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Abstract 

Presented is an overview of the CO2QUEST project that addresses fundamentally important issues regarding the 
impact of typical impurities in the gas or dense phase CO  stream captured from fossil fuel power plants on its safe 
and economic transportation and storage. Previous studies have mainly investigated the impact of CO  stream 
impurities on each part of the carbon capture and storage (CCS) chain in isolation. This is a significant drawback 
given the different sensitivities of pipeline, wellbore materials and storage sites to the various impurities. The project 
brings together leading researchers and stakeholders, to address the impact of the typical impurities upon safe and 
economic CO  transportation and storage. State-of-the-art mathematical models, backed by laboratory and 
industrial-scale experimentation, are implemented to perform a comprehensive techno-economic assessment of the 
impact of impurities upon the thermo-physical phenomena governing pipeline and storage-site integrities. 
© 2013 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The ultimate composition of the CO  streams captured from fossil fuel power plants and other CO  intensive 
industries and transported to a storage site using high pressure pipelines will be governed by safety, environmental 
and economic considerations.  

So far, most studies performed on this topic have been limited in scope, primarily focusing on investigating the 
impact of the CO  stream impurities on each part of the carbon capture and storage (CCS) chain in isolation. This is 
a significant drawback given the markedly different sensitivities of the pipeline, wellbore materials, and storage sites 
to the various impurities. For example, trace elements such as lead, mercury and arsenic in the CO  stream are of far 
greater concern in an aquifer storage site than compared to the pipeline given the risk of water table contamination. 
On the other hand, even small concentrations of water in the CO  stream are detrimental to the pipeline due to 
corrosion, but of benefit even at high concentrations during storage given the immobilisation effect of water on CO . 
It is clear, therefore, that the optimum composition and concentration of the impurities in the captured CO  stream 
involves a delicate balance between the different requirements within the CCS chain, spanning capture, 
transportation and storage, with cost and safety implications being the over-arching factor.  

CO QUEST brings together key partners from the EC FP7 CO PipeHaz (CO  pipeline transportation) and 
MUSTANG (CO  geological storage) projects [1, 2], as well as other leading researchers and major stakeholders, to 
address the important and urgent issues regarding the impact of typical impurities in the gas or dense phase CO  
streams captured from fossil fuel power plants on its safe and economic transportation and storage.  

The present paper describes the main objectives, methodology and some recent findings of the CO2QUEST 
project. In particular, Section 2 defines the project scope and methodology, Section 3 characterizes the CO  stream 
impurities and their physical properties, Sections 4 and 5 are focused upon the project’s analysis of the impacts of 
CO  stream impurities on the pipeline transportation/compression and storage, whilst the methodology of the 
techno-economic and risk assessment are presented in Section 6, which is followed by conclusions in Section 7. 

2. Project Methodology 

The CO2QUEST project involves the determination of the important CO  mixtures that have the most profound 
impact upon the pipeline pressure drop, compressor power requirements, pipeline propensity to ductile and brittle 
facture propagation, corrosion of the pipeline and wellbore materials, geochemical interactions within the wellbore 
and storage site, and ensuing health and environmental hazards. Based on a cost-benefit analysis and whole system 
approach, the project will provide recommendations for tolerance levels, mixing protocols and control measures for 
pipeline networks and storage infrastructure thus contributing to the development of relevant standards for the safe 
design and operation of CCS. 

The CO QUEST project has five technical Work Packages (WP). Fig. 1 gives a schematic representation of the 
WPs relationship to the CCS chain. In particular, in WP1 the fluid properties and phase behaviour are characterised 

 
 Fig 1. Schematic representation of the CCS chain, highlighting the  
 different Work Packages in the CO QUEST project. 
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for CO  streams from different capture technologies. This work package provides the thermodynamic and physical 
properties data needed for the models to be developed under WP2 and WP3, focused on CO  pipeline transport 
(WP2) and CO  storage reservoir integrity performance (WP3). The latter work packages seek to generate validated 
modelling methods and tools for the assessment of pressure drop, compressor power, pipeline design and well design 
in the presence of impurities. In turn, these models will be utilized in WP4 to assess the techno-economic impact of 
common impurities. WP5 will demonstrate the usefulness of the tools by identifying potential environmental and 
health hazards.  

3. CO2 Streams Composition 

Given the number of potential sources for CO , both from the power and non-power sectors, it will be necessary 
to consider in the cost-benefit analysis of CCS the CO  source and also the capture technology with which it will be 
matched. There are three main options for the decarbonisation of electricity generation: pre-combustion, post-
combustion and oxy-fuel combustion. Whilst both pre-combustion and post-combustion technologies typically 
produce a CO  stream which is in excess of 98% pure, oxy-fuel combustion technologies can produce a CO  stream 
where the composition varies in the range of 74 to 99 vol%. This is illustrated in Table 1 [3] below. 

In view of the above, and given the importance of accurate modelling of the thermodynamic properties and phase 
behaviour of CO2 mixture properties, an extensive literature review of experimental data available for  the properties 
of CO  mixtures with the impurities highlighted has been carried out. The review covered the vapour-liquid 
equilibria (VLE), volumetric and derivative thermodynamic properties and transport properties. As a result, 
knowledge gaps for the majority of CO  mixtures with impurities and properties of interest to CCS technology were 
identified. In particular, it was found that for binary CO  mixtures little data is available on derivative 
thermodynamic properties and transport properties, while the only property extensively studied in the literature is 
the VLE pressure of saturation as depicted in Fig. 2. As the complexity of the mixtures increases in terms of the 
number of components and conditions, the data become scarcer. In fact, the experimental data for isothermal 
compressibility found for the system CO -N -CH4-H  [4], as well as the phase envelope, density, and viscosity for 
the system CO -N -O -Ar [5], are the most complex cases of CO  mixtures with gases that exist in the literature. 

 

Table 1. Summary of CO  impurities from different capture technologies [3]. 

Oxy-fuel Combustion 
Pre-combustion Post-combustion 

Raw/ dehumidified Double flashing Distillation 

CO  % v/v 74.8-85 95.8-96.7 99.3-99.4 95-99 99.6-99.8 

O2 % v/v 3.21-6 1.05-1.2 0.01-0.4 0 0.0035-0.015 

N2 % v/v 5.8-16.6 1.6-2.03 0.01-0.2 0.0195-1 0.045-0.29 

Ar % v/v 2.3-4.5 0.4-0.61 0.01-0.1 0.0001-0.15 0.0011-0.021 

NOx / ppmv 100-709 0-150 33-100 400 20-38.8 

SO2 / ppmv 50-800 0-4500 37-50 25 0-67.1 

SO3 / ppmv 20 - 20 - 

H2O / ppmv 100-1000 0 0-100 0.1-600 100-640 

CO / ppmv 50 - 50 0-2000 1.2-10 

H2S/COS / ppmv 0.2-34000 

H2 / ppmv 20-30000 

CH4 / ppmv 0-112 
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    Fig. 2. Range of conditions of data for binary VLE data [6]. 

4. CO  Compression and Transport 

Minimising the pressure drop and avoiding two-phase flows in CO  pipeline networks are essential for reducing 
compressor power requirements. This is critically important given that the compression penalty for CO  capture 
from coal-fired power plants is estimated to be as high as 12% [7]. 

In the past, three main options for compression of CO  from gas to supercritical pressures have been 
recommended for a pure CO  stream, including those using conventional multistage centrifugal compressors (option 
A), supersonic axial compressors (option B) and compressors combined with liquefaction followed by pumping 
(option C). Amongst these, option C was found to be the most efficient [8] and practically attractive, since pumping 
of a liquid is less energy demanding than gas-phase compression, whilst the relatively high boiling point of pure 
CO  (ca 20 °C at 60 bar) allows using utility streams for the liquefaction process. Supersonic shock-wave 
compressors can be used for compression of large amounts of fluid, and have the benefit of lower capital costs than 
traditional centrifugal compressors. 

In the case of industrial-grade CO , however, the presence of impurities is inevitable and hence the choice of 
strategy and costs associated with compression will depend on the physical properties of the particular CO  mixture, 
such as fluid compressibility, density and saturation data. Fig. 3 illustrates the impact of impurities on the phase 
envelope for differing mixtures of compositions as defined in Table 1, in addition to pure CO . It can be observed 

 
 Fig. 3. Boundaries of VLE region in pressure-temperature  
 phase diagram for pure CO  and oxy-fuel, pre- and post- 
 combustion CO  mixtures calculated using the Peng-Robinson  
 equation of state. 
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that the saturation pressures for oxy-fuel and pre-combustion mixtures diverge significantly from the saturation 
pressure for pure CO  and post-combustion mixtures.  

The compression work, and hence the penalty incurred by the presence of impurities, has been calculated for the 
above-mentioned compression options and CO2 stream compositions of Table 1. As an example, Fig. 4 shows the 
thermodynamic paths of four-stage compression with intercooling relative to the phase envelopes for pure CO2 (a) 
and oxy-fuel (b) mixtures, whilst Fig. 5 shows the power consumption for each compression strategy (options A-C)  
for mixtures indicative of all capture technologies. 

In agreement with the data published in the literature, the study shows that the integration of the multi-stage 
compression with liquefaction and pumping can greatly decrease the total power consumption (combining the power 
of compression and inter-cooling) as compared to conventional gas-phase compression. This option is particularly 
attractive for compression of almost pure CO , when liquefaction can be achieved using utility streams at 20 °C for 
post-combustion mixture of purity 99.46 vol%, and 8 °C for pre-combustion mixture (CO  purity about 98 vol%). 
At the same time, the cryogenic temperatures required for liquefaction of oxy-fuel CO  stream carrying 74-85 vol% 
of impurities (Table 1), may require use of extra power for refrigeration. Clearly, such information forms the 
foundation for practical optimization of CO  compression, which should be performed not in concert with other 
processes involved in CCS chain, such as the CO  capture and transport.  

5. CO  Storage Reservoir Integrity Performance 

For the successful application of CCS technologies, it is critically important to understand the effects of 
impurities upon the performance of geological CO  storage operations. Various aspects of these processes are being 
studied, including fluid/rock interactions, leakage of trace elements, and their impacts upon the subsurface 
environment. Laboratory and field-scale experiments are to be performed to assess the impact of impurities in the 

 
(a)      (b) 

 Fig. 4. The thermodynamic paths for compression of pure CO  (a), and CO  mixtures from oxy-fuel (b) using compression and 
 pumping with subcritical liquefaction. 

 
 Fig. 5. Power demand for multistage compression (options A, B,  
 and C) of pure CO , oxy-fuel (raw/dehumidified), pre- and post- 
 combustion streams (Table 1). 
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CO  stream on rock properties and its subsequent migration behaviour, and the overall effects upon the storage 
performance and caprock integrity. A significant component of the work will be a field scale injection experiment at 
Heletz, Israel [2], where CO  will be co-injected with impurities and the effects analysed. Simultaneously, 
numerical models are being developed to understand the physical and chemical processes involving impure CO  
more clearly, and in particular, the multiphase fluid phenomenon of CO  spreading/trapping and the acidic chemical 
environment induced by impurities. 

In the case of injection of impure CO2, critical processes for the subsurface CO  injection are those which 
possibly exert negative impacts on the environment. CO  injection could lead to geochemical alteration and 
geomechanical deformation of the caprock, and alter its sealing capacity [9]. Co-injection of acidic species such as 
H S, SOx and NOx enhances the solubility of many minerals including those containing significant concentrations of 
hazardous trace elements such as As, and Pb. In the event of release with CO , they are likely to exacerbate the 
impact upon groundwater quality by the formation of strong metal-sulfide complexes [10, 11]. Also supercritical 
CO  is itself an excellent solvent for toxic organic compounds such as benzene, which can potentially be mobilized 
through the occurrence of a leak [12]. Impurities can also have a geochemical impact in a CCS scenario where CO  
is injected for storage in a deep brine geological formation. 

Depending upon the CO  capture process, the injected CO  may contain various compositions of residual O , 
SOx, NOx and inert gases. It is of interest to determine the environmental impact resulting from the inclusion of SO  
in the CO  stream, and given the environmental and human health benefits of controlling SO  emissions [13], it may 
be economically advantageous to dispose of SO  together with the CO .  

The impact of the injection of CO  with an impurity level of 2 vol% and 4 vol% SO -CO  has been investigated 
using a mathematical modelling method. The model was developed using the PHREEQC software to evaluate the 
sulfate ion distribution, and also the PFLOTRAN code to predict the fate of the injection streams of SO -CO  and 
SO (aq) in the target storage reservoir. This model estimates the highest impact obtained by the presence of a 
significant amount of SO  in the injection stream. 

Fig. 6 shows the pH level at the ceiling of the reservoir, where the ceiling height is 20 m above the base. For the 
studied case of an injection period of one week, the influence on the pH level is noticeable adjacent to the injection 
well, but its impact is insignificant near the reservoir ceiling. In the case of long term injection of pure and impure 
CO  streams, a significant impact upon the pH level is observed. In addition, since corrosive water, having a low pH 

 
Fig. 6. Predicted pH levels for pure CO  (left), 2% SO  (middle) and 4% SO  (right) after 1 year (top) and after10 years 
(bottom) at a height of 20 meters from the bedrock. 
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level, can induce changes in the physical properties of the caprock, this model can serve as the basis for 
investigations of the effect of SO  impurity on the impervious cap. 

6. Techno-economic Analysis and Risk assessment 

For the techno-economic assessment of highly complex and inter-dependent CCS systems carrying impure CO2 
streams, a state-of-the-art methodology is being developed in WP4 of the project. The methodology uses a multi-
scale, whole-systems treatment of the operation of a CO2 capture and transport network with a view to identifying 
and quantifying the cost, operability and safety trade-offs that invariably exist within a network of this kind. The 
methodology will make use of the findings in WPs 1-3, and aims to gain an understanding of how the potential 
impurities may propagate in a simple linear systems and more complex collective and distributive CCS chains. The 
approach takes into account the chemistry implicit in mixing CO2 rich streams from several sources, and also 
potential interactions between these mixtures and the pipeline materials and indeed during injection and storage. 

In order to explore and quantify inherent trade-offs between the different components of the system, whole-
system performance measures will be used. These will be backed up with a fit-for-purpose, model-based integrated 
assessment methodology [14], which is being designed using the concepts of operational envelopes and design 
spaces [15]. 

Whilst the costs of CO2 capture depends to some extent on the desired purity of CO2 there are benefits that come 
of improved purity on the performance of the transport and injection/storage system. It is therefore important to 
understand the relative costs and benefits associated with CO2 purity in a CCS system. Therefore for the identified 
feasible operational envelopes, the cost-benefit trade-offs between the production of a high-purity stream of CO2 
(with associated high capture cost, but lower transport costs and complications) and the production of a less pure 
stream of CO2 (with lower capture costs, but commensurately higher transport costs). The cost model will be 
developed based on the results of modelling of CO2 compression, transport and storage in WPs 1-3 and will 
incorporate a ‘safety and impact tool’ for the qualitative assessment of industrial and environmental risks associated 
with CCS which is the focus of WP5. 

7. Conclusions 

The cost of CO  capture plants will increase with increases in the required degree of purification of CO . In 
contrast, pipeline transportation and storage costs increase with a decrease in the CO  purity. Clearly the optimum 
CO  purity requires a trade-off between these two requirements. 

Based on a cost-benefit analysis and whole system approach, validated mathematical models developed and 
realistic-scale CO  pipeline transportation and storage experiments conducted as part of the CO QUEST project,  
predictions and results will be employed to provide recommendations for CO  purification levels, mixing protocols 
and control measures for pipeline networks and storage infrastructure, thus contributing to the development of 
relevant standards for the safe design and economic operation of CCS.  

The methods and tools developed in the project will allow industry and other stakeholders involved in the 
implementation of CCS schemes to improve operational safety and safeguard members of the public and operators 
from the consequences of CO  leaks from transportation pipeline networks and geological CO  storage formations. 
Sharing the knowledge generated in the project with industrial and public sectors is expected to facilitate the safe 
and commercially advantageous deployment of CCS, as a key technology which enables exploitation of fossil fuel 
reserves, including coal, in Europe and the rest of the world without adding to greenhouse gas emissions. 
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