
MINIMAL CONNECTIONS: THE CLASSICAL STEINER PROBLEM
AND GENERALIZATIONS

CONNESSIONI MINIME: IL PROBLEMA CLASSICO DI STEINER E
GENERALIZZAZIONI

EMANUELE PAOLINI

Abstract. The classical Steiner problem is the problem of finding the shortest graph

connecting a given finite set of points. In this seminar we review the classical problem

and introduce a new, generalized formulation, which extends the original one to infinite

sets in metric spaces.

Sunto. Il problema classico di Steiner richiede di determinare il grafo di lunghezza

minimica che connette un dato insieme finito di punti. In questo seminario rivedremo

il problema classico e introdurremo una nuova formulazione piuú generale che estende il

problema originario a insiemi anche infiniti in spazi metrici.
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1. Introduction

Generally speaking, the Steiner Problem can be thought as the problem of finding the

set S which connects a given set of points A and which has minimal length. The solutions

to the Steiner Problem are called Steiner trees.

For example if A is the set of the vertices of a square A = {a1, a2, a3, a4}, a Steiner

tree is given by the set Σ depicted in Figure 1 (left). In this example, the Steiner tree is

actually an embedded finite dimensional acyclic graph. Notice however that this graph

has additional vertices other than the given points of A. These additional vertices will be

called Steiner points.
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Figure 1. On the left: a solution of the Steiner problem for 4 points placed

in the vertices (blue points) of a square. This solution has two Steiner points

(in red). Another solution is obtained by a rotation of 90 degrees. On the

right: the Fermat point of a triangle corresponds to the Steiner point (red)

for three vertices (blue).

This example suggests that the Steiner problem could be stated in the setting of em-

bedded weighted graphs. In fact the statement of the Steiner problem is usually reduced

by adding the following restrictions: the given set A must be finite, the set S must be

a connected finite (immersed) graph, the ambient space is the Euclidean plane. In our

opinion these restriction hide some of the beauties of the Steiner problem while they are

not really needed. In fact we will see that the restriction on competitors is not necessary:

if the set A is finite, the minimal set S must be a finite graph even if we do not impose it.

Moreover we can drop the requirement of A to be finite and we can work in a very general

class of ambient spaces. What we found is that the problem has anyway a solution which

is a topological tree (maybe not finite). We will present these results which are proven

with details in [PS12].

We notice that the Steiner problem has a relevant geometrical component. As opposite

to other apparently similar problems such as: the minimal spanning tree problem or

the lazy salesman problem, the Steiner tree problem cannot be reduced to a problem on

abstract weighted graphs. This is due to the fact that solving the Steiner problem requires
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to find the location of an undetermined number of additional vertices (the Steiner points)

and in this location problem the geometry of the ambient space plays a fundamental role.

2. History of the problem

The simplest interesting case of the Steiner problem is the case when A is composed by

three points in the plane1. This case was first studied by Torricelli, Cavalieri and Fermat

in the 17th century. They formulated the problem as follows.

Problem 2.1 (Fermat problem). Given a triangle with vertices a1, a2, a3 find the point p

such that the sum of the distances of p from the three vertices is minimal.

The point p is usually called the Fermat point of the triangle. If the triangle has an

angle greater or equal to 120 degrees, the point p coincides with the vertex of that angle.

Otherwise the point p is internal to the triangle and has very nice geometrical properties

(see Figure 1):

(1) it is the intersection of the three circles passing through the vertices of the three

equilateral triangles constructed on the sides of the triangle a1a2a3;

(2) it is the intersection of the three lines passing by a vertex of the triangle and the

third vertex of the equilateral triangles constructed on the opposite side;

(3) it is the point which sees the three sides of the triangle with an equal angle of 120

degrees.

The Fermat problem can be generalized by considering a finite set of points a1, . . . , aN

and looking for a point p such that the sum of the distances
∑

i d(p, ai) is minimal.

This problem was introduced by Steiner and was called the generalized Fermat problem.

However this is not what we call the Steiner problem since, as we have seen, the solution

to the Steiner problem can have more than a single Steiner point if we want to connect a

set with more than three points.

In 1934 Jarǹıck and Kössler [aMK34] introduced for the first time the problem with

finite graphs: given a set of points a1, . . . , aN find the shortest graph among all connected

1As a matter of fact the case when A is composed by two points is also important: in that case the

problem becomes the problem of finding geodesics.
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graphs containing the given points. They proved the existence of a minimizer. Also

they found the minimum in some special cases, namely in the cases when the given set

A is composed by the vertices of a regular polygon with N = 3, 4, 5, 6 and N ≥ 13

vertices. The gap N = 6, . . . , 12 was closed in 1987 by Du, Hwang and Weng [DHW87].

In 1941 Courant and Robbins published the famous book “what is mathematics” [CR41]

where they include a presentation of Fermat problem and consider the generalization of

Steiner (with a single additional point) which they call “Steiner Problem”. Then they

introduce the same idea of Jarǹıck and Kössler and call it “generalized Steiner problem”.

The success of the book gave a wide spread to this problem which hence became widely

known as the “Steiner problem”.

We will not try to change the historical name of the Steiner problem even if we recognize

that it would be more appropriate to name it after Jarǹıck and Kössler.

More information on the Steiner problem can be found in [FKH92, IT94].

3. Classical statement and existence result

The Steiner problem, as introduced in the 20th century, has the following statement.

Problem 3.1 (classical Steiner problem). Given the set of points A = {a1, . . . , aN} in the

euclidean plane, find the shortest graph Σ among all (finite) connected graphs containing

all the given points.

Even if the problem looks quite simple, the existence of a solution is not straightforward.

In fact the space of all finite graphs is not finite dimensional since we do not have an upper

limit on the order of the graphs (i.e. the number of vertices) since the number of Steiner

points might, in principle, become arbitrarily large. To prove the existence of solutions it

turns out that it is first necessary to find some variational properties of minimal graphs

which will enable us to modify the minimizing sequences in order to make them converge

to a finite graph.

The first property is that minimal graphs cannot contain loops (in fact we always call

them minimal trees). This is trivially true because if the graph contained a loop, the
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Figure 2. The four variations which are used to decrease the length of a

competitor graph. The blue points are the points to be connected. When

the red lines are removed and replaced by green lines the total length de-

creases.

graph would be doubly-connected hence we could remove an edge of the loop without

disconnecting the graph.

The second property is that every Steiner point (i.e. every vertex of the graph which

is not one of the given points a1, . . . , an) has order not larger than 3. This is due to the

property of Fermat points. In fact if we had 4 or more segments meeting at a point, at

least two of them must define an angle which is less than 120 degrees2. Then by applying

Fermat construction in a small triangle with a vertex in the Steiner point and two sides

on the two segments, we are able to decrease the total length of the given graph, without

disconnecting it (see Figure 2). Applying this construction we conclude that every Steiner

point of a minimal Steiner tree must have order 3 (vertices with order 2 are clearly not

optimal) and moreover the three edges joining in the Steiner point must define equal

angles of 120 degrees3.

The third property is that every vertex of order 1 is a point of A. In fact if the graph

has a vertex V of order 1 and if it is not a point of A, it is possible to remove the (unique)

edge of the graph which has V as endpoint (if some points of A lie on that edge, we

remove only a part of the edge, until we reach the first point of A). We can repeat this

procedure until all vertex of order one are points of A.

2Notice that this is true even in higher dimensions, not only in the plane.
3Again this is true also in higher dimension (i.e. in the space) where we conclude that Steiner Trees

must be locally planar around every Steiner point.
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The fourth property is that every vertex of order 2 is also a point of A. In this case

we notice that if V is a vertex of order 2 there are two edges joining it. We can hence

remove the two edges (and the vertex) and replace them with a single edge with the same

end-points. Of course if points of A lie on one of the two edges, we remove only a part of

that edge, until we reach a point of A.

These four properties, taken together, state that in a minimal graph (if it exists!) all

the vertices which are not in A are of order 3. This enables us to obtain an estimate on

the total number of vertices. In fact let v1, v2, v3 be, respectively, the number of vertices

of order 1, 2 and 3. We claim that if the graph has at least two vertices then v3 ≤ v1− 2.

This is true for all graphs which are connected, contain no loop, and have vertices of order

not greater than 3. The claim can be proven by induction removing, one after the other,

the terminal points. In our case we know that v1 + v2 ≤ |A| and hence the total number

of vertices v = v1 + v2 + v3 ≤ |A|+ v1 − 2 ≤ 2|A| − 2.

Notice that up to now we have stated some nice property of a minimal graph even if we

do not yet know that it exists... To prove the actual existence of solutions we will apply

these properties to a minimizing sequence. If Sk is a minimizing sequence (i.e. a sequence

of connected graph containing a given finite set A, such that the length of Sk converges

to the infimum length of all possible connected graphs containing A) then we apply to

each Sk all the local modification we have mentioned so that we obtain a sequence S ′k

of connected graphs which again is minimizing but now we can assume that S ′k satisfies

the estimate on the number of vertices: v ≤ 2|A| − 2. The number of possible different

topologies of the graphs S ′k is hence finite and we are able to find a subsequence S ′kj which

all have the same number of vertices and the same topology. This means that every such

graph S ′kj can be represented by a point pj ∈ (R2)n where n is the number of vertices of

the graph, and the length of the graph is a (fixed) continuous function f : (R2)n → R.

It is not difficult to prove that the points pj must be equibounded otherwise the length

of the corresponding graphs would go to infinity. So, by Weierstraß Theorem we known

that, up to a subsequence, the points pj converge to some point p. This point represents

a graph S which, by continuity, must be a connected graph containing all points of A and
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whose length is minimal. Hence we have found the existence of a solution to the classical

Steiner problem.

4. Generalized Steiner Problem: existence

We notice that the statement of the Steiner problem only need two basic concepts:

length and connectedness. In any metric space X we have both: the connectedness is

defined by topology and the length can be defined by the Haudorff measure. It is not

necessary to restrict ourselves to the class of finite graphs, we can deal with the larger

class of compact sets S ⊂ X.

The family of non-empty compact sets can be endowed with the Hausdorff uniform

distance, defined by:

d(S1, S2) = inf{ε > 0: S1 ⊂ (S2)ε and S2 ⊂ (S1)ε}

where (S)ε = {x ∈ X : d(x, S) < ε} is the ε-neighbourhood of a set S.

We know that the space of compact subsets of a compact metric space is compact with

respect to this metric (Blaschke Theorem). Moreover the Go la̧b Theorem asserts that the

H1-measure is lower semicontinuous on connected sets. Taken together these tools give

the following result:

Theorem 4.1. Let X be a compact, connected metric space and let A ⊂ X be a compact

set. Then there exists a set S which has minimal H1 measure among all compact connected

sets containing A.

The proof is simple. Consider the family F of all compact, connected sets which contain

A. By hypothesys X ∈ F, hence F is not empty. Let m = inf{H1(S) : S ∈ F} and

let Sk be a minimizing sequence, i.e. Sk ∈ F such that H1(Sk) → m. By Blaschke

Theorem, up to a subsequence, we might suppose that Sk converge uniformly to a compact

set S. By continuity S ∈ F. Moreover by Go la̧b theorem we conclude that H1(S) ≤

lim infk H
1(Sk) = m and hence S is a minimal set.

It is not really necessary to require that X be compact. In fact if Sk is a sequence of

sets all containing A and with a uniform bound on the length, then all these sets must
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a1

a3

S

a2

Figure 3. An example of Steiner problem with obstacles. The ambient

space X is the plane with the two red circle removed. The set A is composed

by the three blue points. The set S is the resulting minimizer.

be contained in a sufficiently large ball. Hence the previous theorem holds true in the

following more general form:

Theorem 4.2. Let X be a metric space with the Heine-Borel property (that is: every

closed ball is compact) and let A be a compact subset of X. If there exists a compact

connected set containing A, then there exists a set S which has minimal length among all

compact connected sets containing A.

The previous theorem applies, for example, when X is any closed subset of RN . Even

this simple generalization is quite useful even in the case when A is finite. For example

we can model the concept of obstacle in the Steiner problem (see for example Figure 3).

We have added the hypothesys that a compact connected set containing A exists. This

is needed because otherwise the family of competitors would be empty and hence it would

be impossible to find a minimizer.

However notice that we do not exclude the case H1(S) = +∞. In fact in this general

setting it may happen that all connected sets containing A have infinite length.

Here are two simple examples. In the first example we have an infinite set A in the

plane.
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Example 4.1. Let X = [0, 1]2 ⊂ R2 and consider the compact set

A =

{(
1

n
,

1

m

)
: n,m ∈ 1, 2, . . . ,∞

}
where we let 1/∞ = 0. If S is a connected set such that S ⊃ A, then H1(S) = +∞.

To prove the assertion in the previous example it is enough to consider a disjoint family

of balls centered in the points of A. We know that S being connected and passing trought

the center of every ball, its length must be larger than the sum of all the radii of the balls.

By direct computation we can prove that such sum is infinite.

In the second example we have a finite set in a connected but not arcwise connected

metric space.

Example 4.2. Let X ⊂ R2 be defined by

X = {(x, y) ∈ R2 : x ∈ [−1, 1] \ {0}, y = sin(π/x)} ∪ {(0, y) : y ∈ [−1, 1]}

and consider the set A = {(−1, 0), (1, 0)} ⊂ X. X is compact and connected. If S is any

connected subset of X containing A, then H1(S) = +∞.

To prove the assertion in the previous example just notice that every such set S must

necessarily contain the graph of the function y = sin(1/x) which has infinite length.

On the other hand it is easy to prove that if X is compact and endowed with a geodesic

distance (i.e. the distance between two points is equal to the infimum of the lengths of

the curves joining them) and if A is finite, then there exists a compact and connected set

containing A with finite length. In fact one can consider the union of a finite number of

curves with finite length which connect every point of A with some fixed point.

Theorem 4.2 is quite more general than the classical Steiner problem. However this

formulation makes no sense when the given set A has infinite H1 measure. A possible

formulation which can be easily handled with the same tools seen so far is the following:

Theorem 4.3. Let X be a metric space with the Heine-Borel property. Let A be a

compact subset of X. If there exists a compact connected set containing A, then there

exists a compact connected set S with minimal length among all compact connected sets

such that S ∪ A is connected.
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A1 A2

A3

S

S1

S2

Figure 4. On the left: the set A = A1 ∪A2 ∪A3 has infinite H1-measure,

nevertheless it is natural to look for a minimizing set S which connects

the three components. On the right: The black segment represents the

minimal set S1 which is connected and such that S1 ∪ A is connected (the

set A has three components represented in blue). The green set composed

by two segments is the minimal set S2 such that S2∪A is connected without

requiring S2 itself being connected.

With this formulation we don’t require S to contain A but only to let S ∪ A become

connected. This is a nice formulation of the concept of connecting a set. The fact that

S is also required to be connected is needed to adapt the proof already exposed for

Theorem 4.1. In fact the Go la̧b Theorem need the sequence of sets Sk to be connected,

otherwise it is not guaranteed that the H1 measure is lower semicontinuous4.

Unfortunately the requirement of S to be connected leads to an undesiderable be-

haviour: if we require S ∪ A to be connected, it is not natural to require also S to be

connected. See Figure 4 as an example.

It is possible to drop the requirement of S being connected by considering a slight

generalization of the Go la̧b Theorem. What we need to do is considering the sets A ∪ Sk

which are connected, but to prove that the semicontinuity result holds for H1(Sk \ A).

This requires a localized version of Go la̧b Theorem which is proved in [PS12]. With these

considerations one can get the following result:

4for example a sequence of finite sets (each of which has zero H1 measure) can converge to a segment

with positive length
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Theorem 4.4. Let X be a metric space satisfying the Heine-Borel property. Let A be

a compact subset of X. If there exists a compact connected set containing A then there

exists a compact set S such that S ∪ A is connected and H1(S) is minimal among all

compact sets S ′ such that S ′ ∪ A is connected.

The previous statement seems very close to the intuitive statement: find the shortest

set connecting a given set A. The only somewhat innatural requirements are about the

compactness of S, even if, in view of Blaschke Theorem, one might believe that the

compactness of the competitors is required. It was a surprise to discover that this is not

the case. In fact we can state the following:

Theorem 4.5. Let X be a connected metric space with the Heine-Borel property. Let A

be a compact subset of X. We say that a set S connects A if S ∪ A is connected. Then

there exists a set S such that H1(S) is minimal among all sets which connect A.

In this statement we require that the ambient space X is connected because this is a

nice way to be sure that the family of competitors is not empty, since X is now itself a

competitor (we don’t require competitors to be compact anymore).

The proof of Theorem 4.5 is quite involved. The key point is the fact that if S is

a connected set with finite length then S̄ is also connected and has the same length.

Moreover a set with finite length is also bounded and hence S̄ turns out to be compact.

So it is possible to recover the setting of Theorem 4.4.

5. Generalized Steiner Problem: properties of minimizers

Once we have stated the existence of solutions to the Steiner problem in the quite

general setting of Theorem 4.5 it is natural to ask whether such minimizers enjoy some

nice property as the classical minimizers do.

In this section we will state that, in fact, all the properties of classical minimizers can

be recovered when they make sense.

First of all we want to highlight a property of classical minimizers which plays an

important role also in the generalized case. We say that a Steiner tree S over a set A is

full or complete or indecomoposable if the set S \A is connected. Looking at Figure 5 we
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a3

a1
a2

a4

a5

a6

a7

S1

S2

S3

Figure 5. An example of decomposable Steiner Tree. The minimizer S

over the set A = {a1, a2, a3, a4, a5, a6, a7} is the union S = S1 ∪ S2 ∪ S3

where S1 is the minimizer over A1 = {a1, a2, a3, a4}, S2 is the minimizer

over A2 = {a4, a5, a6} and S3 is the minimizer over A3 = {a6, a7}. The

points a4 and a6, if removed, cause a disconnection of S.

understand how any classical Steiner Tree can be decomposed in the union of smaller full

Steiner trees.

A complete Steiner trees is characterized by not having any vertex of order two. In

fact such vertices must be points of A and if removed cause a disconnection of the tree.

So every point of A is an end-point of the graph (i.e. a vertex of order one). If a is the

number of points of A (vertices of order one), s is the number of steiner points (vertices

of order three) and e is the number of edges of a complete Steiner tree, we notice that

s = a − 2 and e = 2a − 3. These equalities can be found by induction, as we have done

in Section 2.

In the following statement we collect the properties which are valid in the generalized

Steiner problem (see [PS12] for details).

Theorem 5.1. Let X be a metric space and A ⊂ X a compact set. Let S be a minimizer

of H1(S) among all subsets of X such that S ∪ A is connected. Suppose moreover that

H1(S) < +∞. Then S \ A has at most a countable number of connected components.
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Figure 6. The sixth iteration of a splitting tree S6 (n = 6). The boundary

set A6 is composed by |A6| = 3 · 2n−1 = 96 points (in blue). The tree S has

3 · 2n−1 − 2 = 94 Steiner points (in red) and 3 · (2n − 1) = 93 edges.

Moreover each component S0 of S \A is a topological tree composed by at most a countable

number of vertices and edges and which is locally finite in X \ A.

The results stated in the previous theorem are optimal. Here are some examples.

Example 5.1. Let X = [0, 1] and let A ⊂ X be the Cantor set A = A/3 ∪ (1 − A/3).

It is easy to see that S = X \ A is a minimizer, in fact every point of S is necessary to

connect A while S ∪ A = [0, 1] is connected. Notice that S = S \ A is a countable union

of disjoint intervals. Notice that even if A is not countable, S is composed by a countable

number of disjoint intervals. Every such interval connects only two points of A. As a

consequence we might observe that there are points of A which are not in the closure of

any connected component but, on the contrary, are accumulation points of a sequence of

connected components.
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Example 5.2. Another example is depicted in Figure 6. We consider a set S1 which

is composed by three edges which join on a triple point. Once we have constructed Sn

we construct Sn+1 by adding a triple point on every terminal vertex using edges with

sufficiently small length tn. We let An be the set of terminal points of Sn. It is possible to

prove that when tn goes to zero fast enough, the limit set S =
⋃

n Sn is a minimizer over

the set A which is the limit, in the Hausdorff metric, of the terminal points An.

We notice that the set A is homeomorphic to a Cantor set. In particular A is more

than countable. On the other hand the set S is complete (S \A is connected) and it is an

infinite tree composed by a countable number of edges and a countable number of Steiner

points. However the set S is locally finite outside A, in fact given any ε > 0 we notice

that only a finite number of Steiner points and edges of S have distance greater than ε

from A.

As in the last example, we notice that since the minimizer S is locally finite, we can

apply the small variations considered in Section 2 and recover all the properties of classical

Steiner trees:

Theorem 5.2. Let X be a complete connected Riemann manifold and let A ⊂ X be

compact. Then among all sets S ⊂ X such that S ∪ A is connected there exists one set

S which minimizes H1(S). Moreover any minimizer with finite length is composed by the

union of countable many geodesics which meet in triple points with angles of 120 degrees.

The set of triple points is locally finite in X \ A.

6. Open problems

In this section we address some of the questions which, in our knowledge, remain open.

Question 6.1. Is it possible to find a bounded set A in X = RN such that the problem:

“find S ⊂ X such that H1(S) is minimal among all sets for which S ∪ A is connected”

does not have a solution?

In this question the set A must not be closed, otherwise we know that a solution

exists. Also remember that we do not require the minimal set to have finite length (see

Example 4.1).
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An example of non-existence when A is not bounded is easy to find, just consider

X = R2 and A = {(x, y) ∈ R2 : |y| = ex}. For each ε > 0 the set Sε = {(log ε, y) : |y|≤ ε}

has length 2ε > 0 and Sε ∪A is connected. However A cannot be connected with a set of

zero length.

Here are some examples where the minimizer exists even if A is not closed.

Example 6.1. Let X = R, A = [0, 1]∩Q. The set S = [0, 1] is a minimal set connecting

A with length 1. If instead we choose A = [0, 1] \ Q the set S = [0, 1] ∩ Q is a minimal

set connecting A and has length zero.

Example 6.2. Let X = R, A = [−1, 1]\{0}. The set S = {0} is a minimal set connecting

A.

Example 6.3. Let X = R2, A = {(x, y) ∈ R2 : x 6= 0, y = sin(1/x), |x| < 1}. Then the

set S = {(0, 0)} is a minimal set connecting A. Notice that in this case S∪A is connected

but not arcwise connected!

Question 6.2. Consider the set constructed in Example 5.2. We know that choosing the

length tn in some appropriate way, such a set is indeed minimal. However if we choose

tn = λn for some λ > 0, the resulting set S becomes a self-similar fractal tree. Does exist

some λ > 0 such that this fractal tree is a minimizer (with respect to its terminal points)?

About the previous question we notice that for some λ the resulting fractal tree develops

some self-touching parts, hence it turns out not actually being a topological tree. Hence

if λ is not small enough, the set cannot be minimal.
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