 is the following:

- (1) there exists $0 < \lambda \le \infty$ such that $\liminf_r \int_r^{r+h} \rho(u) du \ge \lambda h$ for all h > 0,
- (2) $\sup_{r} \sup_{0 \leq h \leq 1} \left| \int_{r}^{r+h} \rho(u) du \right| < \infty$,
- (3) $\int_{-\infty}^{0} e^{A(r)} (1/\sigma^2(r)) dr < \infty$,
- (4) $\limsup \int_{n}^{n+1} (1/\sigma^{2}(r)) dr < \infty$,
- (5) $\int_{-\infty}^{0} e^{A(r)} (1/\sigma^2(r)) dr < \infty$.

Proof of Corollary 2. Since μ and σ are periodic with period one the same is true of $\rho(\cdot)$. Further the assumption $\int_0^1 \rho(u) du > 0$ implies that $S(+\infty) < \infty$ and $S(-\infty) = -\infty$ where $S(\cdot)$ is as in (A.3). Thus the process X defined in (2) goes to ∞ w.p.1. Also, by periodicity, $E(\tau_{n+1} - \tau_n)^k = E_0 \tau_1^k$, k = 1, 2, which can be shown to be finite using periodicity. Following the discussion in section 2 and the proof of Theorem 1, we see that $(1/t) \int_0^t I_B(X(u)) du$ is convergent w.p.1 if and only if $(1/n) E_0(\int_0^{\tau_n} I_B(X(u)) du$ is convergent. By Proposition 3, this last quantity equals

$$\frac{2}{n}\int_0^n e^{-A(r)}\left(\int_{-\infty}^r I_B(u)e^{A(u)}\frac{1}{\sigma^2(u)}du\right)dr,$$

which converges if and only if $(2/n) \int_0^n e^{-A(r)} (\int_0^r I_B(u) e^{A(u)} (1/\sigma^2(u)) du) dr$ converges, since $\int_{-\infty}^0 I_B(u) e^{A(u)} (1/\sigma^2(u)) du < \infty$ and $\int_0^\infty e^{-A(r)} dr = S(+\infty)$. Now

$$\frac{2}{n} \int_{0}^{n} e^{-A(r)} \left(\int_{0}^{r} I_{B}(u) e^{A(u)} \frac{1}{\sigma^{2}(u)} du \right) dr$$

= $\frac{2}{n} \int_{0}^{n} I_{B}(u) \frac{1}{\sigma^{2}(u)} \left(\int_{0}^{n-u} e^{(A(u+s)-A(u))} ds \right) du$
= $\frac{2}{n} \int_{0}^{n} I_{B}(u) \frac{1}{\sigma^{2}(u)} \psi(u) du - \frac{2}{n} \int_{0}^{n} I_{B}(u) \frac{1}{\sigma^{2}(u)} \left(\int_{n-u}^{\infty} e^{-(A(u+s)-A(u))} ds \right) du,$

where $\psi(u)$ is as in Corollary 2. By periodicity, there are constants c_1 and c_2 such that $\alpha s + c_1 \leq A(u + s) - A(u) \leq \alpha s + c_2$ for all u and s where $\alpha = \int_0^1 \rho(u) du$. Therefore the second term is dominated by

$$\frac{C}{n}\int_0^n\int_{n-u}^\infty e^{-\alpha s}\,\mathrm{d}s=\frac{C}{n\alpha}\int_0^n e^{-\alpha(n-u)}\,\mathrm{d}u\leqslant\frac{C}{n\alpha}$$

where C is a generic constant. (We have used (A.1) and the periodicity to conclude that $\inf \sigma(\cdot) > 0$). Finally, by periodicity of μ , σ and hence of ψ ,

$$\frac{2}{n}\int_{0}^{n}I_{B}(u)\frac{1}{\sigma^{2}(u)}\psi(u)\,\mathrm{d}u = \int_{0}^{n}\left(\frac{2}{r}\sum_{0}^{n-1}I_{B}(r+j)\right)\frac{1}{\sigma^{2}(r)}\psi(r)\,\mathrm{d}r.$$

This completes the proof of Corollary 2. \Box

Acknowledgements

We wish to thank Professor N.H. Bingham for supplying us his paper (Bingham and Rogers, 1991) and also for some useful discussions.

References

- K.B. Athreya and A.P.N. Weerasinghe, Ergodic theorems for transient one dimensional distributions, preprint #92-23, Department of Statistics, Iowa State University (1992).
- R.N. Bhattacharya and E. Waymire, Stochastic Processes and Applications (Wiley, New York, 1991).
- N.H. Bingham and C.M. Goldie, Probababilistic and deterministic averaging, Trans. Amer. Math. Soc. 269 (1982) 453–480.
- N.H. Bingham and L.C. Rogers, Summability methods and almost sure convergence, in: A. Bellow and R.L. Jones, eds, Almost Everywhere Convergence II (Academic Press, New York, 1991).
- E.G. Dynkin, Markov Processes, Vols. I and II (Springer, New York, 1965).
- P. Hall and C.C. Heyde, Martingale Limit Theory and its Applications (Academic Press, New York, 1982).
- I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus (Springer, New York, 1988).