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Abstract. The aim of this paper is to construct the parabolic version of the Donaldson–
Uhlenbeck compactification for the moduli space of parabolic stable bundles on an
algebraic surface with parabolic structures along a divisor with normal crossing singu-
larities. We prove the non-emptiness of the moduli space of parabolic stable bundles of
rank 2.
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1. Introduction

LetX be a smooth projective variety defined over the field C of complex numbers. Moduli
spaces of sheaves with parabolic structures were defined and constructed in great generality
by Maruyama and Yokogawa [24]. Their work generalises the earlier construction of
Mehta and Seshadri [25] when dim(X) = 1. When dim(X) = 2, i.e. X is a smooth
projective surface and if D is an effective divisor on X then one finds from the work of
Kronheimer and Mrowka (cf. [17] and [18]) that the underlying geometry and topology
of the moduli space of parabolic bundles of rank two and trivial determinant have very
interesting applications arising out of a generalization of Donaldson polynomials defined
from these moduli spaces. These moduli spaces and their compactifications were studied
in the papers of Kronheimer and Mrowka but primarily from the differential geometric
standpoint. In particular, the Kobayashi–Hitchin correspondence was conjectured in these
papers and this has since been proven by a number of people in growing order of generality
(cf. [5], [23], [30]).

The purpose of this paper and its sequel [1] is to initiate a comprehensive study of the
geometry of the moduli space of μ-stable parabolic bundles of arbitrary rank on smooth
projective surfaces with parabolic structures on a reduced divisorD with normal crossing
singularities. More precisely, in this paper we construct the analogue of the Donaldson–
Uhlenbeck compactification of the moduli space ofμ-stable parabolic bundles of arbitrary
rank and also prove the existence of μ-stable parabolic bundles when certain topological
invariants are allowed to be arbitrarily large. We summarise our results in the following
theorem. For notations see Notation 4.19:
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Theorem 1.1.

(1) There exists a natural compactification of the moduli space Mααα
k,j,r(r,P, κ) of μ-

stable parabolic bundles with fixed determinant P and with fixed topological and
parabolic datum. Furthermore, the compactification can be set-theoretically described
as follows:

Mααα
k,j,r(r,P, κ) ⊂

∐

l≥0

M
ααα-poly
k′,j′,r (r,P, κ − l)× Sl(X), (1.1)

where by, Mααα-poly
k,j,r (r,P, κ), we mean the set of isomorphism classes of polystable

parabolic bundles with parabolic datum given by (ααα, l, r, j), fixed determinant P and
with topological datum given by k and κ .

(2) The moduli space of μ-stable parabolic bundles of rank 2 is non-empty, when the
invariants k and j are made sufficiently large and the weights satisfy some natural
bounds (see Theorem 5.1)

This paper can therefore be seen as completing the algebro-geometric analogue of the
Kobayashi–Hitchin correspondence for parabolic bundles on surfaces. We compare the
moduli spaces that we construct with that of Kronheimer–Mrowka when we restrict our-
selves to the rank two case.

The main strategy used for the construction is to use the categorical correspondence
of the category of �-bundles of fixed type τ on a certain Kawamata cover of the surface
X with the category of parabolic bundles on X with fixed parabolic datum (see §1 for
definitions and terminology). The Kawamata cover Y is non-canonical and is therefore
employed only as a stepping stone for the construction. Although non-canonical, the mod-
uli problem gets defined more naturally on Y and one takes recourse to the ideas of Li and
Le Potier, as well as the earlier work of Donaldson to give an algebraic–geometric con-
struction of the Donaldson–Uhlenbeck compactification of the moduli space of μ-stable
�-bundles on Y . Then by using the correspondence one can interpret the compactification
in a canonical manner as a compactification of the moduli space of parabolic bundles over
the surface X with given parabolic datum, thereby removing the non-canonical nature of
the construction. We believe that this moduli space can be realised, as in the usual set-
ting, as a generalized blow-down of the Maruyama–Yokogawa moduli space. Unlike our
moduli space, the Maruyama–Yokogawa space is a GIT construction using Gieseker type
stability for parabolic sheaves.

We then go on to show that the moduli space ofμ-stable parabolic bundles is non-empty
for large topological invariants. The proof is a generalization of the classical Cayley–
Bacharach construction to the setting of orbifold bundles. Our proof of non-emptiness and
existence of components with smooth points gives the same results for the Maruyama–
Yokogawa space as well in the case when X is a surface. To the best of our knowl-
edge the non-emptiness of these moduli spaces have not been shown hitherto. In the
sequel [1] we also show the asymptotic irreducibility and asymptotic normality of these
spaces.

The moduli spaces are defined when some natural topological invariants of the underly-
ing objects are kept fixed. We also relate the topological invariants that occur in [17], [18]
with natural invariants for parabolic bundles namely parabolic Chern classes as defined in
[7]. One observes that the concept of an action (as defined in [17]) of a parabolic bundle is
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precisely the second parabolic Chern class. Moreover, when we examine the Donaldson–
Uhlenbeck compactification for these moduli spaces, as observed by Kronheimer and
Mrowka, the falling of the instanton numbers is not perceived very precisely but what is
seen to drop in the boundary is the second parabolic Chern class or equivalently the action.
Indeed, this is exactly the phenomenon in the usual Donaldson–Uhlenbeck compactifica-
tion of stable SU(2)-bundles on surfaces. For applications involving Donaldson invariants
arising from moduli of parabolic bundles which should yield topological invariants for the
pair (D,X) together with the imbedding D ↪→ X, we refer the reader to [17].

2. Preliminaries

2.1 The category of bundles with parabolic structures

We rely heavily on the correspondence between the category of parabolic bundles onX and
the category of �-bundles on a suitable Kawamata cover. This strategy has been employed
in many papers (for example [6]) but since we need its intricate properties, most of which
are scattered in a few papers of Biswas and Seshadri, we recall them briefly. We stress only
on those points which are relevant to our purpose.

Let D be an effective divisor on X. For a coherent sheaf E on X the image of
E
⊗

OX
OX(−D) in E will be denoted by E(−D). The following definition of parabolic

sheaf was introduced in [24].

DEFINITION 2.1

Let E be a torsion-free OX-coherent sheaf on X. A quasi-parabolic structure on E over
D is a filtration by OX-coherent subsheaves

E = F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fl(E) ⊃ Fl+1(E) = E(−D).
The integer l is called the length of the filtration. A parabolic structure is a quasi-parabolic
structure, as above, together with a system of weights {α1, . . . , αl} such that

0 ≤ α1 < α2 < · · · < αl−1 < αl < 1,

where the weight αi corresponds to the subsheaf Fi(E).

We shall denote the parabolic sheaf defined above by (E, F∗, α∗). When there is no
scope of confusion it will be denoted by E∗.

For a parabolic sheaf (E, F∗, α∗) define the following filtration {Et }t∈R of coherent
sheaves on X parameterized by R:

Et := Fi(E)(−[t]D), (2.1)

where [t] is the integral part of t and αi−1 < t − [t] ≤ αi , with the convention that
α0 = αl − 1 and αl+1 = 1.

A homomorphism from the parabolic sheaf (E, F∗, α∗) to another parabolic sheaf
(E′, F ′∗, α′∗) is a homomorphism fromE toE′ which sends any subsheafEt intoE′

t , where
t ∈ [0, 1] and the filtration are as above.

If the underlying sheafE is locally free thenE∗ will be called a parabolic vector bundle.
In this section, all parabolic sheaves will be assumed to be parabolic vector bundles.
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Remark 2.2. The notion of parabolic degree of a parabolic bundle E∗ of rank r is defined
as

pardeg(E∗) :=
∫ 1

0
deg(Et )dt + r · deg(D). (2.2)

Similarly one may define parμ(E∗) := pardeg(E∗)/r . There is a natural notion of parabolic
subsheaf and given any subsheaf of E there is a canonical parabolic structure that can be
given to this subsheaf (cf. [24], [6] for details).

DEFINITION 2.3

A parabolic sheaf E∗ is called parabolic semistable (resp. parabolic stable) if for every
parabolic subsheaf V∗ of E∗ with 0 < rank(V∗) < rank(E∗), the following holds:

parμ(V∗) ≤ parμ(E∗) (resp. parμ(V∗) < parμ(E∗)). (2.3)

2.1.1 Some assumptions. The class of parabolic vector bundles that are dealt with in the
present work satisfy certain constraints which will be explained now. In a remark below
(see Remark 2.4), we observe that these constraints are not stringent in so far as the problem
of moduli spaces is concerned.

(1) The first condition is that all parabolic divisors are assumed to be divisors with normal
crossings. In other words, any parabolic divisor is assumed to be reduced, its each irre-
ducible component is smooth, and furthermore the irreducible components intersect
transversally.

(2) The second condition is that all the parabolic weights are rational numbers.
(3) The third and final condition states that on each component of the parabolic divisor

the filtration is given by subbundles. The precise formulation of the last condition is
given in Assumption 3.2(1) of [6].

Henceforth, all parabolic vector bundles will be assumed to satisfy the above three condi-
tions.

Remark 2.4. We remark that for the purpose of construction of the moduli space of
parabolic bundles the choice of rational weights is not a serious constraint and we refer
the reader to Remark 2.10 of [25] for more comments on this.

DEFINITION 2.5

A quasi-parabolic filtration on a sheaf E can also be defined by giving filtration by sub-
sheaves of the restriction E|D of the sheaf E to each component of the parabolic divisor:

E|D = F1
D(E) ⊃ F2

D(E) ⊃ · · · ⊃ F l
D(E) ⊃ F l+1

D (E) = 0

together with a system of weights

0 ≤ α1 < α2 < · · · < αl−1 < αl < 1.

Let PVect(X,D) denote the category whose objects are parabolic vector bundles over
X with parabolic structure over the divisor D satisfying the above three conditions, and
the morphisms of the category are homomorphisms of parabolic vector bundles (which
was defined earlier).
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The direct sum of two vector bundles with parabolic structures has an obvious parabolic
structure. Evidently, PVect(X,D) is closed under the operation of taking direct sum. We
remark that the category PVect(X,D) is an additive tensor category with the direct sum
and the parabolic tensor product operation. It is straight-forward to check that PVect(X,D)
is also closed under the operation of taking the parabolic dual defined in [31].

For an integer N ≥ 2, let PVect(X,D,N) ⊆ PVect(X,D) denote the subcategory
consisting of all parabolic vector bundles all of whose parabolic weights are multiples of
1/N . It is straight-forward to check that PVect(X,D,N) is closed under all the above
operations, namely parabolic tensor product, direct sum and taking the parabolic dual.

2.2 The Kawamata covering lemma

LetD = ∑c
i=1Di be the decomposition of the divisorD into its irreducible components.

Take any E∗ ∈ PVect(X,D) such that all the parabolic weights of E∗ are multiples of
1/N , i.e., E∗ ∈ PVect(X,D,N).

The ‘covering lemma’ of Kawamata (Theorem 1.1.1 of [16], Theorem 17 of [15]) says
that there is a connected smooth projective variety Y over C and a Galois covering mor-
phism

p: Y −→ X (2.4)

such that the reduced divisor D̃ := (p∗D)red is a normal crossing divisor on Y and
furthermore, p∗Di = kiN · (p∗Di)red, where ki , 1 ≤ i ≤ c are positive integers. Let �
denote the Galois group for the covering map p.

2.3 The category of �-bundles

Let� ⊆ Aut(Y ) be a finite subgroup of the group of automorphisms of a connected smooth
projective variety Y/C. The natural action of � on Y is encoded in a morphism

μ: � × Y −→ Y.

Denote the projection of �× Y to Y by p2. The projection of �×�× Y to the i-th factor
will be denoted by qi . A �-linearized vector bundle on Y is a vector bundle V over Y
together with an isomorphism

λ: p∗
2V −→ μ∗V

over�×Y such that the following diagram of vector bundles over�×�×Y is commutative:

where m is the multiplication operation on �.
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The above definition of �-linearization is equivalent to giving isomorphisms of vector
bundles

ḡ: V −→ (g−1)∗V

for all g ∈ �, satisfying the condition that gh = ḡ ◦ h̄ for any g, h ∈ �.
A �-homomorphism between two �-linearized vector bundles is a homomorphism

between the two underlying vector bundles which commutes with the �-linearizations.
Clearly the tensor product of two �-linearized vector bundles admits a natural �-
linearization; so does the dual of a �-linearized vector bundle. Let Vect�(Y ) denote
the additive tensor category of �-linearized vector bundles on Y with morphisms being
�-homomorphisms.

As before, Vect�(Y ) denotes the category of all �-linearized vector bundles on Y . The
isotropy group of any point y ∈ Y , for the action of � on Y , will be denoted by �y .

2.4 On local types of �-bundles

Recall that since the �-action on Y is properly discontinuous, for each y ∈ Y , if �y is the
isotropy subgroup at y, then there exists an analytic neighbourhood Uy ⊂ Y of y which is
�y-invariant and such that for each g ∈ �\�y , g · Uy ∩ Uy = ∅.

DEFINITION 2.6

Let ρ be a representation of � in GL(r,C). Then � acts on the trivial bundle Y × C
r by

(y, v) −→ (γy, ρ(γ )v), y ∈ Y, v ∈ C
r , γ ∈ �. Following [29] we call this �-bundle, the

�-bundle associated to the representation ρ.

Let MY (G) be the sheaf of germs of meromorphic maps of Y into a complex linear
group G.

Now the sheaf OY (G) of germs of holomorphic maps from Y into G is a subsheaf of
groups of MY (G).

Note that OY (G) acts on MY (G). The quotient sheaf of sets OY (G)\MY (G) is called
the sheaf of germs of divisors with values in G and it is denoted by DY (G). Since � acts
on the sheaf OY (G) we see that � operates onDY (G) as well and henceDY (G) becomes
a �-sheaf. A �-invariant section of DY (G) is called a (�,G)-divisor.

Remark 2.7. Let 
 be a �-invariant section of DY (G). From the above description of a
(�,G)-divisor we see that 
 can be defined by the following datum:

An open covering {Ui} of Y by �-invariant open subsets and {fi}, where fi is a mero-
morphic map of Ui into G such that fi(s−1y) = λsi (y)fi(y), ∀s ∈ �, λsi (y) being a holo-
morphic map of Ui into G and such that fj/fi = gij ∈ OY (G)(Ui ∩ Uj) which satisfies
the identity gij · gjk · gki = 1 on Ui ∩ Uj ∩ Uk .
Remark 2.8. We remark that to �-vector bundle one can naturally associate a (�,GL(n))-
divisor in our situation, i.e. where p: Y −→ X is a Kawamata cover and X is therefore
projective. This can be seen as follows.

Let E be a �-locally free sheaf of rank r on Y . Then the invariant direct image sheaf
F := (p∗(E))� is of rank r on X. Since X is a projective variety we can choose large n
so that F(m) = F ⊗ H(m) is globally generated for m ≥ n where H is an ample line
bundle on X. In other words, we can choose r linearly independent sections of F(m) or
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equivalently, r linearly independent meromorphic sections of F . This gives r independent
�-invariant meromorphic sections of E on Y .

Observe that giving r independent sections of a vector bundleE is equivalent to giving a
section of the underlying frame principal bundleEGL(r). In particular, giving r independent
meromorphic �-invariant sections of E on Y is equivalent to giving a meromorphic �-
invariant section f of the underlying (�,GL(r))-principal bundle EGL(r). Let {gij } be
the transition functions of EGL(r) subordinate to the �-invariant covering Ui of Y . A �-
invariant meromorphic section f is giving �-invariant meromorphic functions {fi}, where
fi : Ui −→ GL(r) such that fi = gij fj on Ui ∩ Uj and satisfying equivariant properties
as in Remark 2.7. In other words, we have a (�,GL(r))-divisor to which the �-bundle E
is associated. From now on we call it a �-divisor associated to �-vector bundle E.

We recall the following lemma which is straightforward to check.

Lemma 2.9. Let P be a (�,G)-principal bundle on Y . Then given y ∈ Y there exists an
analytic neighbourhood Uy which is �y-invariant such that P |Uy defined by 1-cocycles
H 1(�y,H

0(Uy,OY (G))).

We then have the following equivariant local trivialisation lemma (cf. pp. 141–07 of
[12]).

Lemma 2.10. Let E be a �-bundle on Y of rank r . Let y ∈ Y and let �y be the isotropy
subgroup of � at y. Then there exists a �y-invariant analytic neighbourhood Uy of y such
that the �y-bundle E|Uy is associated to a representation �y → GL(r) (in the sense of
Definition 2.6).

Proof. For the purpose of notation we writeG forGL(n,C). Let OY (G)y denote the stalk
at y of the sheaf of germs of holomorphic maps of Y intoG. And let MY (G)y denote the
stalk at y of the sheaf of germs of meromorphic maps from Y to G.

Since we have the exact sequence of sheaf of multiplicative groups

1 −→ OY (G) −→ MY (G) −→ DY (G) −→ 1,

we have the following exact sequence of multiplicative groups

1 −→ OY (G)y −→ MY (G)y −→ DY (G)y −→ 1.

Hence we have the following long exact sequence of cohomology sets by taking �y-
invariants

0 −→ H 0(�y,OY (G)y) −→ H 0(�y,MY (G)y) −→ H 0(�y,DY (G)y)

δ−→ H 1(�y,OY (G)y) −→ . . . .

Now we know that E is determined locally by an element of H 1(�y,OY (G)y) i.e. a
1-cocycle by Lemma 2.9.

Note that there is a canonical map fromG to OY (G)y , i.e. the constant map g: Y −→ G

such that g(y) = g for every g ∈ G. Hence this induces a canonical map

χ : H 1(�y,G) −→ H 1(�y,OY (G)y).
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To prove the lemma we need to show that the map χ is bijective. A 1-cocycle {fγ } ∈
H 1(�y,OY (G)y), which when evaluated at y defines a map j : H 1(�y,OY (G)y) −→
H 1(�y,G). We see that j ◦ χ = identity. Hence it is enough to prove that χ is surjective.

By Remark 2.8, E is defined by a �-divisor (note that we need this only locally!).
Therefore {fγ } comes from H 0(�y,DY (G)y) by the above cohomology exact sequence.

In particular, it is represented by a coset 
 ∈ H 0(�y,DY (G)y) � H 0(�y,MY (G)y

H 0(�y,OY (G)y
.

In other words, if γ −→ {fγ ) is a 1-cocycle representing an element ofH 1(�y,OY (G)),
there exists a �y-invariant meromorphic section 
 ∈ MY (G), such that 
(γ z) =
fγ (z)
(z) where z ∈ Uy and γ ∈ �y .

Define ϕ(γ ) := fγ (y) for all γ ∈ �y ; then observe that ϕ defines a representation of
�y into GL(n), for

ϕ(γ1γ2) = fγ1γ2(y) = fγ1(γ2y)fγ2(y) = fγ1(y)fγ2(y) = ϕ(γ1)ϕ(γ2)

because γ2y = y ∀γ2 ∈ �y .
Define

�(z) :=
∑

γ∈�y
ϕ(γ )
(γ−1z).

Note that as it stands, �(z) is a �y-invariant section of MY (M(n,C)).
Then we have

�(αz) =
∑

γ∈�y
ϕ(γ )
(γ−1αz) =

∑

γ∈�y
ϕ(α)ϕ(ν−1)
(νz)

by setting γ−1α = ν. Hence

�(αz) = ϕ(α)�(z). (2.5)

Further we have

�(z)
−1(z) =
⎧
⎨

⎩
∑

γ∈�y
ϕ(γ )fγ−1(z)
(z)

⎫
⎬

⎭ 
−1(z) =
∑

γ∈�y
ϕ(γ )fγ−1(z)

since 
(γ−1z) = fγ−1(z)
(z). But fγ−1(y) = ϕ(γ−1), therefore we get

�(y)
−1(y) =
∑

γ∈�y
ϕ(γ )fγ−1(y) = ny � Id,

where ny is a order of the group �y .
We note that det(�
−1) �= 0 since its evaluation at y ∈ �y is not zero (in fact it

is equal to nyn by the above equation). Hence �
−1 ∈ H 0(�y,OY (G)y). Also since

 ∈ H 0(�y,MY (G)y), it follows that � ∈ H 0(�y,MY (G)y).

This also shows that both � and 
 define the same divisor locally at y. But the
(�y,GL(n))-bundle defined by � is given by the representation ϕ by the equation (2.5).
Hence χ is surjective. q.e.d

Remark 2.11. The above lemma for �-bundles on curves with structure groupGL(r) can
be found in Proposition 2, pp. 159 of [29] and [12] (see also Remark 2, page 162 of [29]).
Here the key property that is used is thatUy andUy/�y are Stein spaces. This result, for the
more general setting of arbitrary compact groupsK instead of � and for general structure
groups can be found in §11 of [13].
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2.4.1 �-bundles of fixed local type. We make some general observations on the local
structure of �-bundles on the Kawamata cover defined in (2.3).

Let VectD� (Y,N) denote the subcategory of Vect�(Y ) consisting of all �-linearized
vector bundles W over Y satisfying the following two conditions:

(1) For a general point y of an irreducible component of (p∗Dj)red, the isotropy subgroup
�y is cyclic of order |�y | = ny . Note that in the earlier notation ny = kjN , where y
is the generic point of the irreducible component Dj .

(2) In fact, the action is given by a representation ρy of �y given as follows:
(3) The weights are rational numbers αi = mi

N
, with

m1 < m2 < · · ·ml < N.

Since ny = kjN , we have αi = di/ny , where di = kjmi , for each i and j .

ρy(ζ ) =

⎡

⎢⎢⎣

znyα1 · I1 0
.

.

0 znyαl · Il

⎤

⎥⎥⎦ , (2.6)

where

• ζ is a generator of the group �y .
• αi = di/ny , where di’s are increasing sequence of positive integers such that
d1 < d2 < · · · dl < ny .

• Ij is the identity matrix of order rj , where rj is the multiplicity of the weight αj .
• z is an ny-th root of unity.

(4) For a general point y of an irreducible component of a ramification divisor for p not
contained in (p∗D)red, the action of �y on Wy is the trivial action.

(5) For a special point y contained in (p∗D)red, the isotropy subgroup �y contains
the cyclic group �n of order n determined by the irreducible component contain-
ing y. By the rigidity of representations of finite groups, the �y-module struc-
ture on Wy (given by Lemma 2.10) when restricted to �n ⊂ �y is given by the
matrix (2.6).

(6) At special points y of the ramification divisor for p not contained in (p∗D)red, the
restriction of the representation to the generic isotropy is trivial.

DEFINITION 2.12

To describe a �-vector bundle in VectD� (Y,N) we need to specify the following datum:
(i) an integer N , (ii) αi’s and (iii) ri’s. Altogether we denote this datum by a single letter
τ (to be consistent with page 161 of [29]).

Remark 2.13. The reason for calling it local type τ is that, for a �-bundle and a point
y the generic point of a divisor as above, the structure of the representation defines the
bundleEU for a�y-invariant analytic neighbourhood in Y . Seshadri denoted the collection
of representations of the cyclic groups which define the local isomorphism type over an
analytic neighbourhood by the letter τ ; note that the �-bundle defines what is known as
an orbifold bundle.
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Remark 2.14. We remark that this definition of�-bundles of fixed local type easily extends
to �-torsion-free sheaves since the local action is specified only at the generic points of
the ramification divisor.

We note that VectD� (Y,N) is also an additive tensor category.

2.4.2 Parabolic bundles and �-bundles. In [6] an identification between the objects
of PVect(X,D,N) and the objects of VectD� (Y,N) has been constructed. Given a �-
homomorphism between two �-linearized vector bundles, there is a naturally associated
homomorphism between the corresponding vector bundles, and this identifies, in a bijective
fashion, the space of all �-homomorphisms between two objects of VectD� (Y,N) and
the space of all homomorphisms between the corresponding objects of PVect(X,D,N).
An equivalence between the two additive tensor categories, namely PVect(X,D,N) and
VectD� (Y,N), is obtained this way. Since the description of this identification is already
given in [6] and [2], it will not be repeated here.

We observe that an earlier assertion that the parabolic tensor product operation enjoys
all the abstract properties of the usual tensor product operation of vector bundles, is a
consequence of the fact that the above equivalence of categories indeed preserves the tensor
product operation.

The above equivalence of categories has the further property that it takes the parabolic
dual of a parabolic vector bundle to the usual dual of the corresponding�-linearized vector
bundle.

LetW ∈ VectD� (Y,N) be the�-linearized vector bundle of rankn onY that corresponds
to the given parabolic vector bundle E∗. The fiber bundle

π : P −→ Y

whose fiber π−1(y) is the space of all C-linear isomorphisms from C
n to the fiberWy , has

the structure of a (�,GL(n,C))-bundle over Y .

DEFINITION 2.15

A �-linearized vector bundle E over Y is called �-semistable (resp. �-stable) if for any
proper nonzero coherent subsheaf F ⊂ E, invariant under the action of � and with E/F
being torsionfree, the following inequality is valid:

μ(F) ≤ μ(E) (resp. μ(F) < μ(E)), (2.7)

where the slope is as usual μ(E) = deg(E)/r and deg(E) is computed with respect to the
�-linearised very ample divisor 
 on Y .

The �-linearized vector bundle E is called �-polystable if it is a direct sum of �-stable
vector bundles of the same slope.

Remark 2.16. The above correspondence between parabolic bundles onX and �-bundles
on Y preserves the semistable (resp. stable) objects as well, where parabolic semistability
is as in (2.3) (cf. [6]).

Remark 2.17. We remark that it is not hard to check that for �-bundles, �-semistability
(resp. �-polystablity) is the same as the usual semistability (resp. polystability). This can
be seen from the fact that the top term of the Harder–Narasimhan filtration (resp. the Socle)
are canonical and hence invariant under the action of�. But we note that a �-stable bundle
need not be �-stable, as can be seen by taking a direct sum of �-translates of a line bundle.
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Remark 2.18. We make some key observations in this remark where we also note the
essential nature of assumptions of characteristic zero base fields.

(1) The notion of �-cohomology for �-sheaves on Y has been constructed and dealt with
in great detail in [11]. These can be realised as higher derived functors of the �-fixed
points – sub-functor (H 0)� of the section functor H 0. (We use this notation to avoid
�� , because we have denoted the finite group by the letter �!).

We note immediately that since we work over fields of characteristic zero, the sub-
functor (H 0)� ⊂ H 0 is in fact a direct summand (by averaging operation). Hence,
we see immediately that the higher derived functors of the functor(H 0)� are all sub
objects of the derived functors of H 0.

(2) When we work with a Kawamata cover as in our case, then we have the following
relation between the �-cohomology and the usual cohomology on Y/� = X:

Hi
�(Y,F) = Hi(X, p�∗ (F)) ∀i.

2.4.3 �-bundles and orbifold bundles. We make a few general remarks on the advan-
tages of working with a Kawamata cover Y and�-bundles on Y over working with orbifold
bundles or V -bundles over V -manifolds. Locally, these two notions can be completely
identified but for any global construction such as the one which we intend doing, namely
a moduli construction, working with a Kawamata cover albeit non-canonical, has obvious
advantages since it immediately allows us to work with a certain ‘Quot’ scheme over Y .
To recover the moduli of parabolic bundles with fixed quasi parabolic structure, we then
simply use the functorial equivalence of parabolic bundles and �-bundles of fixed local
type.

2.4.4 �-line bundles and parabolic line bundles. A � line bundle on Y is a line bun-
dle L on Y together with a lift of action �. The � line bundle gives a � invariant line
bundle L� on X. Let D be a divisor of normal crossing on X. Let D = ∑d

i=1Di be a
decomposition into irreducible components. A parabolic line bundle on (X,D) is a pair
of the form (M, β1, . . . , βi, . . . , βd) where M is a holomorphic line bundle on X and
0 ≤ βi < 1 is a real number. When we start from a � line bundle on Y we get a pair
(L�, β1, . . . , βi, . . . , βd)whereβi is a rational number and it can be written asβi = mi/N.

Let D̃i = (p∗Di)red. Then by §2b of [8] we have L = p∗(L�)⊗ OY (
∑d
i=1 kimiD̃i).

Remark 2.19. In our situation, by choice we work with a single weight when we consider
�-line bundles of fixed local type τ although this may not be absolutely essential.

2.4.5 Serre duality for �-line bundles of fixed local type

DEFINITION 2.20

By a line bundleLof fixed local type τ we mean a parabolic line bundle (L, α1, α2, . . . , αd),
where αi = α ∀i. In other words, locally, the generic isotropy on the irreducible compo-
nents of the inverse image of the parabolic divisor acts by a single character namely α.
We will write L(α) to specify the character.

Let L = L(α) be a � line bundle on Y of type τ . Then by §2.4.4, one knows that
L = p∗(p�∗ (L))⊗OY (

∑
kimiD̃i)where all themi can be assumed to be equal tom since
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we have a single weight α. If M = M(α) is another �-line bundle with the same local
character type τ , then we have L∗ ⊗M = p∗(p�∗ (L)∗)⊗ p∗(p�∗ (M)). Hence

(p�∗ (L
∗ ⊗M)) = (p�∗ (L)

∗ ⊗ (p�∗ (M)). (2.8)

Consider the canonical bundles KX of X and define the �-bundle K(α)
Y as follows:

K
(α)
Y = p∗(KX)⊗ OY

(∑
kiD̃im

)
. (2.9)

Then, we see as above that p�∗ (K
(α)
Y ) = KX. We then have the following duality for �-line

bundles of type τ .

Lemma 2.21. For �-line bundles L of type τ , with local character α, the �-line bundle
K
(α)
Y is the dualising sheaf. In other words, we have a canonical isomorphism:

Hi
�(Y, L

∗ ⊗K
(α)
Y ) � Hn−i

� (Y, L)∗

for all i.

Remark 2.22. We remark that we have made this statement for�-varieties Y of any dimen-
sion.

Proof. The proof is straightforward, but we give it for the sake of completeness. Recall
the relationship between the �-cohomology on Y and the usual cohomology on X

(Remark 2.18). We have the following isomorphism (using (2.8)):

Hi
�(Y, L

∗ ⊗K
(α)
Y ) � Hi(X, p�∗ (L

∗ ⊗K
(α)
Y )

� Hi(X, p�∗ (L)
∗ ⊗ (p�∗ (K

(α)
Y )).

Using p�∗ (K
(α)
Y ) = KX we then conclude from the following isomorphism:

Hi
�(Y, L

∗ ⊗K
(α)
Y ) � Hi(X, p�∗ (L)

∗ ⊗KX)

� Hn−i (X, p�∗ (L))
∗ � Hn−i

� (Y, L)∗,

where we use the usual Serre duality on X. q.e.d

The following lemma is important in proving Lemma 2.24. For a proof of this fact see
for example page 37 of [9].

Lemma 2.23. Let L,M are two line bundles over a smooth projective surface Y and Z be
a reduced 0-dimensional cycle. Then

Hom(M ⊗ IZ,L) � M∗ ⊗ L; Ext1(M ⊗ IZ,L) � OZ.

Lemma 2.24. LetL(α1),M(α2) be two�-line bundles andZ be a reduced�-invariant cycle
away from ramification locus. Then we have

dim(Ext1
�(M

(α2) ⊗ IZ,L(α1))) = dim(H 1
�(M

(α2)∗ ⊗ L(α1) ⊗K
(α1−α2)
Y ).
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Proof. We have the following standard exact sequence

0 → IZ → O → OZ → 0. (2.10)

Recall the Grothendieck Ext spectral sequence (§5 of [11]). LetEp,q2 = H
p
� (Y, Extq(M⊗

IZ,L)). Then the spectral sequence gives a long exact sequence whose initial part is of
the form

0 → E
1,0
2 → Ext1

�(M
(α2) ⊗ IZ,L(α1)) → E

0,1
2 → E

2,0
2

→ Ext2
�(M ⊗ IZ,L(α1)) → · · ·

From Grothendieck’s spectral sequence (§5 of [11]) we get

0 → H 1
�(Hom(M(α2) ⊗ IZ,L(α1)) → Ext1

�(M
(α2) ⊗ IZ,L(α1))

→ H 0
�(Ext (M(α2) ⊗ IZ,L(α1)) → H 2

�(Hom(M(α2) ⊗ IZ,L(α1))).

Using Lemma 2.24 we get

0 → H 1
�(M

(α2)∗ ⊗ L(α1)) → Ext1
�(M

(α2) ⊗ IZ,L(α1)) → H 0
�(OZ)

→ H 2
�(M

(α2)∗ ⊗ L(α1)).

Let P = M(α2) ⊗L(α1)∗ ⊗K
(α1−α2)
Y . Then, tensoring (2.10) with P and taking long exact

sequences we get

0 → H 0
�(P ⊗ IZ) → H 0

�(P ) → H 0
�(P ⊗ OZ)

→ H 1
�(P ⊗ IZ) → H 1

�(P ) → 0.

Taking duals and comparing with 2.4.5 we get a commutative diagram:

H 1
�(P )

∗ �� H 1
�(P ⊗ IZ)∗ �� H 0

�(P ⊗ OZ)
∗ �� H 0

�(P )
∗ �� H 0

�(P ⊗ IZ)∗

H 1
�(M

(α2)∗ ⊗ L(α1)) �� Ext1
�(M ⊗ IZ, L(α1)) �� H 0

�(OZ) �� H 2
�(M

(α2)∗ ⊗ L(α1)) �� H 0
�(P ⊗ IZ)

.

The downward equality follows from �-Serre duality (Lemma 2.21). Hence by using
‘five lemma’ we conclude

dim(Ext1
�(M

(α2) ⊗ IZ,L(α1))) = dim(H 1
�(M

(α2) ⊗ L(α1)∗ ⊗K
(α1−α2)
Y )).

q.e.d

Remark 2.25. In fact after little bit of work one can prove that the spaces are canonically
isomorphic, but for our purpose we need only the dimensional equality.

Lemma 2.26. LetG be a �-locally free sheaf on Y and F be a coherent sheaf on X. Then
p�∗ (p∗(F )⊗G) � F ⊗ p�∗ (G).

Proof. Since the lemma is about isomorphism of sheaves, it is enough to check at local
level. So we can restrict our attention to Spec(B) ⊂ Y, Spec(A) ⊂ X such that � acts
to Spec(B) and A = B� . Let F |Spec(A) = M̃ , where M is a finitely generated A-module
(need not be locally free) and G|Spec(B) = B̃r , where r is the rank of G. So locally the
left-hand side becomes (M ⊗A B ⊗B B

r)� = ⊕
r (M ⊗A B

�) = Mr . Locally right-hand
side also becomes M ⊗ (Br)� = Mr . q.e.d
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3. Towards the construction

3.0.6 On determinant line bundles. We briefly recall the basic definitions for the con-
venience of the reader. Let Y be an irreducible smooth projective variety equipped with a
very ample OY (1). Let K(Y) be the Grothendieck algebra of classes of coherent sheaves.
Let θ be the class inK(Y) of the structure sheaf O
 of a hyperplane section
 ⊂ Y . This
algebra is equipped with a quadratic form q: u �→ χ(u2). This form is calculated in terms
of the rank and the Chern classes of u. For example, if Y is a smooth projective surface,
and if u ∈ K(Y) is of rank r , and the Euler characteristic χ , we have

q(u) = 2rχ + c2
1 − r2χ(OY ).

The kernel ker(q) comprises of the classes which are numerically equivalent to zero. We
work with the quotient:

Knum(Y ) = K(Y)/ker(q).

For a smooth projective surface Y , Knum(Y ) � Z ×H 2(Y,Z)× Z and this isomorphism
is by giving (r, c1, χ).

Recall that if F is a flat family of coherent sheaves on Y parametrized by a scheme S,
then F defines an element [F] ∈ K0(S × Y ), the Grothendieck group of S × Y generated
by locally free sheaves. We may then define the homomorphism from the Grothendieck
group of coherent sheaves on Y given by

λF : K(Y) −→ Pic(S)

as follows: For u ∈ K(Y), λF (u) = det(pr1!(F · pr∗2(u)), where F · pr∗2(u) is the prod-
uct in K(S × Y ) and pr1!: K

0(S × Y ) → K0(S) associates to each class u the class∑
i (−1)iRipr1∗(u).
We observe that this has a collection of functorial properties for which we refer to

page 179 of [14].
Let Y be a smooth projective surface. Fix a class c ∈ Knum(Y ), i.e. the rank r , the first

Chern class c1 = OY and the Euler characteristic χ . This in particular fixes c2 as well.
Fix also the very ample divisor 
 on Y and a base point x ∈ Y . Let θ = [O
] ∈ K(Y).
Define for each i:

ui(c) := −r · θi + χ(c · θi) · [Ox] (3.1)

(cf. page 183 of [14]).

3.1 Projective �-frame bundle

We make some general remarks on the general construction of �-frame bundle associated
to a �-vector bundle. This is a generalization of the classical frame bundle construction
but will be needed in the construction of the moduli space. Let Y be a scheme of finite type
with a trivial�-action. LetF be a�-locally free OY module of rank r and assume that each
fibre Fy is a �-module and the �-module structures are isomorphic at different points. Let
W be a finite dimensional vector space of dimension r which is a �-module isomorphic to
the�-module Fy for any y ∈ Y . Denote by OY (W) the trivial rank r sheaf modelled byW .
With this added structure, we have a canonical group namely, H = Aut�(W) ⊂ GL(W),
which acts on OY (W) by automorphisms which preserve the �-structure.
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Let Hom�(OY (W), F ) := Spec(Sym(Hom�(OY (W), F ))
∗) → Y be the geometric

�-vector bundle that parametrizes all �-homomorphisms from OY (W) to F . Let�(F) :=
Isom�(OY (W), F ) ⊂ Hom�(OY (W), F ) be the open subscheme which parametrizes all
�-isomorphisms and let π : �(F) → Y denote the canonical projection.

Then we observe thatH acts on�(F) by composition and π is a principal bundle with
structure group H . Indeed, the �-structure on F gives a natural reduction of structure
group of the frame bundle associated to F (which by the usual construction is a principal
GL(W)-bundle).

Similarly, if PH is the image of H ⊂ GL(W) in PGL(W), then one can construct
projective PH -bundle by taking image of �(F) in Proj(Sym(Hom�(OY (W), F )

∗)). We
term the image of �(F) the projective �-frame bundle over Y associated to the �-
bundle F .

3.2 The determinant line bundle

The aim of this section is to construct a line bundle on the Quot scheme which parametrizes
the objects we need. This will be a natural determinantal bundle as in the Donaldson
construction.

Recall that our aim is to construct the moduli space of μ-semistable bundles with �-
structure and the notion ofμ-semistability in the higher dimensional setting (in our case the
surface Y ) is not a GIT notion; in fact, the GIT semistable will be the Gieseker semistable
bundles.

Since �-semistability is the same as the usual semistability for torsion free sheaves
(cf. Remark 2.17) we observe that the family of �-semistable sheaves with fixed Hilbert
polynomial is bounded (Theorem 3.3.7 of [14]).

Let E be a torsion free�-coherent sheaf over a smooth projective surface Y of rank r and
P be any polynomial in Q[z]. Let Quot(E, P ) be the Quot scheme which parametrizes all
quotients of E with fixed Hilbert polynomial P . Let F denote the universal quotient sheaf
of OQuot(E,P )⊗ E on Y × Quot(E, P ). LetQ denote the subscheme of Quot(E, P ) whose
closed points correspond to torsion-free sheaves with fixed topological data (c1, c2, r) (note
that fixing Hilbert polynomial for a family of sheaves gives only finitely many choices
for the triples (c1, c2, r) and F |Q×Y be universal quotient sheaf on Q × Y . Let L be the
determinantal line bundle λF (u). Since � is acting on E and Y , � acts onQ in the natural
manner:

E
[q] �� Fq

E

γ ∗
�� ���������

,

where γ ∗ is the canonical pull back. LetQ� ⊂ Q be the set of all �-invariant points ofQ
which is a nonempty subset (!), and it gets a closed subscheme structure for, if SpecA is
an affine open subset of Q then Q� ∩ SpecA is a closed subsheame of SpecA. In fact it
is given by an ideal I = {f − γf |f ∈ A, γ ∈ �}.

Let Pc(m) = χ(c(m)) be the Hilbert polynomial associated to the fixed class c ∈
Knum(Y ), where c(m) := c · [OY (m)]. Let E = V ⊗ OY (−m) where V is a vector space
of dimension Pc(m).
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DEFINITION 3.1

We say that a coherent sheafF onY ism-regular if higher cohomology groupHi(Y,F(m−
i)) vanishes for all i ≥ 1.

We choose m large enough so that all quotients are m-regular.

Notation 3.2. Let P = Pc(m) and let Q = Quot(E, P ). Let Q� denote the closed sub-
scheme of �-fixed points. Let R ⊂ Q (resp. R� ⊂ Q�) be the locally closed subscheme
of all μ-semistable quotients (resp. (�, μ)-semistable quotients) of E with fixed topolog-
ical data (r, c1, c2) and fixed determinant Q. We observe that giving the topological data
is giving a class c ∈ Knum(Y ).

Because of m-regularity (Definition 3.1) we have V � H 0(Fq(m)) � kPc(m). The
group Aut(V ) acts naturally on the scheme Q.

Notation 3.3. Let us denote byG the group SL(V ) and byH the subgroup Aut�(V )∩G
i.e. the subgroup of G which are �-automorphisms as well. We will use this notation
throughout this paper.

Remark 3.4. The group Aut�(V ) is a direct product of full linear groups and in par-
ticular connected and reductive. The group H is also therefore connected and reduc-
tive To see this, observe that we can decompose V as a �-module into its isotypical
decomposition. This decomposition gives the choice of a torus in SL(V ) and the group
H is the centralizer of this torus; indeed, H is the Levi subgroup associated to the
parabolic subgroup given by the decomposition. This implies that H is connected and
reductive. The group Aut�(V ) is similarly the Levi subgroup in the bigger groupGL(V ) =
Aut(V ).

The group H (resp. G) acts on the scheme R� (resp. R) by automorphisms. The uni-
versal quotient F allows us to construct a G-linearized line bundle N on R given as
follows:

N := λF (u1(c)),

where ui(c) is defined as in (3.1). Denote by M the restriction of this line bundle to R� .
That is

M = N |R� . (3.2)

Let R�(D,N) be the subset R� consisting of �-torsion-free sheaves of fixed local
type.

Remark 3.5. By the rigidity of representation of finite groups, it follows that R�(D,N)

is both open and closed in R� . Moreover, it is easily seen that R�(D,N) is also invariant
under the action of H .

Remark 3.6. By definition, the line bundle M comes with a canonical H -linearization.

Then we have the following:
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Lemma 3.7 (Lemma 8.2.4 of [14]).

1. If s ∈ R� is a point such that for a general high degree �-invariant curve C,Fs |C
is semistable then there exists an integer N > 0 and an H -invariant section σ̃ ∈
H 0(R�,MN)H such that σ̃ (s) �= 0.

2. If s1 and s2 are two points in R� such that for a general high degree �-invariant
curve C, Fs1 |C and Fs2 |C are both semistable but not S-equivalent or one of them is
semistable but other is not then there is aH -invariant section σ̃ , in some tensor power
of M which separates these two points (i.e. σ̃ (s1) = 0 but σ̃ (s2) �= 0).

Proof. The proof (following ideas from Le Potier [20]) is largely following the exposition
in Huybrechts–Lehn [14]. But we give all the main steps in the argument even at the
risk of repetition. This is because there are certain distinctive points in this setting which
needs to be highlighted, especially those relating to the projective �-frame bundle and the
morphism to the quot scheme of �-bundles on a curve. In a sense these are precisely the
points which distinguish the possible �-structures on a given semistable bundle.

Since �-semistability is same as the usual semistability, one gets a general high degree
smooth curve C ∈ |a
|�, a � 0, such that, F |R�×C produces a family of generically
semistable sheaves on C with fixed topological data (r,Q|C). Recall that Q is the fixed
determinant for objects in R� (see (3.2)). The fact that it is a generic family of semistable
sheaves on C is because of openness of semistability property (cf. for example [28]). Let
U be a nonempty open subset of R� such that F |U×C is a flat family of semistable sheaves
on C.

Recall that we have fixed a class c ∈ K�
num(Y ). Let c|C be its pull-back (or restriction)

inK�
num(C). Note that c|C is completely determined by its rank r and the line bundle Q|C .

Recall that Pc(m) = χ(c(m)) is the Hilbert polynomial associated to the fixed class
c ∈ K�

num(Y ), where c(m) := c · [OY (m)]. Let P ′(n) := Pc|C (n). Then, by computing the
Euler characteristic from the exact sequence of sheaves obtained by restriction to the curve
C, we see that P ′ is given by the equation P ′(n) = Pc(n)− Pc(n− a), since C ∈ |a
|� .

Let H′ = OC(−m′)P ′(m′) and Q�
C ⊂ Quot�C(H′, P ′) be the closed subset of quotients

with determinant Q|C . Observe that H′ can be identified with W ⊗ OC(−m′), where W
is a vector space of dimension P ′(m′).

Denote by G1 the group SL(W) and by H1 the subgroup of G1 given by

H1 = G1 ∩ Aut�(W).

As remarked earlier (Remark 3.4), the group H1 is also connected and reductive.
We also have a natural H1-action on Q�

C by automorphisms.
Let OQC

� ⊗ H′ � F̃ ′ be the universal quotient and LC = λF̃ ′(u0(c|C) (see (3.1) for
the definition of u0(c)).

One can check thatLC ∼= det(pQ�C∗(F̃ ′)). Ifm′ is sufficiently large the following holds:

(1) Given a point [q: H′ � F̃ ′
q ] ∈ Q�

C , the following assertions are equivalent:

(a) F̃ ′
q is �-semistable sheaf and W � H 0(C, F̃ ′

q(m
′)).

(b) [q] is a semistable point inQ�
C for the action ofH1 with respect to the linearization

of LC , i.e., there is an integer ν and a H1-invariant section σ ∈ H 0(C,LνC)
H1

such that σ([q]) �= 0.
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(2) Two points [qi : H′ → F̃ ′
qi

]; i = 1, 2 are separated by H1-invariant sections if and

only if either both are semistable points but F̃ ′
q1

and F̃ ′
q2

are not S-equivalent or else,
one of them is semistable and other is not semistable.

(3) F̃ := F |R�×C is m′-regular (Definition 3.1) with respect to R� .

Note that p∗(F̃(m′)) is a �-locally free OR� sheaf of rank P ′(m′). The group H1 acts on

Q�
C . Let π : R̃� → R� be the associated PH1-bundle, i.e. the projective �-frame bundle

(by (1) above, the conditions required in (3.1) hold good here). From theH -action on R� ,
we see that R̃� gets an H -action as well.

The projective �-frame bundle R̃� parametrizes a quotient OR̃� ⊗ H′ −→ π∗F̃ ⊗
Oπ (1). So it gives rise to H1-equivariant morphism φF̃ : R̃� −→ Q�

C . We note that R̃�

also carries an H -action on it induced from R� . So R̃� carries an (H1 × H)-action. So
one gets the following diagram

R̃�
φF̃ ��

π

��

Q�
C

R�

.

We now use the computations involving determinant bundles in §8.2 of [14] and the
functoriality of the determinant bundle and note the fact that all the families involved which
are defined over the schemes R� and Q�

C , are just the pull-backs of the ones on the usual
quot scheme. It therefore follows that the relation obtained in 8.2 of [14] hold verbatim
over the projective �-frame bundle R̃� as well.

We note that, since the projective �-frame bundle R̃� is the reduction of structure group
of the usual projective frame bundle over R restricted to R� , R̃� is a closed subscheme
of R̃ over R� . Thus, if M is as in (3.2), we have

φ∗
F̃ (LC)

deg(C) � π∗(M)a
2 deg(Y ).

If s is a H1-invariant section of Lνdeg(C)
C for some ν > 0, φ∗

F̃ (s) is a (H1 ×
H)-invariant section i.e. an element of H 0(R̃�, φ∗

F̃ (LC)
νdeg(C))H1×H = H 0(R̃�,

π∗(M)νa
2deg(Y ))H1×H .

Since π : R̃� → R� is a principal PH1-bundle, the section φ∗
F̃ (s) will descend to give

an element in H 0(R�,Mνa2deg(Y ))H . In other words, for each ν > 0, we get a linear
(injective) map:

sF : H 0(Q�
C,L

νdeg(C)
C )H1 → H 0(R�,Mνa2deg(Y ))H .

Now let Fq be a point in R� , i.e. a �-semistable torsion free sheaf. By the Orbifold
Mehta–Ramanathan restriction theorem (Theorem 7.2) it follows that there exists a curve
C as above such that the restriction Fq |C is inQ�

C . Hence, by the usual GIT and Seshadri’s

theorem, there exists a section s ∈ H 0(Q�
C,L

νdeg(C)
C )H1 for some ν > 0 which is non-zero

at the point Fq |C .
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Following the map sF we get a section in H 0(R�,Mνa2deg(Y ))H which is non-zero at
Fq proving the lemma. q.e.d

We have the following immediate corollary from the first part of Lemma 3.7.

COROLLARY 3.8

There exists an integer ν > 0 such that the line bundle Mν on R� is generated by H -
invariant global sections.

4. Donaldson–Uhlenbeck compactification

The aim of this section is to construct a reduced algebraic scheme i.e. a variety, which
is projective and whose points give the analogue of the underlying set of points of the
Donaldson–Uhlenbeck compactification for �-bundles on a smooth projective algebraic
surface with a �-action. This, in conjunction with the Kawamata covering lemma and
the general (parabolic bundles)-(�-bundles) correspondence would enable us to construct
a projective variety whose underlying set of points parametrizes the natural analogue of
Donaldson–Uhlenbeck compactification of the moduli space ofμ-stable parabolic bundles
on a surfaceXwith parabolic structure on a divisor with normal crossings. We also describe
the boundary points of the compactification in terms of �-bundles and 0-cycles on the
surface Y (and as a consequence on X as well).

Since R� is a quasi-projective scheme and since M is H -semi-ample (Corollary 3.8,
i.e. M is generated byH -invariant sections), there exists a finite dimensional vector space
A ⊂ Aν := H 0(R�,Mν)H that generates Mν ; of course, there is nothing canonical in
the choice of A.

Let morphism φA: R� → P(A) be the induced H -invariant morphism defined by the
sections in A.

But because of non-uniqueness ofA a different choice of subspace of invariant sections
gives rise to a different map φA′ to a different projective space P(A′).

Notation. We denote by MA the schematic image φA(R�) with the canonical reduced
scheme structure.

Remark 4.1. By the following result which may be titledH -properness, the varietyMA is
proper and hence because of its quasi-projectivity it is a projective variety. We note that we
use the term variety in a more general sense of a reduced algebraic scheme of finite type
which need not be irreducible. So in what follows we will be working with the C-valued
points of MA.

PROPOSITION 4.2

If T is a separated scheme of finite type over k, and if φ: R� −→ T is an H invariant
morphism then image of φ is proper over k.

Remark 4.3. This is a consequence of the Langton type semistable reduction theorem for
�-torsion free sheaves which we have shown in the Appendix and some general schematic
methods (cf. Proposition 8.2.5 of [14] for details).
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Let Aν denote the vector space H 0(R�,Mν)H , ν ∈ Z
+; and let A ⊂ Aν be a finite

dimensional vector space which generates Mν .
For any d ≥ 1, letAd be the image of the canonical multiplication map fd :A⊗, . . . ,⊗A

(d-times) → Adν ; in particular A1 = A.
Let A′ be any finite dimensional vector subspace of AdN containing Ad . Then clearly

the line bundle Mdν is also globally generated by H -invariant sections coming from the
subspace A′ and this is so for any d ≥ 0.

So we have A → Ad ⊂ A′, and hence a commutative diagram

MA′
πA′/A �� MA

R�

φA′

��

φA .

����������

SinceMA andM ′
A are both projective, the map πA′/A is a finite map (pull-back of ample

remains ample). So if we fix a A as above we get an inverse system (indexed by d ≥ 1) of
projective varieties (MA′ , πA′/A) dominated by the finite type scheme R� .

R�

����
��

��
��

��
φA′

��

φA

����
��

��
��

· · · �� MA′
πA′/A

��
MA

.

Hence the inverse limit of the system (MA′ , φ∗) is in fact one of the MA′ ’s where A′ is
a finite dimensional subspace of H 0(R�,Mn)H which generates Mn.

DEFINITION 4.4

We denote this inverse limit variety byM� and letφ: R� → M� be the canonical morphism
induced by the invariant sections coming from the subspace A′ associated to the inverse
limit.

Remark 4.5. We will show that the moduli space of isomorphism classes (�, μ)-stable
locally free sheaves of fixed type τ and fixed determinant Q will be a subvariety of M� .
This will allow us to take the closure of the moduli space of stable bundle inM� and give
it the reduced scheme structure.

Remark 4.6. The underlying set of points of this projective variety, namely the closure
in M� , is precisely the Donaldson–Uhlenbeck compactification of the moduli space of
�-stable bundles. Indeed, in the case when � is trivial this is the result of Li and Morgan.

Remark 4.7. Note that this is not a categorical quotient since M is not ample and is only
semi-ample (Corollary 3.8), i.e. some power of M is generated by sections.

Remark 4.8. The reduced scheme has a weak categorical quotient property for families
parametrized by reduced schemes.
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4.0.1 Double duals, associated graded. Let F be a μ-semistable �-torsion free sheaf
over Y . Let grμ�(F ) be the graded torsion free polystable sheaf associated to its Jordon–
Holder filtration. Let F ∗∗ denote the double dual of grμ�(F ); it is a polystable bundle (since
Y is a surface, a reflexive sheaf is locally free). Let lF : Y → N be the function given
by x �→ l(F ∗∗/grμ(F ))x , which associates an element in Sl�(Y )(length l �-cycle) with
l = c2(F )− c2(F

∗∗). We denote by ZF the 0-cycle:

ZF :=
∑

x∈Y
l(F ∗∗/grμ�(F ))x · x

Both F ∗∗ and ZF are well defined, i.e. they do not depend on the choice of filtration.

4.1 Points of the moduli

The main aim of this subsection is to describe the points of the moduli spaceM� . Towards
this we have the following theorem.

Let Quot(E, l) denote the Quot scheme which parametrizes all 0-dimensional quotients
of E of length l, where E denotes an arbitrary torsion-free sheaf on Y . If E is a �-vector
bundle on Y the scheme Quot(E, l) gets a natural �-structure and we can again consider
the closed subscheme of�-fixed points in Quot(E, l). We denote this closed subscheme by
Quot�(E, l). Clearly this scheme parametrizes 0-dimensional�-quotients ofE of length l.

The l-fold symmetric product Sl(Y ) parametrizes 0-cycles on Y of length l; again, since
Y is a �-surface, by taking the fixed point subscheme we get the scheme Sl�(Y ) of zero
dimensional �-invariant cycles of length l on Y . There is universal sheaf exact sequence
on Y × Quot(E, l):

0 �� E �� OQuot ⊗ E �� T �� 0 , (4.1)

where E is a flat family of torsion-free sheaves on Y parametrized by Quot(E, l). Similarly,
we have a �-invariant exact sequence on Y × Quot�(E, l) with E a family of �-invariant
torsion-free sheaves on Y .

Quot�(E, l)
inclusion

��

ψ�

��

Quot(E, l)

ψ

��
Sl�(Y ) inclusion

�� Sl(Y )

.

(4.2)

Remark 4.9. If F is �-semistable torsion free sheaf we can construct a family F
parametrized by P

1 such that F∞ = grμ�(F ) and Ft = F for all t ∈ P
1 − ∞. This means

that φ(F ) = φ(grμ�(F )), where φ: R� → M� is the canonical morphism. Hence we can
restrict to polystable case alone. It is easy to see that double dual of any �-sheaf gets a
canonical �-structure.

Remark 4.10. We follow the notations as in (2.2). Consider the closed subvariety Sl�(Y )
of �-invariant cycles on Y . Let Z ∈ Sl�(Y ) and write Z = ∑

miyi . Then the points
y ∈ Supp(Z) can be of the following types:

(1) A point y ∈ (Y\D′), whereD′ is the ramification divisor of the covering map p: Y →
X.
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(2) A general point y contained in an irreducible component (p∗D)red, the isotropy sub-
group �y being the cyclic group �n of order n determined by the irreducible compo-
nent containing y.

(3) A general point y of an irreducible component of the ramification divisor for p not
contained in (p∗D)red.

(4) A special point y contained in (p∗D)red, the isotropy subgroup �y of which contains
the cyclic group �n of order n determined by the irreducible component containing y.

(5) A special point y of the ramification divisor for p not contained in (p∗D)red.

Consider a torsion-sheaf T supported at y ∈ Supp(Z) of lengthm. Then we can consider
the vector space V of its section of dimension dim(V ) = m. We view the vector space
V endowed with a �y-module structure. For Tmy to be a quotient of a �-bundle E on Y
of local type τ , the �y-module structure on V will have constraints imposed on it arising
from the �y-module structure on E|Uy which has already been described in (2.4.1).

Let Z ∈ Sl�(Y ) and write Z = ∑
miyi . For each torsion sheaf TZ with support

Z, fixing a �-structure is equivalent to fixing a tuple of representations (ρ(yi)) with
ρ(yi): �yi → GL(V ). Moreover, for any γ ∈ �, since γyi ∈ Supp(Z), we further need
that the representation ρ(γyi) is the γ -conjugate to ρ(yi).

Notation 4.11. For a given tuple of representations ρ(yi) associated to the points in the
support of the cycle Z, we attach a label to the �-cycle Z and denote it by Z(ρ(yi)). So
an equality ZF1(ρ(yi)) = ZF2(ρ(yi)) means that the support of the cycles coincide and
the torsion sheaves TZ1 � TZ2 are identified as �-torsion sheaves.

Theorem 4.12. Let Fi, i = 1, 2, be two μ-semistable �-torsion free sheaves of rank r
on Y with fixed Chern classes c1 and c2. Then F1 and F2 define the same point inMμss

� if
and only if F ∗∗

1
∼=� F

∗∗
2 and ZF1(ρ(yi)) = ZF2(ρ(yi)).

Remark 4.13. This theorem is proved after the proofs of Proposition 4.14 and Lemma 4.16.

PROPOSITION 4.14

Let E be a �-polystable vector bundle as above. Then the connected components of the
fibres of the morphism ψ� are indexed by the representation tuple (ρ(yi)) as discussed
above in Remark 4.10.

Proof. Consider Z ∈ Sl�(Y ) and let TZ be the torsion sheaf with support Z. Let y ∈
Supp(Z) and let its multiplicity in Z be m. We first observe that for any �-torsion free
sheaf F ∈ ψ−1

� (Z) canonically induces a tuple of representations ρ(yi) for each of the
points yi ∈ Supp(Z).

For the given decomposition ofZ let us denote a given representation type on the torsion
sheaf T by T (ρ). In other words, we fix the representation types on T for each point
y ∈ Supp(Z).

Consider a �-quotient q: E → TZ(ρ). We first reduce the study of such quotients to a
local question.

• Since Z is a �-cycle, if y ∈ Supp(Z) so does γy for each γ ∈ �. Furthermore, the
multiplicities m at y and γy also coincide.

• Giving a �-structure on TZ is therefore giving �y-structure to Tmy such that at γy, the
�γy-structure is conjugate to the one at y.
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• Again, since E is a �-bundle, for any y ∈ Supp(Z), there is a �y-invariant analytic
neighbourhood Uy as in (4.10) such that E|Uy is associated to a representation �y →
GL(r). Furthermore, at γy for each γ ∈ �, the local representation is conjugate to the
one at y by the element γ .

• Giving a �-quotient q as above implies giving quotients qi : Ei → Ti(ρ(yi)), where Ei
are bundles restricted to neighbourhoods of the points in the support of Z = ∑

i miyi
and Ti(ρ(yi)) = Tmiyi with a fixed �yi -module structure on the torsion sheaf Tmiyi .
Further, the quotient map at γyi is conjugate to the one at y.

• Thus, the problem of studying �-quotients reduces to the study of �y-quotients in a �y-
invariant neighbourhood of y. In other words, such a quotient is a point in the product
of equivariant punctual quot schemes which we describe below.

We therefore need to handle the various points in the possible singular loci of �-torsion
free sheaves as listed in (4.10).

For any point y ∈ Supp(Z) with multiplicity m, suppose that ρ(y): �y → GL(V ) is
already fixed with dim(V ) = m. Let V = ⊕l blV (l) be the isotypical decomposition as
a �y-module, with V (l) denoting irreducible �y-modules.

ConsiderE|Uy whereUy is an analytic neighbourhood of y as in (2.4.1). Since the bundle
E|Uy is associated to a representation �y → GL(r), we get an isotypical decomposition
E|Uy � ⊕l (Oal

Uy
⊗ V (l)).

Then, giving a �y-quotient q: E|Uy → Tmy imposes some natural constraints on V ,
namely, that theV (l)’s that occur inV as a�y-module must also occur inE|Uy with obvious
bounds on al and bl . With this out of the way, giving q is equivalent to giving quotients

qal,bl : Oal
Uy

→ Tbly

twisted by Id|V (l), for each V (l) occurring in V .
Since qal,bl is a torsion quotient without any�y-action, the irreducibility of the punctual

quot scheme Quot(Onl
Uy
,ml) is immediate by the results of Li [22], Baranovsky [3] and

Ellingsrud–Lehn [10]. Note that we have this since Y is smooth.
The case when �y is trivial, i.e. where y avoids the ramification is easy to handle. In

fact, in this case it follows immediately by the old result quoted above. Thus by the above
discussion, it follows that the equivariant punctual quot scheme is also irreducible.

This implies that, fixing the representation type for the torsion sheafTZ gives a connected
component of the fibre of ψ� .

COROLLARY 4.15

Let F1 and F2 be two �-polystable torsion-free sheaves obtained as kernels of two maps
in Quot�(E, l) and lying in the same fibre of the map ψ� . If we have a �-isomorphism
F ∗∗

1
∼=� F

∗∗
2 , then F1 and F2 give the same point in the moduli space if and only if they

lie in the same component of the fibre of ψ� given by a representation tuple ρ(yi).

Proof. The fact that Fi (i = 1, 2) both correspond to points in Quot�(E, l), and the
assumption that F ∗∗

1
∼=� F

∗∗
2 implies that we have

E ∼=� F
∗∗
1

∼=� F
∗∗
2

with the �-structure on E fixed before.
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Let F1 and F2 be (non-uniquely) represented by two closed points qi ∈ Quot�(E, l),
i = 1, 2. We think of Fi themselves as points in Quot�(E, l) when there is no confusion.

If F1 and F2 are in a component S(ρ) ⊂ ψ�
−1(Z). The line bundle LN is trivial on the

fibre ψ� and hence on each component S(ρ) of the fibre of φ� (since it is the restriction
of the determinant bundle on the fibre of ψ). Hence F1 and F2 go to the same point in the
moduli space. Conversely, if F1 and F2 lie in different components, since the line bundle
LN is trivial on each component, one can clearly separate the points Fi by sections of LN .
In other words, they go to distinct points of the moduli space. q.e.d

We need to prove the following lemma to complete the proof of the converse in
Theorem 4.12.

Lemma 4.16. Let F1 and F2 be two �-polystable torsion free sheaves over Y . Let a � 0
and C ∈ |a
|� be a general �-curve (which exists by the �-Bertini theorem in the
Appendix). Then F1|C �� F2|C if and only if F ∗∗

1 �� F
∗∗
2 , where F ∗∗

i = (grμ�(Fi))
∗∗,

i = 1, 2.

Proof. We choose an integer a so large such that restriction of each summand of F ∗∗
1 to

any general smooth curveC ∈ |a
|� is�-stable (see Theorem 7.2 below). Now we choose
one such C in such a way that it avoids finite set of singular points of grμ�(F1). We note
that grμ�(F1)|C is a polystable bundle over C. Hence

(grμ�F1)|C ∼= grμ�(F1|C) = (grμ�(F1)
∗∗)|C = F ∗∗

1 |C.
The last equality is due to the fact that ‘restriction to C’ and ‘double duals’ commute
with each other. Now by uniqueness (up to isomorphism) of Jordan–Holder filtration of
�-semistable bundle we get (grμ�(F1))|C ∼=� F

∗∗
1 |C . This shows that for a general high

degree curve C ∈ |a
|� , the bundles F1|C and F2|C are S-equivalent if and only if
F ∗∗

1 |C ∼=� F
∗∗
2 |C .

0 → OY (−C) → OY → OC → 0 .

Tensoring the above equation with locally free sheaf Hom(F ∗∗
1 , F ∗∗

2 ) one gets the
following long exact sequence:

0 → H 0
�(Y,Hom(F ∗∗

1 , F ∗∗
2 )(−C)) → H 0

�(Y,Hom(F ∗∗
1 , F ∗∗

2 ))

→ H 0
�(Y,Hom(Y,Hom(F ∗∗

1 , F ∗∗
2 )|C)

→ H 1
�(Y,Hom(F ∗∗

1 , F ∗∗
2 )(−C)) →

We now observe that since we work over fields of characteristic zero by Remark 2.18,
we have the following inclusions:

Hi
�(Y,E) ⊂ Hi(Y,E).

Using this and the usual Serre duality for sheaves on Y , we have

H 1
�(Y,Hom(F ∗∗

1 , F ∗∗
2 )(−C)) ⊂ H 1(Y, ((Hom(F ∗∗

1 , F ∗∗
2 )∗ ⊗KY )(C)) = 0

and similarly,

H 0
�(Y,Hom(F ∗∗

1 , F ∗∗
2 )(−C)) ⊂H 2(Y, ((Hom(F ∗∗

1 , F ∗∗
2 )∗ ⊗KY )(C))= 0.
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The vanishing follows by Serre vanishing theorem, since Hom(F ∗∗
1 , F ∗∗

2 ) is locally free
and C is a high degree curve.

Hence we have

H 0
�(Y,Hom(F ∗∗

1 , F ∗∗
2 )) ∼= H 0

�(Y,Hom(Y,Hom(F ∗∗
1 , F ∗∗

2 )|C).
This implies that F ∗∗

1 |C ∼=� F
∗∗
2 |C if and only if F ∗∗

1
∼=� F

∗∗
2 . q.e.d

Completion of the proof of Theorem 4.12. If F ∗∗
1 �� F

∗∗
2 then two points in R� goes to

two different points in M� . Now suppose F ∗∗
1

∼=� F
∗∗
2 , ZF1(ρ(yi)) �= ZF2(ρ(yi)). By

(4.11) this means that either ZF1 �= ZF2 or that ZF1 = ZF2 = Z, but Fi lie in different
connected components of the fibre of ψZ .

The second case follows from Corollary 4.15. If the cycles themselves are different then
we will show that they go to two different points. Observe that we have the following
diagram:

Sl�(Y ) a
��

b

��

M�

φ

��
Sl(Y ) c

�� M

.

By [14] the map c is a closed immersion. Since Sl�(Y ) is a closed subset of Sl(Y ), it
follows that b is also a closed immersion and hence the composite c ◦ b = φ ◦ a is a
closed immersion. So by our assumption F1 and F2 will go to two different points. This
completes the proof of the converse of Theorem 4.12. q.e.d

To realise the construction as a compactification we need to have the following propo-
sition.

PROPOSITION 4.17

The moduli space Mμs
� (Q) of isomorphism classes of (�, μ)-stable locally free sheaves

with fixed determinant Q on Y, is embedded in the moduli space M� .

Proof. This follows by Lemma 4.16 since F � F ∗∗ for a stable bundle F . The fact that
the inclusion is an embedding can be ensured by choosing C to be of larger degree.

q.e.d

Remark 4.18. Let Mμs
� (r,Q, c2) denote the moduli space of (�, μ)-stable bundles of

rank r , fixed determinant Q and second Chern class c2. The closure of this moduli space in
M� gives the desired Donaldson–Uhlenbeck compactification. This can set theoretically
be described as a stratified space in terms of (�, μ)-polystable bundles with decreasing c2
as follows:

M
μs
� (r,Q, c2)(τ ) ⊂

∐

l≥0,ρ

M
μ-poly
� (r,Q, c2 − l)(τ )× Sl�(Y )(ρ), (4.3)

where Mμ-poly
� (r,Q, c2)(τ ) denotes the subset representing �-polystable locally free

sheaves of type τ and Sl�(Y )(ρ) consists of zero cycles Z(ρ(yi)) as in (4.11).

Notation 4.19. We denote by Mααα
k,l,r the moduli space of parabolic stable bundles of rank

r with specified parabolic datum. The tuple (ααα, k, l, r) is defined as follows:
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• ααα = (α1, α2, . . . , αl),
• l = (deg(F1), deg(F2), . . . , deg(Fl)),
• r = (rank(F1/F2), rank(F2/F3), . . . , rank(Fl/Fl+1),
• k stands for the second Chern class of a vector bundle. Here we follow the notation in

[17].

Recall the correspondence (2.16) between the polystable parabolic bundles on X with
given parabolic datum and par c2 = κ and (�, μ)-polystable bundles of type τ on a
Kawamata cover Y (see (2.4.2) and (2.4.1)). By the description of the above moduli space

M
μs
� (r,Q, c2)(τ ) we get an intrinsic description the compactification of the moduli space

Mααα
k,j,r(r,P, κ) set-theoretically as a stratified space in terms of moduli space of parabolic

μ-polystable bundles with fixed determinant P and with decreasing κ = par c2 as follows:

Mααα
k,j,r(r,P, κ) ⊂

∐

l≥0

M
ααα-poly
k′,j′,r (r,P, κ − l)× Sl(X), (4.4)

where byMααα-poly
k,j,r (r,P, κ), we mean the set of isomorphism classes of polystable parabolic

bundles with parabolic datum given by (ααα, l, r, j), fixed determinant P and with topological
datum given by k and κ as mentioned above.

5. Existence of ���-stable bundles

The aim of this section is to prove the existence of �-stable bundles of rank two with the
assumption of large c2 or what is termed asymptotic non-emptiness. The bound on c2 is
dependent on the polarisation unlike the result of Taubes and Gieseker. The strategy is
to generalise the classical Cayley–Bacharach property for �-bundles and prove the non-
emptiness along the lines of Schwarzenberger–Serre in the usual surface case.

We remark that, although the moduli space of parabolic sheaves was constructed on any
smooth projective variety (but with the Gieseker notion of semistability), to the best of our
knowledge, the non-emptiness of these moduli spaces has not been hitherto established.
In this paper we do this over a surface. As before, we make the following assumptions
throughout this section: Y is a smooth projective �-surface which arises as a ramified
Kawamata cover of the smooth projective surface X. Let p: Y −→ X := Y/� as before
denote the covering morphism.

Let D denote the parabolic divisor and D = ∑c
i=1Di be the decomposition of the

divisor D into its irreducible components. Since we will be primarily interested in rank
two bundles, we have the following weights:

0 ≤ α1 < α2 < 1,

where αi = mi/N (notations are as in (2.4.1)). We fix as above a very ample divisor 
1
on X and let 
 = p∗(
1).

Theorem 5.1. The moduli space Mμs
� (2,Q) of �-stable bundles of rank two and of type

τ and fixed determinant Q, on a smooth projective �-surface Y is nonempty if c2(E) � 0

and if α2 <
2·
1

2
∑
Di ·
1

. Hence, the moduli space of parabolic bundles onX of rank two with
given quasi-parabolic structure and with par c2(V ) � 0 is non-empty.

Remark 5.2. The parabolic stable bundle that is shown to exist will depend on the choice
of the polarisation 
1 on X.
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5.1 Orbifold Cayley–Bacharach property

Remark 5.3. In this section we make the assumption that�-line bundles that we work with
are of type τ .

DEFINITION 5.4

Let Y be a smooth projective �-surface. Let p: Y −→ X be a morphism whereX := Y/�

arising from the Kawamata covering lemma. Let DY/X = D be the ramification locus in
X and R be a subset of codimension two consisting of reduced points of length l such that
R ∩ D = ∅ in Y . Let Z = p∗(R). Then we term the cycle Z in Y a good �-cycle.

Remark 5.5. Let 0 ≤ β < α < 1. Consider � line bundles L = L(α), and M = M(β) on
Y and let P = M ⊗ L∗ ⊗K

(α−β)
Y (see notation in (2.9)).

By tensoring the standard exact sequence for the ideal sheaf IZ by P we have 0 −→
IZ ⊗ P −→ P −→ OZ ⊗ P −→ 0. This induces the following exact sequence of �
cohomology groups (for generalities on �-cohomology see §5 of [12]):

0 −→ H 0
�(P ⊗ IZ) −→ H 0

�(P ) −→ H 0
�(P ⊗ OZ)

−→ H 1
�(P ⊗ IZ) −→ H 1

�(P ) −→ H 1
�(P ⊗ OZ) = 0. (5.1)

Let dim H 0
�(P ) = l1. Then by choosing a generic 0-cycle Z = p∗(R) as above such

that l(Z) > l1 it is easily seen that we make sureH 1
�(P ⊗IZ) �= 0. This implies that there

exists at least one �-torsion free sheaf E on Y which is a non-split extension of M ⊗ IZ
by L.

DEFINITION 5.6

Let 0 ≤ β < α < 1, and let L = L(α) and M = M(β) be two � line bundles of type τ
on Y and Z be a good �-cycle. We say that the �-triple (L,M,Z), satisfies the Orbifold
Cayley–Bacharach property, (or in short OCB) if the following holds: for any section
s ∈ H 0

�(M⊗L∗ ⊗K(α−β)
Y ) if the restriction of s to a good �-cycleZ′ ⊂ Z is zero implies

that s|Z = 0, whereZ′ ⊂ Z is a good �-cycle such that l(Z′) = l(Z)−d, where d = |�|.

Let Z′ ⊂ Z be good �-cycles. Consider the exact sequence of ideal sheaves:

0 −→ IZ −→ IZ′ −→ OB −→ 0.

Tensor this exact sequence with M . By applying the Hom�(−, L)-functor to 0 −→ M ⊗
IZ −→ M ⊗ IZ′ −→ M ⊗ OB −→ 0 we get a map

ψZ′ : Ext1�(M ⊗ IZ′ , L) −→ Ext1�(M ⊗ IZ,L)

of �-extensions.

Lemma 5.7. Let (L,M,Z) be a �-triple which satisfies OCB. Then we have

∪ Image(ψZ′) �= Ext1
�(M ⊗ IZ,L)

for all good �-cycles Z′ ⊂ Z with l(Z′) = l(Z)− d.
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By tensoring the exact sequence 0 −→ IZ −→ IZ′ −→ OB −→ 0 with P =
M ⊗ L∗ ⊗K

(α−β)
Y we get the following exact sequence:

0 −→ H 0
�(P ⊗ IZ) −→ H 0

�(P ⊗ IZ′) −→ H 0
�(P ⊗ OB)

−→ H 1
�(P ⊗ IZ) −→ H 1

�(P ⊗ IZ′) −→ H 1
�(P ⊗ OB) = 0. (5.2)

Here we note that the assumption that the triple (L,M,Z) satisfies OCB implies that
H 0
�(P ⊗ IZ) ∼= H 0

�(P ⊗ IZ′). Therefore by dualizing we have

0 −→ H 1
�(P ⊗ IZ′)∗ −→ H 1

�(P ⊗ IZ)∗ −→ V −→ 0,

where V is the complex vector space invariant under � which is precisely the dual of
the space of sections of the torsion sheaf H 0

�(P ⊗ OB). Note that V is independent of
Z′ ⊂ Z and depends only on l(Z′). This in particular implies that H 1

�(P ⊗ IZ′)∗ �

H 1
�(P ⊗ IZ)∗.
Since the finite union of proper subspaces of finite dimensional vector spaces is not equal

to the vector space (we are over an infinite field!) we have ∪H 1
�(P⊗IZ′)∗ �= H 1

�(P⊗IZ)∗.
The lemma now follows from Lemma 2.24. q.e.d

Lemma 5.8. Let (L,M,Z) be a �-triple which satisfies OCB. Then for l(Z) � 0, there
exists a �-extension

0 −→ L −→ E −→ M ⊗ IZ −→ 0

with E locally free.

Proof. Suppose now that E is not locally free. This implies that the set Sing(E), namely
the singular locus of E where E fails to be locally free, is a 0-cycle A ⊂ Z, where A is a
�-cycle. Let a ∈ A. Then p−1(p(a)) = ∑

γ · a = B ⊂ A.

Let TA denote the torsion sheaf supported at Sing(E). Note that we have an inclusion
of torsion sheaves TB ⊂ TA. Therefore we get the following commutative diagram of �
torsion free sheaves on Y .

0 �� E �� E∗∗ �� TA �� 0

0 �� E �� E′

��

�� TB

��

�� 0

, (5.3)

where E′ be the corresponding subsheaf of E∗∗ to OB . Note that since L is locally free
the saturation of L in E′ is L itself.

We therefore obtain an extension E′ of M ⊗ IZ′ by L using the above commutative
diagram where Z′ is the � cycle corresponding to the good cycle R′ ⊂ R induced by
the set A − B and l(Z′) = l(Z) − d where d is the order of the group �. Also we
have the following commutative diagram of �-sheaves on Y given by two �-sheaves E
and E′.
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0

��

0

��
0 �� L �� E ��

��

M ⊗ IZ ��

��

0

0 �� L �� E′ ��

��

M ⊗ IZ′ ��

��

0

TB

��

TB

��
0 0

. (5.4)

It is clear from the above two diagrams (5.3) and (5.4) that ψZ′(E′) = E. By Lemma 5.7
it follows immediately that there exists locally free sheaves which can be realised as
extensions as desired. q.e.d

Now we give the construction of rank two �-stable vector bundles as a extension of
M ⊗ IZ by OY where M is a � line bundle on Y .

Remark 5.9. Let L be a �-line bundle on Y and let Z be a good �-cycle. Therefore,
Z = p∗(R) for a cycle R ⊂ X of distinct reduced points away from D. Under these
conditions we observe the following easy fact (see Lemma 2.26):

p�∗ (L⊗ IZ) � p�∗ (L)⊗ IR.

As before, we fix a very ample divisor
1 onX and let
 = p∗(
1) (which is therefore
an ample divisor on Y ). All our degree computations are with respect to these choices.

5.1.1 Classical Cayley–Bacharach. Let C be a divisor onX with −2
2
1 < C ·
1 ≤ 0.

Let Q = 2
1 − C. Then we have the following well known result.

Lemma 5.10. Let l ≥ h0(X,Q ⊗ KX). Then for a generic 0-cycle R in Hilbl+1(X) we
have the usual Cayley–Bacharach property for the triple (OX,Q,R).

Proof. For the sake of completeness we briefly indicate a proof. We first observe that for
generic choice of T ∈ Hilbl (X), l ≥ h0(X,Q⊗KX) implies h0(X,Q⊗KX ⊗ IT ) = 0.
Let Vl ⊂ Hilbl (X) consist of reduced 0-cycles and

Ul = {T ∈ Vl |h0(X,Q⊗KX ⊗ IT ) = 0}

an open dense subset of Vl . Let T be the universal family in Vl+1 ×X, i.e. T = {(T , x) ∈
Vl+1 × X|x ∈ Supp(T )} and consider the surjection f : T → Vl , f (T , x) = T − x and
the second projection p: T → Vl+1. Observe that p(T − f−1(Ul)) ⊂ Vl+1 is a proper
closed subset. Choose R ∈ Vl+1 − p(T − f−1(Ul)) implying p−1(R) ⊂ f−1(Ul) i.e.
∀x ∈ Supp(R), (R − x) ∈ Ul , hence h0(X,Q⊗KX ⊗ IR−x) = 0, ∀x ∈ Supp(R).

q.e.d
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Remark 5.11. In fact, we observe that this choice of l forces something stronger, namely
H 0(Q⊗KX ⊗ IR) = 0. Moreover, for any x ∈ Supp(R) we even have H 0(Q⊗KX ⊗
IR−x) = 0 which implies the Cayley–Bacharach property. So if both these vanishings
hold, we term the triple (OX,Q,R) to have the stronger Cayley–Bacharach property.

Lemma 5.12. There exists a good �-cycle Z1 = p∗(R1) in Y with l(R1) ≥ 4
2
1 having

the following property: if L is any �-line bundle on Y such that h0
�(L ⊗ IZ1)) > 0 then

c1(L) ·
 ≥ 2
2.

Proof. Let C1 and C2 be two smooth curves in |
1| in X. Choose a set S1 of 2
2
1 distinct

points in S1 ⊂ (C1 − C2) away from D the ramification divisor in X. Similarly choose a
set S2 ⊂ (C2 − C1).

Let R1 = S1 ∪ S2 and let Z1 = p∗(R1). Suppose that we have h0
�(L ⊗ IZ1) > 0. Then

from the above Remark 5.9 we get h0(p�∗ (L)⊗ IR1) > 0.
Let p�∗ (L) = L′. Observe that L and L′ are both effective. By an abuse of notation, we

will continue to denote by L and L′ divisors in the linear equivalence of the line bundles.
Suppose that the effective divisor L′ contains C1 and C2 as its components. Then

c1(L′) ·
1 ≥ 2
2
1.

If L′ does not have Ci for some i = 1, 2 then we have

c1(L′) ·
1 = L′ ∩ Ci ≥ l(Si) = 2
2
1.

Therefore c1(L′) ·
1 ≥ 2
2
1. Now

c1(L) ·
 = degY (L)

= (pardeg(p�∗ (L)) |�| ≥ degX(L′) |�| ≥ 2
1
2 |�| = 2
2.

q.e.d

Remark 5.13. Let Q ∈ Pic(Y ) be a �-line bundle obtained as follows: Let Q be a line
bundle onX and consider Q � p∗(Q)⊗O(α2)

Y , where by O(α2)
Y we mean the trivial bundle

OY with a �-structure of type τ given by multiplication by the character corresponding to
α2 (see (2.4.1) for notation).

Let 0 ≤ α1 < α2 < 1. Then we claim that for a suitable choice of Q on X, we can
ensure that the triple (O(α1)

Y ,Q, Z) satisfies the orbifold Cayley–Bacharach property with
respect to the cycle Z. By definition Z = p∗(R). So we simply need to choose Q on X
such that the triple (OX,Q,R) has the usual Cayley–Bacharach property which we get
by (5.10). This will involve the choice of generic R with l(R) � 0 since we need to avoid
the ramification locus. We choose R andQ with the bounds given by Remark 5.1.1 which
clearly does the job.

5.1.2 Choice of Q and degree bounds. Let γ = α2 · ∑ degX(Di), where Di are the
irreducible components of the parabolic divisor. We let Q = 2
1 − C, with

−2
2
1 + γ < C ·
1 ≤ 0.

This imposes a condition on the weight α2 which we therefore have as hypothesis in
Theorem 5.1 (compare with (5.1.1)).
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Let Q = p∗(Q)⊗ O(α2)
Y as in (5.13). Hence

c1(Q) ·
1

2
< 2
2

1. (5.5)

Let d = |�|. Then we see that by comparing degrees, we have

c1(Q) ·
 = degY (Q) = (pardeg(p�∗ (Q)) d = {degX(Q)+ γ } d.

The non-trivial contribution of γ occurs since p�∗ (Q) is a parabolic line bundle with
underlying line bundle Q but with non-trivial parabolic structure.

Again, since degX(Q) = 2
2
1 − C · 
1, by the bounds for C · 
 fixed above and an

easy computation gives

c1(Q) ·

2

< 2
2. (5.6)

Lemma 5.14. Let Q ∈ Pic(Y ) a �-line bundle of type τ as in (5.13) and (5.1.2) with α2
as in Theorem 5.1. Then there is a �-stable rank two vector bundle E of type τ, with
det(E) ∼= Q and c2(E) = c.

Proof. First we start with a triple (O(α1)
Y ,Q, Z2) which satisfies the orbifold Cayley–

Bacharach property. This exist by what we have already seen (by (5.13) and (5.1.1)). We
in fact choose a 0-cycle R2 in X to satisfy the stronger property as in (5.1.1) and (5.11)
and let Z2 = p∗(R2).

This gives us a � locally free extension E′ of Q⊗ IZ2 by OY .
Now we choose a good �-cycle Z1 as in Lemma 5.12 and let

Z = Z1 ∪ Z2.

Then we observe that the triple (OY ,Q, Z) also satisfies a orbifold Cayley–Bacharach
property. This can be seen as follows: if Z = p∗(R), then by (5.13), its enough to see
that (OX,Q,R) has the usual Cayley–Bacharach property. This is immediate, for if x ∈
Supp(R) = Supp(R1) ∪ Supp(R2), then its easy to see that H 0(Q ⊗ KX ⊗ IR−x) = 0
since we have assumed the stronger Cayley–Bacharach property for R2 and moreover,
IR−x ⊂ IR2−x or IR−x ⊂ IR2 depending on whether x ∈ Supp(R2) or not.

Therefore we get a new �-locally free extension E:

0 −→ O(α1)
Y −→ E −→ Q(α2) ⊗ IZ −→ 0.

We now claim that any such E is �-stable.
To see this, consider any�-line subbundleL ofE. IfL is non-trivial, then composing the

inclusionL ↪→ Ewith the mapE −→ Q⊗IZ we get a nontrivial�-mapf :L −→ Q⊗IZ .
This gives a non-zero �-section

s ∈ H 0
�(Q ⊗ L∗ ⊗ IZ).

In particular, h0
�(Q ⊗L∗ ⊗ IZ) > 0 and as a result h0

�(Q ⊗L∗ ⊗ IZ1) > 0. Therefore by
Lemma 5.12 we conclude that

(c1(Q)− c1(L)) ·
 ≥ 2
2.
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Hence, μ(L) = c1(L) ·
 ≤ (c1(Q) ·
− 2
2). But we know that μ(E) = (c1(Q)·

2 . By

(5.6) we thus have

μ(L) ≤ c1(Q) ·
− 2
2 <
(c1(Q) ·


2
= μ(E).

Hence E is �-stable and clearly of determinant Q.
Regarding the type of the �-stable bundleE of rank two constructed above, we observe

that we work with a zero cycle Z coming from the complement of ramification divisor. So
the action of � on Z is a free action. So it does not affect the type of the extension bundle
we constructed.

Therefore, since we start with �-line bundles of type τ (see (2.4.1)), by giving a type τ
structure to O(α1)

Y (i.e. the trivial bundle OY with the action of generic isotropies along the
irreducible components of the divisor by the character α1) and similarly Q = p∗(Q) ⊗
O(α2)
Y , we get a rank two stable �-vector bundle of type τ via the extension:

0 −→ O(α1)
Y −→ E −→ Q ⊗ IZ −→ 0.

q.e.d

6. Some computations of Kronheimer–Mrowka revisited

In the section, for the sake of simplicity, we work with D ⊂ X an irreducible divisor as
the parabolic divisor. The other notations are as in §2.

6.0.3 Calculation of the second parabolic Chern class

Lemma 6.1. Consider a general parabolic bundle (E∗, F∗, α∗). Then we can compute
the parabolic Chern classes E∗ using the following formula on X. Let us assume that
deg(Fi) = li with corresponding weights αi and ri = rank(Fi/Fi+1). Then

par c1(E) = c1(E)+
(
i=l∑

i=1

riαi

)
D

and

par c2(E) = c2(E)+
i=l∑

i=1

riαi(c1(E) ·D)−
i=l∑

i=1

αi(li − li+1)

+ 1

2

{(
i=l∑

i=1

riαi

)
·
(
j=l∑

j=1

rjαj

)
−
(
i=l∑

i=1

riα
2
i

)}
D2.

Proof. We can assume without loss of generality that E is a parabolic direct sum of line
bundles (Li, αi). It is easy to see that Fi/Fi+1 = ⊕j∈JLj |D with αj = αi and J ⊂ I

where E = ⊕i∈ILi . Then par c2(E) = ∑
i<j (c1(Li)+ αiD)(c1(Lj )+ αjD).

Hence

par c2(E) =
∑

i<j

c1(Li)c1(Lj )+
∑

i �=j
c1(Li)αjD +

∑

i<j

αiαjD
2.
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The first term in the above equation is c2(E). In the above equation αi is repeated ri times
and

∑
ri = r . We write

r∑

i �=j
c1(Li)αjD =

r∑

i=1

αi

r∑

j=1

c1(Lj )D −
r∑

i=1

αic1(Li)D

=
l∑

i=1

riαic1(E)D −
l∑

i=1

αic1(Fi/Fi+1),

where l is the length of the filtration. So, we get the required second term of the formula.
For the third term we just note that

∑
i �=j αiαj = 2

∑
i<j αiαj and by usual manipulation

we get the above formula. q.e.d

As in [17], we work with a parabolic vector bundleE of rank two on (X,D)whereD is
an irreducible smooth divisor with c1(E) = 0 and a filtration 0 ⊂ L ⊂ E|D with a single
weight α associated with a line subbundle L. When E = L ⊕ L∗ with c1(E) = 0 and a
filtration 0 ⊂ L ⊂ E|D we get par c1(E) = 0 and

par c2(E) = c2(E)+ 2α · l − α2D2,

where (−l) is the degree of the line bundle L and α is a corresponding weight.

6.0.4 The boundary points and action. Theorem 8.21 of [17] says that there is a one-
to-one correspondence between the set of irreducible connections in the moduli space
Mα
k,l(X,D) of α twisted connections, anti-self dual with respect to the cone-like metric

determined by ω, with holonomy parameter α = a/v; and the set of stable parabolic
SL(2,C) bundles (E,L, α) on X, with the same weight α, satisfying c2(E) = k and
c1(L) = −l.

We consider Proposition 7.1 of [18], which is the parabolic analogue of the Uhlenbeck
compactness lemma. This says that if An be a sequence of twisted connections in the
extended moduli space M̄k,l over (X,D), and suppose that the holonomy parameters αn
for these connections converge to α ∈ (0, 1/2). Then there exists a sub-sequence, which
we continue to call An, and gauge transformations gn ∈ G such that the connections
gn(An) converge away from a finite set of points xi ⊂ X, to a connection A. The solution
A extends across the finite set and defines a point in a moduli space Mα

k′,l′ .
In [17] the difference between (k, l) and (k′, l′) is accounted for by what bubbles off

at the points where convergence fails. Thus, for each point of concentration xj in X\D
there is an associated positive integer kj , and for points of concentration xi in D there
is an associated pair (ki, li) so that k′ = k − �ki − �kj and l′ = l − �li . In [17] it is
remarked that there is no complete interpretation or description of the possible values of
the pairs (ki, li) in the bubbling off. The key observation made in [17] is that the action κ
is precisely the quantity which is seen to decrease in the bubbling off.

We wish to interpret this phenomenon in the light of the semistable reduction theorem
(see Theorem 7.3 in Appendix) as well as the description of the points in the boundary of
the Donaldson–Uhlenbeck compactification constructed in this paper.

The analogue of the Uhlenbeck compactness lemma in our setting is the interpretation
of the Langton extension in terms of the points of the boundary, i.e. the limit point of the
family E(A−p) of parabolic � stable sheaves on (Spec(A) − p) of parabolic Chern class



76 V Balaji, A Dey and R Parthasarathi

par c2 coming from Langton criterion is identified with a pair (Ep,Zp)where the parabolic
Chern class of Ep is par c2 − s where s is the length of the zero cycle Zp. In other words,
the phenomenon of bubbling off is seen in the decreasing of the second parabolic Chern
class which is precisely the expected description seen in the light of Donaldson’s theorem
in the non-parabolic setting. In the case of rank 2 as in [17], what is termed action and
denoted by κ is precisely the second parabolic Chern class. We may therefore interpret the
second parabolic Chern class as the action in all ranks as seen from our construction of
the Donaldson–Uhlenbeck compactification.

The invariant par c2 captures all the information about the invariants (k, l) and (k′, l′)
in the notation of [17], and also the relation between them. Indeed, par c2 can be written
in terms of these k’s and l’s as we have seen above. And since we use � bundles on Y ,
we observe that par c2 is able to recover the information about these numbers as we have
described earlier. The term action, denoted by κ in [17] is nothing but our par c2. Kron-
heimer and Mrowka define κi = ki + 2αli , as the action lost at the point of concentration
xi ∈ D. They also give the relation between κ and κ ′ i.e. κ ′ = κ−�κi −�kj , where κ ′ is
the par c2 of the limiting point in our compactification. Here kj are the instanton numbers
associated with the points of concentration away from D.

6.0.5 Concluding remarks. In the sequel to this work [1] we prove the asymptotic
irreducibility, asymptotic normality and generic smoothness of the moduli space of stable
parabolic bundles. These generalise the work of O’Grady and Gieseker–Li for the usual
moduli spaces of stable bundles on algebraic surfaces.

7. Appendix

7.1 The Mehta–Ramanathan restriction theorem for orbifold bundles

The aim of this section is to prove the Mehta–Ramanathan restriction theorem for �-
sheaves. This in particular gives a different proof of the restriction theorem for parabolic
bundles (proven in [4]) but for the type of parabolic bundles which arise as invariant direct
images of orbifold bundles. We remark that for the purposes of the geometric study of the
moduli spaces of parabolic bundles, our results suffice by the yoga of variation of parabolic
weights.

7.1.1 Remark on �-Bertini. One has the following version of �-Bertini theorem needed
in the restriction theorem. We omit the proof which is a straightforward generalisation of
the usual case.

Theorem 7.1 (���-Bertini). Let X = Y/�. Let us assume that X is smooth and 
 is a
pull-back of a very ample divisor 
1 on X.

Let the closed embedding Y ⊂ P
n be induced by 
 i.e. P

n, the projective space deter-
mined by |
|. Then there exists a � hyperplane Z ⊆ P

n, not containing Y, and such that
the scheme Z ∩ Y is regular at every point. Furthermore, the set of hyperplanes with this
property forms an open dense subset of |
|� .

7.1.2 The restriction theorem for orbifold bundles. We have the following �-Mehta–
Ramanathan restriction theorem from which the parabolic version follows easily.

Theorem 7.2 (���-Mehta–Ramanathan theorem). Let E be a (�, μ)-semistable (resp
stable) �-torsion free sheaf on a smooth projective �-variety such that X = Y/� is also
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smooth and projective. Then the restriction E|Ck to a general complete intersection �-
curve Ck of large degree (with respect to the pull-back line bundle 
 as in Bertini above)
is (�, μ)-semistable (resp. stable).

Proof. Since (�, μ)-semistability for �-sheaves is equivalent to the semistability of the
underlying sheaf, the non-trivial case is that of stability. The proof can be seen in the
following steps:

(1) Let E be (�, μ)-polystable. Then the underlying bundle E is μ-polystable. In par-
ticular, if E is (�, μ)-stable the underlying bundle is μ-polystable (not necessarily
stable). For, if we start with a � stable bundle E we can construct a Socle F of E
with μ(F) = μ(E)which is invariant under all the automorphisms of E, in particular
invariant under the group �. This contradicts the � stability of E.

(2) By the effective restriction theorem of Bogomolov (cf. [14]), for every complete inter-
section curve C in the linear system |m
| (the numberm effectively determined), the
restriction E|C is polystable.

(3) By the �-Bertini theorem, there always exists a �-curve in |m
|. Thus, the restriction
E|C to any �-curve is a �-bundle and also μ-polystable. This implies that E|C is a
(�, μ)-polystable bundle on C. For, we take �-Socle F of E|C which is again the
Socle of E|C . Now this is μ-polystable proving that E|C = F .

(4) Observe that if E is (�, μ)-stable then it is �-simple. Here we note that we are not
saying that it is simple. If not, choose a nontrivial � endomorphism which induces a
nontrivial � subbundle of E with μ(F) ≥ μ(E) contradicting the (�, μ)-stability of
E.

(5) By the orbifold version of Enriques–Severi it follows that for sufficiently high degree
C which is also a �-curve, E|C is also �-simple.

(6) Hence, ifE is (�, μ)-stable, then for high degree�-curveC, the restriction is�-simple
and (�, μ)-polystable (by (1), (2), and (3) above), and hence �-stable. q.e.d

7.2 Valuative criterion for semistable orbifold sheaves

Let S be an algebraic variety over k. We say a �-coherent sheaf E on X × S (S with
trivial � action) is a family of torsion-free sheaves on X over S if, E is flat over S such
that for each s ∈ S the induced sheaf E∗ on p−1(s) is a �-torsion free sheaf onX. We say
two such families E and E′ are equivalent if there is � invertible sheaf L on S such that
E ∼= E′ ⊗ p∗

2(L).
Our field k is algebraically closed. Let k ⊆ R be a discrete valuation ring with maximal

ideal m generated by a uniformizing parameter π . Let K be the field of fractions of R.
Consider the scheme XR = X × Spec R. Denote by XK the generic fiber and by Xk the
closed fiber ofXR . Let i be the open immersionXK ↪→ XR and j be the closed immersion
Xk ↪→ XR .

We can now state the main theorem in this section, namely the semistable reduction
theorem for (�, μ)-semistable torsion-free sheaves.

Theorem 7.3. Let EK be a �-torsion free sheaf on XK . Then there exists �-torsion free
sheaf ER on XR such that over XK we have i∗ER � EK and over the closed fibre Xk the
restriction j∗(ER) is (�, μ)-semistable.
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Proof. We remark that we need essentially two additional ingredients in the old proof of
Langton to complete our argument. The first one is that without the demand of semistability
by Proposition 6 in [19] one firstly obtains a canonical extension of EK to a torsion-free
sheaf Ẽ onXR . Since the familyEK onXK is given to be a�-sheaf and since the extension
is canonical it follows without much difficulty that the extension also carries an extended
�-action. In other words, the restriction j∗(Ẽ) to the closed fibre Xk is also a �-torsion
free sheaf but which could be μ-unstable.

The second step in Langton’s proof is to modify the family successively by carrying out
elementary modifications using the first term of the Harder–Narasimhan filtration (the so-
called β-subbundle) of the restriction j∗(Ẽ). We again observe that the β-subbundle being
canonical is also a �-sheaf. In other words, the family remains a �-family even after the
elementary modifications. That the process ends after a finite number of steps is one of the
key points in Langton’s proof and we see that we achieve a (�, μ)-semistable reduction in
the process. q.e.d

COROLLARY 7.4

If the generic member of the family EK is given to be of type τ as a family of �-sheaves
then so is the closed fibre.

Proof. This is easy to see since the type of the family remains constant in continuous
families. q.e.d
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