Available online at www.sciencedirect.com ## **ScienceDirect** Procedio Procedio Energy Procedia 63 (2014) 2622 - 2629 ## GHGT-12 # CO₂QUEST: Techno-economic assessment of CO₂ quality effect on its storage and transport Solomon Brown^a,* Sergey Martynov^a, Haroun Mahgerefteh^a, Michael Fairweather^b, Robert M. Woolley^b, Christopher J. Wareing^b, Samuel A. E. G. Falle^c, Heike Rutters^d, Auli Niemi^e, Yong Chun Zhang^f, Shaoyn Chen^f, Jacob Besnebat^g, Nilay Shah^h, Niall Mac Dowell^h, Christophe Proustⁱ, Regis Farretⁱ, Ioannis G. Economou^j, Dimitrios M. Tsangaris^j, Georgios C. Boulougouris^j, Jeroen Van Wittenberghe^k "School of Chemical Engineering, University College London, London WC1E 7JE, UK, bSchool of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK, Bundesanstalt für Geowissenschaften und Rohstoffe, 30655 Hannover, Germany, Uppsala University, 75105 Uppsala, Sweden, Dalian University of Technology, Dalian, People's Republic of China, Environmental and Water Resources Engineering Ltd., Heifa 34641, Israel, Centre for Environmental Policy, Imperial College London, UK, INERIS, Parc Technologique ALATA, Verneuil-en-Halatte BP 2, 60550, France, National Center for Scientific Research "Demokritos", Aghia Paraskevi, Attikis GR–153 10, Greece, OCAS NV, ArcelorMittal, Zelzate 9060, Belgium #### **Abstract** Presented is an overview of the CO_2QUEST project that addresses fundamentally important issues regarding the impact of typical impurities in the gas or dense phase CO_2 stream captured from fossil fuel power plants on its safe and economic transportation and storage. Previous studies have mainly investigated the impact of CO_2 stream impurities on each part of the carbon capture and storage (CCS) chain in isolation. This is a significant drawback given the different sensitivities of pipeline, wellbore materials and storage sites to the various impurities. The project brings together leading researchers and stakeholders, to address the impact of the typical impurities upon safe and economic CO_2 transportation and storage. State-of-the-art mathematical models, backed by laboratory and industrial-scale experimentation, are implemented to perform a comprehensive techno-economic assessment of the impact of impurities upon the thermo-physical phenomena governing pipeline and storage-site integrities. © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the Organizing Committee of GHGT-12 Keywords: CCS; impure CO₂; thermodynamics; techno-economic assessment; multi-phase modelling; experimental measurement; pipeline ^{*} Corresponding author. Tel.: +44 207 679 3809. E-mail address: solomon.brown@ucl.ac.uk #### 1. Introduction The ultimate composition of the CO₂ streams captured from fossil fuel power plants and other CO₂ intensive industries and transported to a storage site using high pressure pipelines will be governed by safety, environmental and economic considerations. So far, most studies performed on this topic have been limited in scope, primarily focusing on investigating the impact of the CO₂ stream impurities on each part of the carbon capture and storage (CCS) chain in isolation. This is a significant drawback given the markedly different sensitivities of the pipeline, wellbore materials, and storage sites to the various impurities. For example, trace elements such as lead, mercury and arsenic in the CO₂ stream are of far greater concern in an aquifer storage site than compared to the pipeline given the risk of water table contamination. On the other hand, even small concentrations of water in the CO₂ stream are detrimental to the pipeline due to corrosion, but of benefit even at high concentrations during storage given the immobilisation effect of water on CO₂. It is clear, therefore, that the optimum composition and concentration of the impurities in the captured CO₂ stream involves a delicate balance between the different requirements within the CCS chain, spanning capture, transportation and storage, with cost and safety implications being the over-arching factor. CO₂QUEST brings together key partners from the EC FP7 CO₂PipeHaz (CO₂ pipeline transportation) and MUSTANG (CO₂ geological storage) projects [1, 2], as well as other leading researchers and major stakeholders, to address the important and urgent issues regarding the impact of typical impurities in the gas or dense phase CO₂ streams captured from fossil fuel power plants on its safe and economic transportation and storage. The present paper describes the main objectives, methodology and some recent findings of the CO2QUEST project. In particular, Section 2 defines the project scope and methodology, Section 3 characterizes the CO₂ stream impurities and their physical properties, Sections 4 and 5 are focused upon the project's analysis of the impacts of CO₂ stream impurities on the pipeline transportation/compression and storage, whilst the methodology of the techno-economic and risk assessment are presented in Section 6, which is followed by conclusions in Section 7. ### 2. Project Methodology The CO₂QUEST project involves the determination of the important CO₂ mixtures that have the most profound impact upon the pipeline pressure drop, compressor power requirements, pipeline propensity to ductile and brittle facture propagation, corrosion of the pipeline and wellbore materials, geochemical interactions within the wellbore and storage site, and ensuing health and environmental hazards. Based on a cost-benefit analysis and whole system approach, the project will provide recommendations for tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure thus contributing to the development of relevant standards for the safe design and operation of CCS. The CO₂QUEST project has five technical Work Packages (WP). Fig. 1 gives a schematic representation of the WPs relationship to the CCS chain. In particular, in WP1 the fluid properties and phase behaviour are characterised Fig 1. Schematic representation of the CCS chain, highlighting the different Work Packages in the $\rm CO_2QUEST$ project. for CO₂ streams from different capture technologies. This work package provides the thermodynamic and physical properties data needed for the models to be developed under WP2 and WP3, focused on CO₂ pipeline transport (WP2) and CO₂ storage reservoir integrity performance (WP3). The latter work packages seek to generate validated modelling methods and tools for the assessment of pressure drop, compressor power, pipeline design and well design in the presence of impurities. In turn, these models will be utilized in WP4 to assess the techno-economic impact of common impurities. WP5 will demonstrate the usefulness of the tools by identifying potential environmental and health hazards. ## 3. CO₂ Streams Composition Given the number of potential sources for CO₂, both from the power and non-power sectors, it will be necessary to consider in the cost-benefit analysis of CCS the CO₂ source and also the capture technology with which it will be matched. There are three main options for the decarbonisation of electricity generation: pre-combustion, post-combustion and oxy-fuel combustion. Whilst both pre-combustion and post-combustion technologies typically produce a CO₂ stream which is in excess of 98% pure, oxy-fuel combustion technologies can produce a CO₂ stream where the composition varies in the range of 74 to 99 vol%. This is illustrated in Table 1 [3] below. In view of the above, and given the importance of accurate modelling of the thermodynamic properties and phase behaviour of CO₂ mixture properties, an extensive literature review of experimental data available for the properties of CO₂ mixtures with the impurities highlighted has been carried out. The review covered the vapour-liquid equilibria (VLE), volumetric and derivative thermodynamic properties and transport properties. As a result, knowledge gaps for the majority of CO₂ mixtures with impurities and properties of interest to CCS technology were identified. In particular, it was found that for binary CO₂ mixtures little data is available on derivative thermodynamic properties and transport properties, while the only property extensively studied in the literature is the VLE pressure of saturation as depicted in Fig. 2. As the complexity of the mixtures increases in terms of the number of components and conditions, the data become scarcer. In fact, the experimental data for isothermal compressibility found for the system CO₂-N₂-CH₄-H₂ [4], as well as the phase envelope, density, and viscosity for the system CO₂-N₂-O₂-Ar [5], are the most complex cases of CO₂ mixtures with gases that exist in the literature. Table 1. Summary of CO₂ impurities from different capture technologies [3]. | | Oxy-fuel Combustion | | | D 1 (| D | |-----------------------------|---------------------|-----------------|--------------|----------------|-----------------| | | Raw/ dehumidified | Double flashing | Distillation | Pre-combustion | Post-combustion | | CO ₂ % v/v | 74.8-85 | 95.8-96.7 | 99.3-99.4 | 95-99 | 99.6-99.8 | | O ₂ % v/v | 3.21-6 | 1.05-1.2 | 0.01-0.4 | 0 | 0.0035-0.015 | | N_2 % v/v | 5.8-16.6 | 1.6-2.03 | 0.01-0.2 | 0.0195-1 | 0.045-0.29 | | Ar % v/v | 2.3-4.5 | 0.4-0.61 | 0.01-0.1 | 0.0001-0.15 | 0.0011-0.021 | | NO _x / ppmv | 100-709 | 0-150 | 33-100 | 400 | 20-38.8 | | SO ₂ / ppmv | 50-800 | 0-4500 | 37-50 | 25 | 0-67.1 | | SO ₃ / ppmv | 20 | - | 20 | - | | | H ₂ O / ppmv | 100-1000 | 0 | 0-100 | 0.1-600 | 100-640 | | CO / ppmv | 50 | - | 50 | 0-2000 | 1.2-10 | | H ₂ S/COS / ppmv | | | | 0.2-34000 | | | H ₂ / ppmv | | | | 20-30000 | | | CH ₄ / ppmv | | | | 0-112 | | Fig. 2. Range of conditions of data for binary VLE data [6]. ## 4. CO₂ Compression and Transport Minimising the pressure drop and avoiding two-phase flows in CO₂ pipeline networks are essential for reducing compressor power requirements. This is critically important given that the compression penalty for CO₂ capture from coal-fired power plants is estimated to be as high as 12% [7]. In the past, three main options for compression of CO_2 from gas to supercritical pressures have been recommended for a pure CO_2 stream, including those using conventional multistage centrifugal compressors (option A), supersonic axial compressors (option B) and compressors combined with liquefaction followed by pumping (option C). Amongst these, option C was found to be the most efficient [8] and practically attractive, since pumping of a liquid is less energy demanding than gas-phase compression, whilst the relatively high boiling point of pure CO_2 (ca 20 °C at 60 bar) allows using utility streams for the liquefaction process. Supersonic shock-wave compressors can be used for compression of large amounts of fluid, and have the benefit of lower capital costs than traditional centrifugal compressors. In the case of industrial-grade CO₂, however, the presence of impurities is inevitable and hence the choice of strategy and costs associated with compression will depend on the physical properties of the particular CO₂ mixture, such as fluid compressibility, density and saturation data. Fig. 3 illustrates the impact of impurities on the phase envelope for differing mixtures of compositions as defined in Table 1, in addition to pure CO₂. It can be observed Fig. 3. Boundaries of VLE region in pressure-temperature phase diagram for pure CO_2 and oxy-fuel, pre- and post-combustion CO_2 mixtures calculated using the Peng-Robinson equation of state. Fig. 4. The thermodynamic paths for compression of pure CO₂ (a), and CO₂ mixtures from oxy-fuel (b) using compression and pumping with subcritical liquefaction. that the saturation pressures for oxy-fuel and pre-combustion mixtures diverge significantly from the saturation pressure for pure CO₂ and post-combustion mixtures. The compression work, and hence the penalty incurred by the presence of impurities, has been calculated for the above-mentioned compression options and CO_2 stream compositions of Table 1. As an example, Fig. 4 shows the thermodynamic paths of four-stage compression with intercooling relative to the phase envelopes for pure CO_2 (a) and oxy-fuel (b) mixtures, whilst Fig. 5 shows the power consumption for each compression strategy (options A-C) for mixtures indicative of all capture technologies. In agreement with the data published in the literature, the study shows that the integration of the multi-stage compression with liquefaction and pumping can greatly decrease the total power consumption (combining the power of compression and inter-cooling) as compared to conventional gas-phase compression. This option is particularly attractive for compression of almost pure CO₂, when liquefaction can be achieved using utility streams at 20 °C for post-combustion mixture of purity 99.46 vol%, and 8 °C for pre-combustion mixture (CO₂ purity about 98 vol%). At the same time, the cryogenic temperatures required for liquefaction of oxy-fuel CO₂ stream carrying 74-85 vol% of impurities (Table 1), may require use of extra power for refrigeration. Clearly, such information forms the foundation for practical optimization of CO₂ compression, which should be performed not in concert with other processes involved in CCS chain, such as the CO₂ capture and transport. ## 5. CO₂ Storage Reservoir Integrity Performance For the successful application of CCS technologies, it is critically important to understand the effects of impurities upon the performance of geological CO₂ storage operations. Various aspects of these processes are being studied, including fluid/rock interactions, leakage of trace elements, and their impacts upon the subsurface environment. Laboratory and field-scale experiments are to be performed to assess the impact of impurities in the Fig. 5. Power demand for multistage compression (options A, B, and C) of pure CO₂, oxy-fuel (raw/dehumidified), pre- and post-combustion streams (Table 1). Fig. 6. Predicted pH levels for pure CO₂ (left), 2% SO₂ (middle) and 4% SO₂ (right) after 1 year (top) and after 10 years (bottom) at a height of 20 meters from the bedrock. $\mathrm{CO_2}$ stream on rock properties and its subsequent migration behaviour, and the overall effects upon the storage performance and caprock integrity. A significant component of the work will be a field scale injection experiment at Heletz, Israel [2], where $\mathrm{CO_2}$ will be co-injected with impurities and the effects analysed. Simultaneously, numerical models are being developed to understand the physical and chemical processes involving impure $\mathrm{CO_2}$ more clearly, and in particular, the multiphase fluid phenomenon of $\mathrm{CO_2}$ spreading/trapping and the acidic chemical environment induced by impurities. In the case of injection of impure CO_2 , critical processes for the subsurface CO_2 injection are those which possibly exert negative impacts on the environment. CO_2 injection could lead to geochemical alteration and geomechanical deformation of the caprock, and alter its sealing capacity [9]. Co-injection of acidic species such as H_2S , SO_x and NO_x enhances the solubility of many minerals including those containing significant concentrations of hazardous trace elements such as As, and Pb. In the event of release with CO_2 , they are likely to exacerbate the impact upon groundwater quality by the formation of strong metal-sulfide complexes [10, 11]. Also supercritical CO_2 is itself an excellent solvent for toxic organic compounds such as benzene, which can potentially be mobilized through the occurrence of a leak [12]. Impurities can also have a geochemical impact in a CCS scenario where CO_2 is injected for storage in a deep brine geological formation. Depending upon the CO_2 capture process, the injected CO_2 may contain various compositions of residual O_2 , SO_x , NO_x and inert gases. It is of interest to determine the environmental impact resulting from the inclusion of SO_2 in the CO_2 stream, and given the environmental and human health benefits of controlling SO_2 emissions [13], it may be economically advantageous to dispose of SO_2 together with the CO_2 . The impact of the injection of CO_2 with an impurity level of 2 vol% and 4 vol% SO_2 - CO_2 has been investigated using a mathematical modelling method. The model was developed using the PHREEQC software to evaluate the sulfate ion distribution, and also the PFLOTRAN code to predict the fate of the injection streams of SO_2 - CO_2 and SO_2 (aq) in the target storage reservoir. This model estimates the highest impact obtained by the presence of a significant amount of SO_2 in the injection stream. Fig. 6 shows the pH level at the ceiling of the reservoir, where the ceiling height is 20 m above the base. For the studied case of an injection period of one week, the influence on the pH level is noticeable adjacent to the injection well, but its impact is insignificant near the reservoir ceiling. In the case of long term injection of pure and impure CO₂ streams, a significant impact upon the pH level is observed. In addition, since corrosive water, having a low pH level, can induce changes in the physical properties of the caprock, this model can serve as the basis for investigations of the effect of SO₂ impurity on the impervious cap. ## 6. Techno-economic Analysis and Risk assessment For the techno-economic assessment of highly complex and inter-dependent CCS systems carrying impure CO_2 streams, a state-of-the-art methodology is being developed in WP4 of the project. The methodology uses a multi-scale, whole-systems treatment of the operation of a CO_2 capture and transport network with a view to identifying and quantifying the cost, operability and safety trade-offs that invariably exist within a network of this kind. The methodology will make use of the findings in WPs 1-3, and aims to gain an understanding of how the potential impurities may propagate in a simple linear systems and more complex collective and distributive CCS chains. The approach takes into account the chemistry implicit in mixing CO_2 rich streams from several sources, and also potential interactions between these mixtures and the pipeline materials and indeed during injection and storage. In order to explore and quantify inherent trade-offs between the different components of the system, whole-system performance measures will be used. These will be backed up with a fit-for-purpose, model-based integrated assessment methodology [14], which is being designed using the concepts of operational envelopes and design spaces [15]. Whilst the costs of CO_2 capture depends to some extent on the desired purity of CO_2 there are benefits that come of improved purity on the performance of the transport and injection/storage system. It is therefore important to understand the relative costs and benefits associated with CO_2 purity in a CCS system. Therefore for the identified feasible operational envelopes, the cost-benefit trade-offs between the production of a high-purity stream of CO_2 (with associated high capture cost, but lower transport costs and complications) and the production of a less pure stream of CO_2 (with lower capture costs, but commensurately higher transport costs). The cost model will be developed based on the results of modelling of CO_2 compression, transport and storage in WPs 1-3 and will incorporate a 'safety and impact tool' for the qualitative assessment of industrial and environmental risks associated with CCS which is the focus of WP5. ## 7. Conclusions The cost of CO₂ capture plants will increase with increases in the required degree of purification of CO₂. In contrast, pipeline transportation and storage costs increase with a decrease in the CO₂ purity. Clearly the optimum CO₂ purity requires a trade-off between these two requirements. Based on a cost-benefit analysis and whole system approach, validated mathematical models developed and realistic-scale CO₂ pipeline transportation and storage experiments conducted as part of the CO₂QUEST project, predictions and results will be employed to provide recommendations for CO₂ purification levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS. The methods and tools developed in the project will allow industry and other stakeholders involved in the implementation of CCS schemes to improve operational safety and safeguard members of the public and operators from the consequences of CO₂ leaks from transportation pipeline networks and geological CO₂ storage formations. Sharing the knowledge generated in the project with industrial and public sectors is expected to facilitate the safe and commercially advantageous deployment of CCS, as a key technology which enables exploitation of fossil fuel reserves, including coal, in Europe and the rest of the world without adding to greenhouse gas emissions. ## Acknowledgements The research leading to the results described in this paper has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102. The paper reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained herein. #### References - CO₂PipeHaz. Quantitative Failure Consequence Hazard Assessment for Next Generation CO₂ Pipelines: The Missing Link, 2009. Accessed 03/12/13; Available from: http://www.co2pipehaz.eu/. - [2] MUSTANG. A Multiple Space and Time Scale Approach for the Quantification of Deep Saline Formations for CO₂ Storage, 2011. Accessed 03/12/13; Available from: http://www.co2mustang.eu/. - [3] Porter RTJ, Fairweather M, Pourkashanian M, Woolley RM. The Range and Level of Impurities in CO₂ Streams from Different Carbon Capture Sources. Int. J. Greenh. Gas Con. 2014; submitted. - [4] Alsiyabi I, Chapoy A, Tohidi B. Effects of Impurities on Speed of Sound and Isothermal Compressibility of CO₂-rich Systems. in 3rd International Forum on the Transportation of CO₂ by Pipeline, Gateshead, UK, 2012. - [5] Chapoy A, Nazeri Ghojogh M, Kapateh MH, Burgass RW, Coquelet C, Tohidi Kalorazi B. Effect of Impurities on Thermophysical Properties and Phase Behaviour of a CO₂-rich System in CCS. Int. J. Greenh. Gas Con. 2013; 19: 92-100 - [6] Diamantonis NI, Boulougouris GC, Mansoor E, Tsangaris DM, Economou IG. Evaluation of Cubic, SAFT, and PC-SAFT Equations of State for the Vapor-liquid Equilibrium Modeling of CO₂ Mixtures with other Gases. Ind. Eng. Chem. Res. 2013; 52: 3933-3942. - [7] Moore JJ. Novel Concepts for the Compression and Transport of Large Volumes of CO₂. in RPSEA CO₂ Operations and Opportunities to Advance Technology for Mature Fields Forum. 2009, RPSEA: Austin, USA. - [8] Witkowski A, Rusin A, Majkut M, Rulik S, Solecka K. Comprehensive Analysis of Pipeline Transportation Systems for CO₂ Sequestration. Thermodynamics and Safety Problems. Energ. Convers. Manage. 2013; 76: 665-673. - [9] Xu T, Zheng L, Tian H. Reactive Transport Modeling for CO₂ Geological Sequestration. J. Petrol. Sci. Eng. 2011; 78: 765-777. - [10] Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT. Evaluation of Potential Changes in Groundwater Quality in Response to CO₂ Leakage from Deep Geologic Storage. Transport Porous Med. 2010; 82: 215-246. - [11] Battistelli A, Marcolini M. TMGAS: A New TOUGH2 EOS Module for the Numerical Simulation of Gas Mixtures Injection in Geological Structures. Int. J. Greenh. Gas Con. 2009; 3: 481-493. - [12] Span R, Wagner W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996; 25: 1509-1596. - [13] Chestnut LG, Mills DM. A Fresh Look at the Benefits and Costs of the US Acid Rain Program. J. Environ. Manage. 2005; 77: 252-266. - [14] IEA, CO₂ Capture & Storage. in IEA Energy Technology Essentials. 2006, IEA. - [15] Samsatli NJ, Sharif M, Shah N, Papageorgiou LG. Operational Envelopes for Batch Processes. AIChEJ. 2001; 47: 2277-2288.