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Percolation of finite–sized objects on a lattice
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We study the percolation of finite–sized objects on two– and three–dimensional lattices. Our
motivation stems, on one hand from some recent interesting experimental results on transport prop-
erties of impurity–doped oxide perovskites [13], and on the other hand from the theoretical appeal
that this problem presents. Our system exhibits a well–defined percolation threshold. We estimate
the size of magnetic polarons, believed to be the carriers of the abovementioned transport. We have
also obtained two critical exponents for our model, which characterize its universality class.

PACS number(s): 64.60.A, 64.60.F, 71.38.

Over the last couple of decades percolation theory has
generated lot of interests, both from theoretical as well as
applicational point of view [1–12]. Percolation is an im-
portant model exhibiting a second order phase transition
with the associated critical exponents [1,4,5]. It has also
been successfully applied to transport and phase tran-
sitions in several physical systems in presence of voids
or impurities [1,6,7,11,12]. In this paper we investigate
the percolation mechanism of objects with finite spatial

extent on a lattice. To the best of our knowledge this
problem has not been studied so far.

We are motivated for this type of study for the follow-
ing reasons. Firstly, the problem has interesting physical
application. Recent experimental investigations in trans-
port properties of Fe–doped La0.75Ca0.25MnO3 ceramics
[13] have thrown important light on the role of magnetic
polarons which are finite–sized objects [14–16]. In the
lattice the Fe ions occupy the Mn sites. There is a jump
in the resistivity of the system by a factor of about 80
at about 4% concentration of the Fe ions. Observations
of isomer shift indicate that Fe ions are in the 3+ state
only and hence cannot be expected to act as a double
exchange partner for the Mn4+ ions. Thus the Fe impu-
rities will be prohibiting the transport of polarons. Using
this physical picture the jump in resistivity may be inter-
preted as a percolation transition for the polarons. Sec-
ondly, our problem has its own theoretical appeal which
merits a thorough study. It is interesting to ask whether
finiteness of size has any effect on critical exponents and
hence on universality classes. Finally, our model may
have interesting application in the transport problem of
vehicles of different sizes in a randomly grown habitation.
The last problem has an additional feature that not only
the objects themselves but also the obstacles have finite
sizes. We shall see that in some cases the two problems
can be mapped into each other.

Our observations bring out a well–defined percolation
threshold probability for our model in both two– and
three–dimension. We have analysed our results using the
ansatz of scaling due to the finite lattice size. We also

estimate some critical exponents near the threshold.

The model we consider is as follows. We take a lat-
tice and randomly disallow its sites with a probability q.
We define our percolating object as a spatially extended
entity of linear dimension r (in lattice units) consisting
of n(r) sites. We now say that such an object is allowed
to percolate in the lattice only if none of its n(r) sites
overlaps with any of the disallowed sites. We then study
the standard percolation problem for such an object.

One can also study the following complementary prob-
lem. Let us place obstacles of linear size r containing n(r)
sites with a suitably defined center at random locations
with probability q. We now treat the remaining sites as
allowed and study the standard site percolation problem
for point objects. It is easy to see that the two problems
are essentially equivalent under the following conditions:
firstly, the centers of the finite–sized objects or obstacles
lie on a site; secondly, the objects or obstacles themselves
have the same symmetry as that of the underlying lattice;
and finally, the obstacles are allowed to overlap [17]. Nu-
merically it is easier to study the problem with obstacles,
which we use for calculations in this paper.

We now present our main results [18]. We consider a
two dimensional square lattice and a three dimensional
simple cubic lattice for our study. We restrict ourselves
to the cases of objects with circular symmetry in two
dimension and spherical symmetry in three dimension,
with r as radius and center on a lattice site. We have
used periodic boundary conditions for our system (oth-
erwise finite-sized objects are ill–defined at and near the
lattice boundary). Different linear sizes L of the lattice
are considered: for two dimension, we have taken L =
10, 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120, and
for three dimension, L = 10, 20, 40, 80, 160, and 250.
We have varied probability q between 0 and 1, and also
used different values of the radius r (first column of Ta-
ble I shows various r values for two–dimensional lattice),
starting with the nearest neighbor case (r=1 lattice unit).
Data are averaged over many realizations of randomly
generated disallowed sites for each value of q. It is to be
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noted that no exact analysis is possible for our model in
two– or three–dimension, though some exact results can
be obtained for one dimensional lattice and Bethe lattice
[19].

We define a cluster as a group of sites with the fol-
lowing properties: centers of the percolating objects can
be placed on these sites, and, these sites are connected
through their nearest neighbors. We call a lattice as per-

colating for a given q and r, when there exists at least
one cluster spanning the lattice end to end (a so called
‘infinite cluster’). We define threshold probability qc such
that for q > qc the lattice ceases to be percolating. It is
obvious that qc is a function of the radius r.

Let F (q) denote the fraction of percolating realizations
(those which support a spanning cluster). Figures 1 and
2 show, respectively for two– and three–dimension, the
variation of F (q) with the probability q, for different lat-
tice sizes L and radius r=1. Both plots exhibit an ap-
proach towards a step function of the form

F (q) = 1 for q < qc , (1)

= 0 for q > qc ,

as L increases to ∞. This behavior remains essentially
the same for all other values of r that we have consid-
ered. The data of both Fig. 1 and Fig. 2 are seen to obey
a finite (lattice) size scaling relation, near the threshold
qc, of the type

F (q, L) → L−b G(La|q − qc|) , (2)

where a and b are the scaling exponents. We have seen
that all the graphs of Fig. 1 do collapse onto a single
function which is almost a step function of the form (1),
and same is true for the graphs of Fig. 2. This confirms
the existence of scaling behavior (2). We have obtained
the exponents a, b for various radii r in both the dimen-
sions. As r increases from 1 to

√
8, a decreases monoton-

ically from 0.8 to 0.7 for two dimensional square lattice,
whereas for three dimensional simple cubic lattice it re-
duces from 1.17 to 0.96; value of b remains zero for all r
in both cases. We get an estimate of qc using this scaling
scheme, as L → ∞. In third column of Table I we list
these values for all finite r for the two–dimensional lat-
tice. There is one more way of obtaining qc as explained
below. The graphs of Fig. 1 and Fig. 2 are approximately
linear for values of F (q) between 0.3 and 0.6. We con-
sider the q–intercepts of these lines. The extrapolated
value of this intercept as 1/L → 0 yields qc. These val-
ues are almost identical to those listed in Table I, thereby
exhibiting internal consistency of our calculations.

One can calculate the probability p that a given lattice
site is allowed to be the center of a percolating object.
Quite simply, the required probability is

p(q, r) = (1 − q)n(r) , (3)

where q is our original probability and n(r) is the number
of lattice sites contained in the object. Second column of
Table I shows the values of n(r) for all r, in two dimen-
sion. We list, in fourth column, the values of p(qc, r) for
different radii r at the threshold qc.

Table II shows, for three dimensional simple cubic lat-
tice, the various r values and the corresponding quanti-
ties n(r), qc and p(qc, r). We notice that for both two
and three dimensions, the objects with finite r are per-
colating at lower p values than the point objects. The
reason for this becomes clear if we look at the equivalent
problem of obstacles. Here the sites are disallowed in
clumps rather than in a homogeneous manner through-
out the lattice, thereby leaving more channels open for
percolation. This effect is more pronounced the higher
the radius. For instance, in three dimension one sees that
for r =

√
6 the lattice percolates even with the removal of

more than 90% of its sites !. This also brings out another
interesting feature. The dependence of p(qc, r) on r is not
monotonous; it exhibits occasional peaks (in Table I one
peak is at r = 2, and in Table II two peaks can be seen
at r = 2 and

√
8).

As discussed in the introduction, the jump in the re-
sistivity of Fe–doped ceramic La0.75Ca0.25MnO3 at about
4% concentration of Fe ions may be interpreted as a per-
colation transition for the polarons. By assuming a ho-
mogeneous and uniform distribution of Fe ions, Ogale et.
al. have suggested that the polaron radius is about one
lattice unit. However, the Fe ions are more likely to be
randomly distributed in the lattice. This leaves many
channels open for transport and thereby allowing objects
with bigger radii to pass through. Table II (for three
dimensional case) indicates a qc value 0.04 for radius r
between 2 and

√
5. This suggests a polaron radius to be

slightly larger than two lattice units [20].
As in the standard percolation problem we find clusters

of various sizes. We have investigated the distribution of
maximum size Sm (normalized by the number of lattice
sites) of the cluster, averaged over lattice realizations, for
different values of q and r. Figure 3 plots the variation
of Sm with q, for different lattice sizes and the radius
r=1, in a two dimensional lattice. The plot exhibits a
sharp fall at the threshold qc for large L. This behav-
ior remains essentially similar for all other values of r.
A similar finite–size scaling behavior as for percolating
fraction F (q) (Eq. 2) is observed for Sm. We have esti-
mated the corresponding scaling exponents a, b. a varies
in essentially the same way in both the dimensions as
stated before for the case of F (q). The exponent b, how-
ever, has nonzero values: b = 0.14 for two dimensional
lattice, whereas b = 0.5 for three dimensional lattice, in-
dependent of the radii r.

We have studied the nature of the decay of Fig. 3 near
qc. We observe this to be a power law of the form

Sm(q) ∝ (qc − q)β . (4)
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We have estimated the exponent β of the relation (4) for
both two– and three–dimensional lattices with different
radii r. Fifth column of Table I lists the β values for dif-
ferent r, for the two dimensional lattice. The error mar-
gin for our estimates is ±0.01. We have also included the
corresponding exponent for point object (taken from [1]).
We have not listed our β–estimates for three dimensional
lattice because the error margin was not within accept-
able limit (the reason is that one has to explore lattice
sizes larger than L = 250 which is the maximum size we
could study due to limited computer resource [18]).

We have also studied the distribution of average size Sa

of the clusters, excluding the infinite cluster, as q and r
are varied. We define Sa following Stauffer et al. [1]. The
probability that an arbitrary site belongs to any finite
cluster in the lattice is

∑

s nss , where ns is the number
of the clusters of size s, normalized by the number of lat-
tice sites. Then ws = nss/

∑

nss is the probability that
the cluster to which an arbitrary allowed site belongs has
a size s. The average size Sa is therefore

Sa =
∑

s

wss =
∑

(

nss
2/

∑

nss
)

. (5)

As explained in Ref. [1], we take Eq. (5) as the defi-
nition of our mean size and not the more familiar ex-
pression

∑

nss/
∑

ns, because in Eq. (5) lattice sites,
rather than the clusters, are selected with equal proba-
bility. The average size Sa shows a diverging trend near
qc from both sides. It also exhibits finite–size scaling as
for F (q) (Eq. (2)) and Sm. We have estimated the scal-
ing exponents a, b for Sa. We find that a varies with r
in the same way as in the earlier two cases of F and Sm.
Exponent b takes value −1.64 in two dimension, −1.7 in
three dimension, irrespective of the radius r.

We have investigated the nature of divergence of Sa

near the threshold qc. We find it to be a power law of the
type

Sa(q) ∝ |qc − q|−γ , (6)

where γ is the power–law exponent. In last column of
Table I we list the values of γ for various r, for two
dimensional lattice. The corresponding error margin is
±0.1. We also show the value for point object case [1] for
comparison. We have not shown the γ values for three
dimensional lattice, for reasons stated earlier.

The question that remains to be answered is: whether
the universality class for our model, indicated by the ex-
ponents β and γ, is same as, or distinct from, that of
the point percolation case. The similarity of the val-
ues of β and γ, within their respective error margins, to
their r=0 counterparts may suggest these two to be the
same. However, possibility exists that by taking larger
lattice sizes and with consequent reduction in error one
gets a quite distinct universality class for finite–sized ob-
ject case. Unfortunately, no definitive conclusion can be
drawn at this stage.

In conclusion, we have, to our knowledge for the first
time, investigated the percolation mechanism of finite–
sized objects. We observe a well–defined percolating
threshold for our model, in a two dimensional square
lattice and three dimensional simple cubic lattice, the
threshold depending on the radius of the percolating ob-
jects. Based on this study, we have made an estimate
of the size of polarons which are believed to be carri-
ers of transport in oxide perovskites [21]. In our model
there exists a scaling due to the finite size of the lattice,
thereby allowing us to obtain important quantities for in-
finite systems from finite samples. We have also obtained
two critical exponents, which characterize the universal-
ity class for our system. We expect that our model will
be useful in characterizing the problem of transport of fi-
nite sized objects, such as finite sized excitations in solids
and heavy vehicles in a randomly grown habitation.
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TABLE I. The quantities n(r), the number of sites in an
object, qc, the threshold probability, p(qc, r), the probability
for the allowed sites for the center of an object at qc, and
β and γ, the critical exponents, for different radii r in two
dimensional square lattice. Error margins for qc, β, and γ

are ±0.0001, ±0.01, and ±0.1 respectively. Values for point
object (r = 0) are from Ref.[1].

r n(r) qc p(qc, r) β γ

0 1 – 0.5928 0.14 2.39
1 5 0.1153 0.5420 0.14 2.30√
2 9 0.0868 0.4417 0.14 2.29

2 13 0.0538 0.4873 0.15 2.22√
5 21 0.0406 0.4188 0.15 2.28√
8 25 0.0358 0.4020 0.14 2.39

TABLE II. The quantities n(r), qc, p(qc, r), for different r

values in three dimensional simple cubic lattice. Error margin
for qc is ±0.0001. p(qc, r) for r = 0 is from Ref.[1].

r n(r) qc p(qc, r)

0 1 – 0.3116
1 7 0.1921 0.2247√
2 19 0.0912 0.1625√
3 27 0.0752 0.1211

2 33 0.0591 0.1340√
5 57 0.0355 0.1274√
6 81 0.0285 0.0961√
8 93 0.0242 0.1025
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Figure Captions

Fig. 1. Variation of the percolating fraction F (q) is plot-
ted against the probability q, for lattice sizes L=10,
20, 40, 80, 160, 320, 640, 1280, and 5120, and with
radius r=1 (lattice unit), for a two dimensional
square lattice (plot for L = 2560 is not shown for
the sake of clarity). Data are averaged over 100000
realizations for L=10, 50000 for L=20, 20000 for
L=40, 10000 for L=80, 5000 for L=160, 2000 for

L=320, 1000 for L=640, 500 for L=1280, and 50
for L=5120.

Fig. 2. F (q) vs. q plot for three dimensional simple cu-
bic lattice, for L=10, 20, 40, 80, 160, and 250,
with r=1. Realizations taken are 100000 for L=10,
30000 for L=20, 10000 for L=40, 2000 for L=80,
200 for L=160, and 10 for L=250.

Fig. 3. Variation of the maximum size Sm(q) of the cluster
is plotted against q, for the same L and r values as
in Fig. 1.
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L = 5120L = 1280L = 640L = 320L = 160L = 80L = 40L = 20L = 10
q

F(q)
0.30.20.10.0Fig. 1 REA & MR

1.00.80.60.40.20.0



L = 250L = 160L = 80L = 40L = 20L = 10
q

F(q)
0.300.250.200.150.10Fig. 2 REA & MR

1.00.80.60.40.20.0



L = 5120L = 1280L = 640L = 320L = 160L = 80L = 40L = 20L = 10
q

S m(q) 0.50.40.30.20.10.0Fig. 3 REA & MR

1.00.80.60.40.20.0


