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Abstract:

Background - Observational studies report that secretory phospholipase A2 (sPLA2) activity is a

marker for CHD risk, and activity measures are thought to represent the composite activity of 

sPLA2-IIA, -V and -X. The aim of this study was to use genetic variants of PLA2G10, encoding 

sPLA2-X, to investigate the contribution of sPLA2-X to the measure of sPLA2 activity, and 

coronary heart disease (CHD) risk traits and outcome.

Methods and Results - Three PLA2G10 tagging SNPs (rs72546339, rs72546340, rs4003232) 

and a previously studied PLA2G10 cSNP rs4003228, R38C, were genotyped in a nested case: 

control cohort drawn from the prospective EPIC-Norfolk Study (2175 cases and 2175 controls). 

Meta-analysis of rs4003228 (R38C) and CHD was carried out using data from the Northwick 

Park Heart Study II and two published cohorts AtheroGene and SIPLAC, providing in total an 

additional 1884 cases and 3119 controls. EPIC-Norfolk subjects in the highest tertile of sPLA2 

activity were older and had higher inflammatory markers compared to those in the lowest tertile 

for sPLA2 activity. None of the PLA2G10 tSNPs nor R38C, a functional variant, were

significantly associated with sPLA2 activity, intermediate CHD risk traits or CHD risk. In meta-

analysis the summary OR for R38C was OR=0.97 (95%CI 0.77-1.22).

Conclusions - PLA2G10 variants are not significantly associated with plasma sPLA2 activity or 

with CHD risk.

Key words: coronary heart disease risk, genetic polymorphism, sPLA2 activity, PLA2G10
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Introduction

Observational studies have identified secretory phospholipase A2 (sPLA2)-IIA mass/levels,

measured by a specific ELISA, as a marker for CHD risk 1, with elevated levels associated with 

an increased risk of CHD events 2-4.  In the prospective EPIC-Norfolk study, comparing the 

prognostic ability of sPLA2-IIA levels with sPLA2 activity, sPLA2 activity appeared to be the 

better risk predictor, independent of circulating sPLA2-IIA levels 5-6. This raised the possibility 

that sPLA2 activity was a composite measure of all secreted sPLA2s, including sPLA2-IIA, -V

and -X and possibly -III 7 providing additional association over and above that of sPLA2-IIA 

levels alone. However, there is now supporting evidence that it is only sPLA2-IIA that is 

strongly induced under pathologic conditions associated with inflammation, tissue injury or 

infection, and there seems to be little evidence that other sPLA2 isoforms are present in the 

circulation 8,9. 

The proatherogenic role of sPLA2-IIA (PLA2G2A) and sPLA2-V (PLA2G5) is supported 

by animal studies showing increased susceptibility to atherosclerosis in sPLA2-IIA (Pla2g2a) 

10,11 and sPLA2-V (Pla2g5) transgenic mice 12. Thus by extrapolation sPLA2-X, as the most 

potent of the three sPLA2s in hydrolysing the most abundant phospholipid phosphotidylcholine 

(PC), 13 could also be considered to be pro-atherogenic and indeed it has been shown that 

PLA2G10 enhances foam cell formation in vitro by promoting atherogenic LDL formation 14.

Transgenic mice over-expressing Pla2g10 have been shown to die neonatally due to severe lung 

pathology, suggesting a role for sPLA2-X over-expression in inflammatory airway diseases 15.   

The ELISA assay to measure circulating sPLA2-IIA mass/levels is very specific to –IIA,

but no such assays exist to measure sPLA2-V or -X levels. At present, it is not possible to 

measure the individual contributions of these sPLA2s to plasma sPLA2 activity and the aim of 
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this study was to use genetics to investigate whether sPLA2-X does contribute to the measure of 

sPLA2 activity.  

Gora et al 16 identified 8 SNPs in PLA2G10, all in strong linkage disequilibrium with 

each other, amongst them a non-synonymous variant R38C (rs4003228). The substitution of 

cysteine for arginine at position 38 lies near an arginine doublet where the propeptide is cleaved.

In vitro protein expression studies led to the conclusion that R38C causes misfolding of sPLA2-

X resulting in a catalytically inactive and unstable enzyme 16. Without sPLA2 activity measures 

the study was unable to examine the relationship of R38C with sPLA2 activity. They also 

reported that R38C was not associated with CHD risk in their relatively small cohorts.  

 In the current paper we have taken this work forward and examined the association of the 

functional SNP, R38C and a number of PLA2G10 tagging (t) SNPs with sPLA2 activity, and 

CHD risk traits in the EPIC-Norfolk study, and with CHD events in meta-analysis of 3667 CHD 

cases and 4945 controls.  

Methods

Study populations

The EPIC (European Prospective Investigation into Cancer and Nutrition)-Norfolk study  is a 

prospective study of 25,663 men and women aged 45-79 years, resident in Norfolk, UK, 

recruited from age-sex registers of general practices in Norfolk between 1993 and 1997 and 

followed-up for around 6 years, excluding those reporting a history of heart attack or stroke. The 

design and methods of the study have been described in detail 17. The study was approved by the 

Norwich District Health Authority ethics committee and all participants gave signed informed 

consent.  A nested case: control cohort was drawn from this larger study. Cases were those 

identified as having CHD on follow-up if they had a hospital admission and/or died with CHD as 
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the underlying cause. Controls were free of disease and matched to cases by sex, age and 

enrolment time. A total of 2175 cases were matched to 2175 controls for the genotype analysis.

sPLA2 activity measures were available for 1200 cases and 1468 controls.  

Additional studies included in the meta-analysis of R38C and CHD risk 

The Northwick Park Heart Study II (NPHS-II) is a prospective study of 3012 healthy middle-

aged men aged 50–64 years at recruitment, sampled from nine UK general practices between 

1989 and 1994 18. Men were free from disease at the time of recruitment, and information on 

lifestyle habits, height, weight, blood pressure were recorded at baseline and on subsequent 

prospective follow-up. A DNA repository was established using samples from 2775 men 

obtained at the time of recruitment. Full details of recruitment, measurements, follow-up and 

definitions of incident disease have been reported elsewhere 18. We included published data from 

AtheroGene and SIPLAC 16 in the meta-analysis of R38C on CHD.

Biochemical analysis for EPIC-Norfolk Study

Blood samples were stored at -80°C at the Department of Clinical Biochemistry, University of 

Cambridge. Serum levels of total cholesterol, high-density lipoprotein cholesterol, and 

triglycerides were measured on fresh samples with the RA 1000 (Bayer Diagnostics, 

Basingstoke, UK), and low-density lipoprotein cholesterol (LDL-C) levels were calculated with 

the Friedewald formula. Serum sPLA2 activity was measured by a selective fluorometric assay 5

by using fluorescent substrate 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3 

phosphomethanol, sodium salt (Interchim, Montluçon, France), as previously described 6. One 

hundred percent hydrolysis of the fluorescent substrate was measured using 0.1 U sPLA2 from 

bee venom (Sigma Chemical Co). The hydrolysis of substrate in the absence of plasma was used 

as negative control and deduced from sPLA2 activity. All samples were tested in duplicate and 
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plasma activity was expressed as nmol/min per mL. The minimum detectable activity was 0.10 

nmol/min per mL. Plasma concentrations of CRP were measured with a sandwich-type enzyme-

linked immunosorbent assay as previously described 19. Results were related to a standard

consisting of commercially available CRP (Behringwerke AG, Marburg, Germany). The lower 

detection limit was 0.1 mg/L.

Genotyping

We identified 10 tagging SNPs in PLA2G10 using the STRAM algorithm 20. Seven of these 

tSNPs occurred at very low frequencies and were not taken forward. We genotyped EPIC-

Norfolk for three tSNPs, rs72546339, rs72546340 and rs4003232 and also included in our study 

the previously reported cSNP rs4003228 (R38C) 16. Rs72546339 and rs72546340 were 

genotyped using TaqMan technology (Applied Biosciences, ABI, Warrington UK). Reactions 

were performed on 384-well microplates and analysed using ABI TaqMan 7900HT software. 

Rs4003228 and rs4003232 were determined by nested PCR amplified from a single large 

fragment encompassing both variant sites, with primers Forward: 5’-

GCGTGACCTGCCACACCTATG-3’ and Reverse: 5’-TTCACTGGCCATGTTATCC-3’. 

Rs4003228 was determined using the following internal primers (Forward: 5’-

GAGGAAACCAAGGCCCAGAGAGG-3’ and Reverse: 5’-TGCCACTTCCAGGATCCCACG-

3’), and genotype was assessed by Bsa AI digestion, yielding fragments of 220, 186 and 34 bp; 

common allele generating 186 and 34 base pairs in length, and rare allele generating the large 

fragment. rs4003232 genotype was determined using internal primers (Forward: 5’-

CCCAGCCGGATTATAATA-3’ and Reverse: 5’-GCATGAGCCTGAGAAGAGCCA-3’) 

followed by  Alu I digestion yielding fragment sizes of 216, 150 and 66 bp; common allele 

generating 150 and 66 base pairs in length, and rare allele generating the large fragment. 

We genotypyped EPIIIIC-C-CC
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Fragments were resolved using MADGE (Microtitre Array Diagonal Gel Electrophoresis) gels 

21. NPHSII was genotyped for rs4003228 (R38C) alone.

PLA2G10 mRNA expression in the ASAP Study and BiKE

Data from the Advance Study of Aortic Pathology (ASAP) was used to determine the mRNA 

expression levels for PLA2G10 in mammary artery, aortic media, aortic adventitia, liver and 

heart tissues. ASAP recruited 223 patients undergoing aortic valve surgery at the Karolinska 

University Hospital, Stockholm Sweden 22. Tissue biopsies were taken from liver, mammary 

arteries and dilated and non-dilated ascending aorta and heart during surgery. The medial and 

adventitial layers of the vascular specimen were isolated by adventectomy, and incubated with 

RNAlater (Ambion, Austin, Texas, USA) and homogenised for mRNA extraction as previously 

detailed 22. Affymetrix Gene Chip Human Exon 1.0 ST expression arrays were used. mRNA 

expression was evaluated using RMA pre-processing as previously described 22. Briefly, the 

paper proposes to apply a quantile normalization which is an approach to make the hybridization 

intensity distribution of the probes in all arrays the same. The essence is that each gene is 

assigned a value that indicates its expression relative to all other genes. Participants were 

genotyped using the Illumina Human 610W-Quad Bead array 22.

 Human carotid endarterectomy samples from 127 patients undergoing surgery for 

asymptomatic or symptomatic carotid stenosis were part of Biobank of Karolinska 

Endarterectomies (BiKE) study 23. 

All samples were collected with consent from patients, organ donors or organ donors' 

guardians. The Ethical Committee of Northern Stockholm approved the study. RNA, extracted 

from endarterectomy and control specimens, was analysed by Affymetrix HG-U133 plus 2.0 

Genechip arrays. Robust multi-array average (RMA) normalization was performed and
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processed gene expression data was returned in a log2-scale. 

Statistical analysis 

The analysis was performed using Stata version 13.1 (StataCorp, Texas). 

Summary statistics of the baseline characteristics were presented by tertile of sPLA2

activity and p values for trend obtained from linear regression models. Variables were log-

transformed where necessary to give a normal distribution. For these variables summary 

statistics were back-transformed from the log scale to give the geometric mean and approximate 

standard deviation (SD). Geometric means and approximate SDs were also presented for sPLA2

activity by genotype. Linear regression was used to obtain beta coefficients and standard errors 

for the additive genetic model (both unadjusted and adjusted for age and gender) along with p

values for trend. Adjustment was made for age and gender by including them as covariates in the 

model. Linear regression was also used to assess the effect of genotype on intermediate traits. 

Association with CHD risk was determined by unconditional logistic regression analysis to 

obtain results consistent with those from the published studies. An additive genetic model was 

used. Results were adjusted for age and gender. Results from EPIC-Norfolk were then combined 

with those from NPHSII and the published studies SIPLAC and AtheroGene 16 using  fixed 

effects meta-analysis to examine the association of rs4003228 (R38C) with CHD risk. 16. For 

eQTL studies, association was calculated using an additive linear model in which the genotypes 

were numerically encoded as 0, 1, and 2. 

Results

The basic characteristics of the EPIC-Norfolk case-control cohort, by tertiles of sPLA2 activity 

are presented in Table 1. Compared to the lowest tertile of sPLA2 activity, those in the highest 

tertile were older, and had higher body mass index (BMI), blood pressure (both systolic and 
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diastolic), circulating cholesterol, LDL-cholesterol, triglycerides, CRP and sPLA2 mass levels

and lower HDL-cholesterol levels.

PLA2G10 gene variants and sPLA2 activity and intermediate traits

We genotyped the EPIC-Norfolk cohort for four PLA2G10 SNPs (rs4003232, rs4003228, 

rs72546339 and rs72546340). All genotypes were in Hardy-Weinberg equilibrium and their 

minor allele frequencies are given in Table 2. In EPIC-Norfolk, none of the variants, including 

the functional rs4003228 (R38C) which was postulated to affect sPLA2-X activity 16, showed an 

association with sPLA2 activity (additive genetic model using linear regression), but rs4003232 

alone showed association with HDL-cholesterol and CRP levels (Supplementary data). 

PLA2G10 R38C and CHD risk

We then concentrated on the cSNP rs4003232 (R38C). Meta-analysis was carried out on data 

from EPIC- Norfolk, NPHSII, SIPLAC and AtheroGene studies using fixed effects meta-

analysis. The summary odds ratio was 0.97 (95%CI 0.77-1.22) (Figure 1).  

PLA2G10 mRNA expression in ASAP and BiKE

We tested the potential allele-specific expression of PLA2G10 in the tissues available in the 

ASAP study, namely liver, mammary arteries, dilated and non-dilated ascending aorta and heart, 

from 223 patients undergoing aortic valve surgery. Overall mRNA expression of PLA2G10 was 

very low when compared to that of PLA2G2A and PLA2G5, as illustrated by expression in the 

aortic adventitia, as an example (Figure 2). In addition, compared to PLA2G2A 24 and PLA2G5 25

where differential mRNA expression of lead SNP reached p=8.71 x 10-19 and 5.1 X 10-6,

respectively, differential expression of PLA2G10 was ~1x10-1.5 (Figure 3). None of our selected 

SNPs of interest were present on the ASAP arrays and a limitation of these results is that only a

small number of PLA2G10 specific SNPs were available on the array 22.
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The BiKE study, examining RNA expression in carotid endarterectomy samples from 

127 individuals, enabled us to examine expression levels of PLAG10 in diseased tissue compared 

to controls, and PLA2G10 expression levels were similar between control and carotid 

endarterectomy samples (data not shown), but as with tissue from ASAP, expression levels of 

PLA2G10 were very low, suggesting that PLA2G10 is weakly expressed in these samples (Figure 

3).

Discussion

We have had a long standing interest in the sPLA2 enzymes 26,27 since they were identified as 

potential risk markers for CHD both from animal studies 10-12 and observational analyses. The 

aim of the present study was to investigate the contribution of sPLA2-X to the complex measure 

of sPLA2 activity, a marker of CHD risk 28, by examining the association of PLA2G10 variants

with sPLA2 activity. We also aimed to extend the work of Gora et al 16 examining, through 

meta-analysis, the association of PLA2G10 SNPs with CHD risk.

sPLA2 activity is not a widely available measure. For this reason we chose to study a

CHD nested case-control set drawn from the EPIC-Norfolk cohort 3, with available measures of 

sPLA2 activity 5. sPLA2 is considered to be pro-inflammatory, by generating arachidonic acid 

which is a precursor of the inflammatory eicosanoid pathway 29. Indeed it was evident that EPIC-

Norfolk participants in the top tertile of sPLA2 activity had a poorer CHD risk profile than those 

in the lowest tertile; they were older, had a higher BMI, a worse lipid profile and increased levels 

of inflammatory markers CRP and sPLA2-IIA mass/ levels.  

 Rs4003228 (R38C) was identified as a functional SNP which could strongly affect 

sPLA2-X activity 16. The functional analysis of this SNP suggested that the synonymous arginine 

to cysteine change at codon 38 had a large impact on sPLA2-X activity in vitro with the extra,

 they y y y wewewewerererere iiiidedededentntntntififii ieieii ddd d 

sk markers for CHD both from animal studies and observational analyses T

p e

a i

2 h

sis,

sk mararkekekers ffforr CCCHD both from animal stududies and obseseervational analyses. T

prrresssent study y waawas s tttto iiinvvnvesese tititigagagatete thhe cccoontribibutioioion ofofoof sPLPLPLP A2A2A22-XXX too thththt e e cococompmpmplelelel x xx memm

actiiivivivivitytytyy,,,, aaa a mamamam rkrkrkerererer ooof CCHCC DDD D ririririsssskkkk 28888,,, bybybyby eeexaxaxaammimm ninnn ngngngn tttthehehh  asasasa sososoociciciciaata ioioioion ofofofof PLPLPLLA2A2A2A2G1G1G1G 0000 vavavari

2 activity. We aaaalslslslsooo aaaaimimmmededede tttoooo exexextetetetendndndd ttttheheheh wwworororrkkk k oof GGGGorororraaaa etet aaaall ll 1616166 eeexaxaxaamimmm ning, through

sssisis,, ththee asassosociciatattioiionn ooff PLPLPLPLA2A2A22G1G1G1G 0000 SNSNSNPsPsP wwititi h hh CHCHCHDDD ririi ksksk..

 at University College London (ucl) / England on January 20, 2015http://circgenetics.ahajournals.org/Downloaded from 

http://circgenetics.ahajournals.org/


DOI: 10.1161/CIRCGENETICS.114.000633

11

unpaired cysteine residue resulting in ~95% decrease in sPLA2-X protein in the cell supernatant

of the fibroblast-like cell line (COS cells) and ~85% decrease in the cell lysate. We were able to 

examine whether this SNP had an effect on sPLA2 activity in vivo. If sPLA2-X was indeed 

contributing to the overall measure of sPLA2 activity then we anticipated that the functional SNP 

R38C should show association with sPLA2 activity. Yet we found no association of R38C or the 

other 3 PLA2G10 tSNPs with sPLA2 activity. In addition to sPLA2-X, sPLA2 activity has been

considered to result from the combined activity of sPLA2-IIA and sPLA2-V. We previously 

reported the association of PLA2G2A functional SNP, rs11573156, with sPLA2 activity 24,30, but 

we were unable to ratify the contribution of sPLA2-V to the overall activity measure using 

genetic variants of PLA2G5 25. From this we conclude that sPLA2-V and -X play a very minor 

role, if any, to the measure of plasma sPLA2 activity.

We analysed the association of the 4 PLA2G10 gene variants with a range of 

cardiovascular risk factors in EPIC-Norfolk. We studied anthropometric measurements (BMI, 

SBP and DBP), circulating cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides, and

inflammatory markers (sPLA2, CRP), and we could not find an association with any 

intermediate CHD trait. This was in agreement with the findings Gora et al 16.   

 To examine the expression of PLA2G10 we made use of data from the ASAP study. 

Expression of PLA2G10 across all available tissues was considerably lower than PLA2G2A and 

PLA2G5 expression, and no single PLA2G10 SNP on the array had an association with 

differential mRNA expression. This fits with results from Kudo et al showing sPLA2-X

expression was lower than sPLA2-IIA and -V in tissues such as the heart and liver 31. Our results 

do not reflect the expression of PLA2G10 in tissues associated with inflammation such as 

thymus, spleen, leukocytes, and airways as reported elsewhere 32,33. Although sPLA2-X has also 
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been identified in atherosclerotic plaques 34 mRNA expression levels of sPLA2-X in the carotid 

endarterectomy samples from the BiKE study were very low, raising doubt about the level of 

expression of sPLA2-X in plaques. 

 The meta-analysis of R38C and CHD risk, using data from EPIC-Norfolk, NPHSII and 

the two studies published by Gora et al, AtheroGene and SIPLAC 16, providing in total 3667 

cases and 4945 controls, yielded a summary OR of 0.94 (95%CI 0.75-1.19). Thus, there was no 

association of this functional variant with CHD. An interesting recent finding has suggested that 

sPLA2-X may not be pro-atherogenic. Ait-Oufella et al 35 reported that, contrary to expectation,

Ldlr-/- recipients mice receiving bone marrow derived macrophage from Pla2g10-/- donor mice 

displayed enhanced atherosclerosis, suggesting that sPLA2-X may in fact behave in an anti-

atherogenic manner in vivo, raising questions about the difference of in vitro and in vivo studies 

35.  

 Causality of a biomarker in the development of cardiovascular disease is a prerequisite 

for the clinical efficacy of a drug therapy targeting that biomarker. Drugs are often developed 

based on epidemiological observational data, despite the fact that association does not imply 

causality. Mendelian randomization (MR) makes use of genetics to overcome the two pitfalls of 

observational data, namely confounding and reverse causation. We have used this approach with 

both sPLA2-IIa 24 and sPLA2-V 25 and our analyses indicate that neither of these sPLA2 

enzymes are causal of CHD. However, the gold standard to test causality of a biomarker is the 

randomized control trial. Varespladib is a selective inhibitor of sPLA2 reported to have 

inhibitory effect against sPLA2 isoforms 36 with the aim of reducing cardiovascular events.

However, the recent results from the phase III trial of the varespladib, VISTA 16, show that in 

the setting of acute coronary syndrome, varespladib had no impact on the primary composite 
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outcome (a composite of cardiovascular mortality, nonfatal myocardial infarction, nonfatal 

stroke, or unstable angina) and increased the risk of MI 37. These results validated our PLA2G2A

MR 24. One of the suggestions put forward by Nicholls et al 37, concerning the failure of the 

inhibitor was that it might not only inhibit the pro-atherogenic effects of sPLA2-IIA and –V. 

Referring to, but taking into account the results from Ait-Oufella et al showing anti-atherogenic 

effects of sPLA2-X 35, the suggestion is that the inhibitor may at the same time reduce these anti-

atherogenic effects of sPLA2-X.     

One limitation of our study is that the STRAM method used to select PLA2G10 tSNPs 

may now be outdated by more recent algorithms and data from genome wide association studies, 

and many of the tSNPs we identified had very low MAFs, also in agreement with those 

identified by Gora et al by sequence analysis 16. R38C, although a functional SNP, has a MAF of 

only 0.03. Secondly our meta-analysis is powered to detect an odds ratio of CHD risk of 1.34 

with 80% power at the 5% significance level, whereas the result suggests if an effect was 

present, it would be of  smaller magnitude (likely to lie between 0.77 and 1.22). The low minor 

allele frequency of the R38C suggests that a larger cohort would be needed before firm 

conclusions can be drawn about the contribution of sPLA2-X to sPLA2 activity. The study is 

90% powered to detect a medium effect size (0.5 SDs of sPLA2 activity), but to detect a small 

effect size (0.2 SDs) would require 5116 participants in order to have 80% power at the 5% 

significance level. The observed effect size is just 0.01 SDs with a confidence interval of -0.16 to 

0.24. Thirdly, there has been the incorrect notion that all or most mammalian sPLA2s are 

induced during inflammation and can exist in the plasma. However, this is possibly only true for 

sPLA2-IIA and not the other sPLA2s 9,38, making it unlikely that sPLA2-X is a component of the 

plasma measure of sPLA2 activity, as supported by our results. 
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 Taking these results altogether, the rank order of the hydrolytic potency of various human 

sPLA2s, as evaluated by Electrospray Ionisation Mass Spectrometry is X > V > III > IIF > IIA, 

IIE for both LDL and HDL. This order appears to roughly correlate with the ability of these 

sPLA2s to interact with PC-rich vesicles and with PC-rich cellular plasma membranes 8,9.

However the expression level of sPLA2-IIA is considerably higher than those of other sPLA2s 

and it is the only sPLA2 isoform detected in the circulation of mammals (except mice) 9,38.

In conclusion, we conducted a genetic study to test the hypothesis that sPLA2-X

contributes to plasma measures of sPLA2 activity. Our results do not support this, and may 

reflect the current evidence that sPLA2-X is not active in the plasma. Furthermore our results do 

not support the hypothesis that sPLA2-X is associated with risk of CHD. 
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Table 1: Baseline characteristics of EPIC-Norfolk by sPLA2 activity tertiles

sPLA2 activity
(nmol/min per mL)

Tertile 1 <4.041 
N=891 

Tertile 2 4.042-4.856 
N=890 

Tertile 3 >4.856 
N=887 

P value 
(trend)

Variable Mean (sd) Mean (sd) Mean (sd)

Age (years)

BMI (kg/m2) 

SBP (mm Hg)

DBP (mm Hg)

Cholesterol (mmol/L)

LDL-C (mmol/l)

HDL-c (mmol/l)

Triglycerides (mmol/l)

CRP (mg/L)

sPLA2 mass (ng/mL)

sPLA2 activity (nmol/min/mL)

64.31 (7.73) 

25.93 (3.36) 

138.1 (17.7) 

82.9 (11.0) 

5.85 (1.01) 

3.91 (0.93) 

1.31 (0.36) 

1.36 (0.54) 

1.53 (1.82) 

7.92 (4.70) 

3.49 (0.47) 

64.38 (7.88) 

26.44 (3.56) 

138.6 (18.2) 

83.2 (11.1) 

6.23 (1.07) 

4.16 (0.98) 

1.28 (0.36) 

1.72 (0.76) 

1.71 (1.96) 

8.75 (5.18) 

4.43 (0.24) 

65.60 (7.53) 

27.10 (3.64) 

142.3(18.0) 

85.0 (11.7) 

6.72 (1.24) 

4.39 (1.09) 

1.22 (0.34) 

2.43 (1.21) 

2.35 (2.67) 

10.48 (6.32) 

5.82 (1.05) 

4.1x10-04

3.01x10-12

1.44x10-06

7.70x10-05

7.47x10-58

3.09x10-22

1.50x10-08

9.09x10-143

6.01x10-15

8.42x10-23

- 

All results are geometric mean (approx sd) except for age and LDL where results are presented as mean (SD)
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Table 2: Associations of PLA2G10 gene variations with sPLA2 activity

SNP EPIC

N 
sPLA2 activity geometric mean,
(nmol/min per mL)  
(approximate SD) 

MAF

rs72546340   

GG
GC
CC
B (se) *

P value * 

B (se) †

P value †

Genotype success rate (%)

2353 
148
2

4.49 (1.12) 
4.59 (1.05) 
3.97 (.09) 
0.018 (0.020) 
0.39 
0.017 (0.020) 
0.40 
94.5 

0.03 

rs72546339   

CC
CA
AA
B (se) *

P value * 

B (se) †

P value †

Genotype success rate (%)

2315 
251
9

4.49 (1.13) 
4.43 (0.96) 
4.25 (1.05) 
-0.016 (0.015) 
0.31 
-0.014 (0.015) 
0.35 
97.2 

0.05 

rs4003228  
(R38C)

CC
CT
TT
B (se) *

P value * 

B (se) †

P value †

Genotype success rate (%)

2113 
87
1

4.47 (1.12) 
4.41 (0.96) 
5.95 (0) 
-0.007 (0.027) 
0.80 
-0.010 (0.026) 
0.71 
94

0.02 

rs4003232   

TT
TC
CC
B (se) *

P value * 

B (se) †

P value †

Genotype success rate (%)

1435 
748
106

4.47 (1.06) 
4.49 (1.19) 
4.54 (1.22) 
0.005 (0.009) 
0.55 
0.005 (0.009) 
0.57 
97.3 

0.21 

All results are represented as geometric mean (approximate SD).
* unadjusted b coefficient and standard error (loge scale) from additive model with p values for trend. 
† age and gender adjusted b coefficient and standard error (loge scale) from additive model with p value 
for trend. 
MAF: mean allele frequency

0000 050

2

 

CACACAC
AA
B (se) *

P value * 

B B B B (s(s(s(se)e)e)) ††††

P value †

Genotype ssssucuucuccececeesssss rrrratatatateee (%(%(%%)))

251
99

4.43 (0.96) 
4.255 ((((1.1.1.1 05) ) ) ) 
-0.0001161 (((00.0 011155) 
0.313131 
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0.000 353535 
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Figure Legends:

Figure 1: Meta-analysis of PLA2G10 R38C (rs4003232) and risk of CHD  

Figure 2:  Expression value of all genes in the aortic adventitia, results from the ASAP study. 

PLA2G10 expression in aortic adventitia compared to PLA2G2A and PLA2G5. Each dot shows 

one gene, sorted by expression-rank on X-axis and log10-expression on Y-axis. The red-crosses 

indicate the expression of Y-chromosome genes in female samples and serves as basis for 

approximate absence cutoff, i.e. the horizontal line. 

Figure 3: Results from the ASAP study eQTL effect of all SNPs within 200 kb of PLA2G10 in 6 

different tissues. Each dot indicates the association of one SNP to PLA2G10, in tissue type as 

indicated by colour-code. X-axis show genomic location and Y-axis shows -log10(P) value of 

eQTL effect. Horizontal dashed line indicates P=0.001. No SNPs were significant at a false-

discovery rate of 0.05. 
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Overall  (I-squared = 0.5%, p = 0.389)

Study

SIPLAC

EPIC

NPHSII

Atherogene

N controls/N cases

317/312

1826/1783

2318/272

484/1299

0.97 (0.77, 1.22)

OR (95% CI)

0.60 (0.26, 1.38)

1.01 (0.73, 1.40)

1.25 (0.77, 2.03)

0.79 (0.48, 1.32)

0.97 (0.77, 1.22)

OR (95% CI)

0.60 (0.26, 1.38)

1.01 (0.73, 1.40)

1.25 (0.77, 2.03)

0.79 (0.48, 1.32)

p=0.78

1.5 2
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Supplemental table. Intermediate traits according to PLA2G10 SNPs in the EPIC-Norfolk nested case control cohort. 

rs72546340   N Age (years) BMI (kg/m2) SBP (mm Hg) DBP (mm Hg) CHOL (mmol/L) CRP (mg/L) sPLA2 mass (ng/mL)

GG 

GC 

CC 

P value * 

2394 

150 

2 

64.7 (7.7) 

65.2 (7.9) 

65.5 (3.5) 

0.646 

26.5 (3.5) 

26.6 (3.7) 

23.4 (3.8) 

0.91 

139.5 (17.9) 

139.2 (19.2) 

163.5 (0) 

1.00 

83.7 (11.2) 

82.6 (11.7) 

98.5 (0) 

0.35 

6.26 (1.16) 

6.23 (1.16) 

4.54 (1.68) 

0.42 

1.81 (2.11) 

1.75 (2.15) 

0.59 (0.14) 

0.52 

8.93 (5.32) 

10.22 (6.76) 

4.20 (0.28) 

0.03 

rs72546339         

CC 

CA 

AA 

P value *  

2353 

256 

9 

64.8 (7.7) 

64.4 (8.1) 

61 (9.6) 

0.25 

26.5 (3.5) 

26.3 (3.6) 

27.1 (3.6) 

0.59 

139.6 (18.0) 

139.4 (17.9) 

144.9 (23.0) 

0.87 

83.7 (11.3) 

83.2 (11.3) 

86.5(14.1) 

0.76 

6.25 (1.15) 

6.23 (1.20) 

6.16 (1.50) 

0.71 

1.84 (2.16) 

1.62(1.93) 

1.68 (1.45) 

0.12 

8.98  (5.43) 

9.09 (5.43) 

9.80 (6.98) 

0.66 

rs4003228   

CC 

CT 

TT 

P value *  

3466 

141 

2 

64.5 (7.9) 

64.3 (7.8) 

64.5 (0.7) 

0.86 

26.6 (3.6) 

26.6 (3.5) 

27.9 (2.4) 

0.77 

139.7 (18.0) 

140.1 (18.3) 

124.6 (0) 

P=0.96 

83.7 (11.2) 

83.8 (11.7) 

72.8 (7.8) 

0.86 

6.26 (1.16) 

6.22 (1.02) 

7.98 (0.71) 

0.91 

1.82 (2.15) 

1.82 (2.27) 

3.90 (0) 

0.91 

8.91 (5.39) 

8.62 (5.88) 

12.49 (0) 

0.71 

rs4003232           

TT 

TC 

CC 

P value * 

2324 

1229 

192 

64.4 (8.1) 

64.4 (7.7) 

65.9 (7.3) 

0.09 

26.6 (3.7) 

26.5 (3.6) 

26.3 (3.7) 

0.15 

139.5 (17.8) 

140.1 (18.3) 

140.1 (17.7) 

0.35 

83.7 (11.2) 

83.8 (11.2) 

83.4 (10.9) 

0.93 

6.27 (1.18) 

6.25 (1.14) 

6.38 (0.98) 

0.66 

1.93 (2.25) 

1.70 (2.01) 

1.70 (1.88) 

0.02 

9.10 (5.58) 

8.76 (5.37) 

8.17 (4.35) 

0.04 

 

  



rs72546340   N HDL (mmol/L) TG (mmol/L)

GG 

GC 

CC 

P value * 

2394 

150 

2 

1.27 (0.36) 

1.23 (0.37) 

1.35 (0.07) 

0.17 

1.78 (0.90) 

1.87 (0.94) 

0.99 (0.49) 

0.43 

rs72546339    

CC 

CA 

AA 

P value *  

2353 

256 

9 

1.26 (0.36) 

1.30 (0.36) 

1.24 (0.28) 

0.19 

1.78 (0.90) 

1.78 (0.92) 

2.03 (0.61) 

0.81 

rs4003228  

CC 

CT 

TT 

P value *  

3466 

141 

2 

1.28 (0.36) 

1.26 (0.32) 

1.15 (0.07) 

0.40 

1.77 (0.89) 

1.84 (0.96) 

2.90 (0.14) 

0.23 

rs4003232      

TT 

TC 

CC 

P value * 

2324 

1229 

192 

1.28 (0.36) 

1.29 (0.36) 

1.35 (0.37) 

0.02 

1.77 (0.90) 

1.76 (0.90) 

1.76 (0.92) 

0.74 
* unadjusted p value for trend 
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