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In a wide range of neuroblastoma-derived lines oxovanadium compounds such as bis(maltolato )oxovanadium(IV)
(BMOV) are cytotoxic. This is not explained by oxidative stress or inhibition of ion channels. Genotoxicity is
unlikely given that a p53 response is absent and p53-mutant lines are also sensitive. Cytotoxicity is inhibited
by N-acetyl cysteine and glutathione ester, indicating that BMOV action is sensitive to cytoplasmic redox and
thiol status. Significantly, combining BMOV with glutathione synthesis inhibition greatly enhances BMOV-
induced cell death. This combination treatment triggers high AKT pathway activation, highlighting the potential
functional importance of PTP inhibition by BMOV. AKT activation itself, however, is not required for cytotox-
icity. Oxovanadium compounds may thus represent novel leads as p53-independent therapeutics for

© 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-
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Introduction

Neuroblastoma is the most common and deadly extracranial solid
tumour of infancy, accounting for approximately 10% of paediat-
ric cancers [1,2]. Two potential therapeutic targets are MYCN, which
is frequently amplified in high-grade tumours, and ALK, a receptor
tyrosine kinase (RTK) oncogene identified in both familial and spo-
radic neuroblastoma [3,4]. Both ALK and MYCN act through AKT [5],
a common consequence of activation of phosphotyrosine signal-
ling. Phosphotyrosine signalling is jointly regulated by protein
tyrosine kinases and protein tyrosine phosphatases (PTPs), with PTPs
being key positive and negative modulators of this signalling [6-8].
With over 100 PTP family members, increasing numbers are known
to play direct roles in tumour cell biology [7,9-11]. While histori-
cally regarded as tumour suppressors, a third of the tyrosine
phosphatome may positively contribute to cancer cell survival and
therapeutic resistance as shown in HeLa cells [12], and moreover
there are recently-defined examples of specific tumour-supporting
PTPs [13-15].
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Although PTPs and their effectors are an emergent source of ther-
apeutic targets in cancer, there is still relatively little documented
research on their significance in neuroblastoma. Our own studies on
neuroblastoma cells have demonstrated that oxovanadium com-
pounds, which are broad inhibitors of PTP enzymes [16], induce
differentiation and senescence in specific neuroblastoma cell lines [17].
Oxovanadium-based chemicals have long been of interest in cancer
biology, with several studies demonstrating their anti-proliferative and
anti-survival properties in tumour-derived cell lines [18]. They can also
suppress tumour growth and have chemopreventive properties
[14,19-22]. Inside cells, oxovanadium complexes exist largely in an equi-
librium between vanadyl V(IV) and vanadate V(V) states, with V(V) being
associated with PTP inhibition [23]. This V(IV)/V(V) equilibrium can also
catalyse ROS generation through Fenton-like reactions and interac-
tions with NADPH [14,19,24]. Many tumour cells are thought to exist
in a state of sub-lethal oxidative stress and are sensitive to redox-
based therapeutic approaches [14,25-29]. When oxovanadium (IV/V)
is used at high levels, ROS generation and DNA damage may thus un-
derlie some of its anti-tumour cell potential [18,21,30-32]. Interestingly,
low concentrations of vanadate can be growth stimulatory under con-
ditions of high cell density, but inhibitory at concentrations over 50 UM
[33]. This may relate to the ROS levels generated. However, the impor-
tance of oxovanadium compounds as direct PTP inhibitors has also been
demonstrated in several anti-cancer and anti-diabetic models [19,21,34].
The debate therefore continues as to whether PTP inhibition or oxida-
tive stress or a combination underpin the anti-cancer effects of
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oxovanadium (IV/V). The ability of oxovanadium (IV/V) to inhibit some
ion channels may also need to be factored in [23].

In this study we demonstrate that numerous neuroblastoma cell
lines suffer a cytotoxic response to vanadate and the organometal-
lic derivative bis(maltolato)oxovanadium(IV) (BMOV). Here we
explore the specificity and potential cytotoxic mechanisms of these
compounds in neuroblastoma cells. Our data indicate that neither
oxidative stress nor ion channel blockade appears sufficient to explain
the observed cytotoxicity, and the process is not dependent upon
p53. The correlation of AKT activation and BMOV cytotoxicity in-
dicates that PTP inhibition is occurring and may be necessary.
Concurrent blockade of glutathione synthesis not only further en-
hances AKT activation, but also greatly increases BMOV cytotoxicity
in neuroblastoma cells in culture. Oxovanadium chemistry may
thus be exploitable for the development of novel neuroblastoma
therapeutics and should also advance our understanding of survival-
promoting PTP enzymes in paediatric tumours.

Materials and methods
Cell culture and treatments

Cells were maintained at 37 °C/5% CO,. SKNSH were cultured in Minimum Es-
sential Medium Eagle (Sigma-Aldrich), 1% penicillin/streptomycin (P/S), 10% fetal
bovine serum (FBS) and 2 mM L-glutamine. LAN-1, LAN-5, KCNR, IMR32, SKNAS,
SKNDZ and N206 cells were cultured in RPMI 1640+GlutaMAX™ (Invitrogen), 10%
FBS and 1% P/S, in some cases with added 25 mM HEPES pH 7. Mouse embryonic
fibroblasts (MEFs) were cultured in Dulbecco’s modified essential medium (DMEM),
1% P/S and 10% FBS. Sodium orthovanadate (VA), all-trans retinoic acid and
Bis(maltolato)Oxovanadium IV (BMOV) were from Sigma-Aldrich. BMOV was also
a gift from Prof John McNeill. Chemicals used: U0126 and LY294002 (Cell Signal-
ling technologies); MK-2206 (Cambridge Bioscience); PI103 and rapamycin (Cayman
biosciences); BSO, N-acetyl-L-cysteine, catalase and reduced glutathione ethyl ester
(Sigma-Aldrich)); ouabain (Sigma-Aldrich); thapsigargin (Cambridge Bioscience).

Immunocytochemistry

Cells were plated onto 13 mm coverslips coated with poly-L-lysine and fibronectin.
After fixing in 4% paraformaldehyde in PBS, cells were pre-blocked with PBS/1% BSA/
0.05% triton. Cleaved caspase-3 antibody (Cell Signalling) in incubation buffer (PBS/
3% BSA/0.05% triton) was added for 1 hour, followed by secondary antibody (Dako).
Coverslips were mounted with 4’,6-diamidino-2-phenylindole (DAPI)-containing
mounting solution (Dako).

Immunoblotting

Cells were lysed in ice-cold 1% Triton X-100; 50 mM Tris-HCl pH 7.5; 150 mM
NaCl; 1 mM proteinase inhibitor cocktail [Roche], 1 mM sodium orthovanadate, 10 mM
sodium fluoride, 25 mM sodium pyrophosphate. Lysates were transferred to
polyvinylidene diflouride membranes after gel electrophoresis and blocked with 5%
milk powder (Marvel) overnight. Primary and secondary antibodies were added for
1 hour each. Luminescent signal was developed using ECL plus (Amersham Biosci-
ences and Thermo Scientific). Primary antibodies were from: Cell Signalling (phospho-
Akt Ser473, ab4060; Akt, ab9272; S6 ribosomal protein, ab2217; phospho S6 ribosomal
protein Ser 235/236, ab2211; p38 MAPK, ab9212; phospho p38 MAPK Thr 180/Tyr
182,ab9211; phospho-4E-BP1 Thr37/46, ab22855); Millipore (Phospho p44/42 MAPK
(Erk1/2; Thr202/Tyr204) (9106 S), p44/42 MAPK (Erk1/2) (9102), and PTEN (07—
1372)); Santa Cruz (Anti-p53 (SC6243)); Novus Biologicals (LC3 (nb100-2220)); Sigma-
Aldrich (anti-BActin (AC-74)). Secondary antibodies were from DAKO.

Propidium iodide staining for sub-G1 DNA content

Trypsinised cells were fixed in ice-cold 70% ethanol for 30 minutes, rinsed twice
in phosphate-citrate buffer (0.2M NayHPO4/0.1M citric acid) by centrifugation at
2000 rpm, and resuspended in 200 pl of 50 ug/ml propidium iodide in PBS and 50 ul
RNaseA solution (100 pg/ml in distilled water). Cells were analysed using a BD™
LSRII flow cytometer system (Beckman-Dickson Biosciences). A maximum of 10,000
events were collected per sample. Data were analysed using Flo-jo V8 software.

Detection of intracellular ROS and glutathione

Dihydrorhodamine (DHR) 123 (Cayman Biosciences) detected relative levels of
intracellular ROS. Cells were seeded overnight in 96 well plates at high density (5x10%)
then treated with chemicals for 4 hours. Cells were washed with warmed Hanks
balanced salt solution (HBSS), incubated with 10 uM DHR 123 in fresh HBSS for 30
minutes at 37 °C, then washed with HBSS and fluorescence was immediately

read using a microplate reader at an excitation/emission ratio of 492/520.
Monochlorobimane (MCB; Sigma-Aldrich) was used for the detection of total in-
tracellular glutathione (GSH). Cells were treated with BSO and/or BMOV for 24 hours,
then treated with 50 uM MCB. During this treatment period there are no morpho-
logical changes in the cells, or increases in cell death. Fluorescence was read
immediately at an excitation/emission ratio of 426/490. Readings were taken every
10 minutes to confirm linear reactions. Final values at 60 minutes were then taken,
background signals subtracted, then values normalised against the untreated cells
at 100%.

Analysis of autophagy

Autophagy was detected by immunoblotting for LC3-II, where autophagy was
measured by the relative change in band distribution from the upper (LC3-I) to lower
(LC3-II) bands. LC3-II turnover was blocked using lysosomal peptide inhibitors
pepstatin A (Sigma-Aldrich) and E64d (Enzo life sciences).

Results
BMOV induces cytotoxicity in neuroblastoma cells

Oxovanadium compounds, in combination with retinoic acid, induce
differentiation and senescence in SKNSH, SH-SY5Y and LAN-5 [17]. We
found that VA did not significantly increase apoptosis (as judged by sub-
G1 content) in SKNSH, SH-SY5Y, or several unrelated cell lines (Fig. 1A).
LAN-5, however, underwent increased cell death. Prompted by this, we
tested further lines based on their varied status of MYCN amplifica-
tion and p53 mutation (Table 1). We found that KCNR, LAN-5 and IMR32
underwent robust cell death with either VA (Fig. 1B) or the organo-
metallic derivative bis(maltolato)oxovanadium(IV) (BMOV) (Fig. 1C).
BMOV also killed N206 cells and subsequent studies showed that other
lines were sensitive (Supplementary Fig. S1). SKNAS and SKNDZ are re-
sistant to BMOV-induced differentiation [17], and also cytotoxicity with
10 uM BMOV (Fig. 1C).

We focused our subsequent studies on BMOV as it has higher
bioavailability and is less toxic in vivo than VA [34]. BMOV in-
creased sub-G1 content and caspase-3 activation in KCNR, N206,
IMR32 and LAN-5 (Fig. 1C, Supplementary Fig. S3B). This was par-
tially abrogated by the pan-caspase inhibitor zVad-FMK, as shown
in KCNR cells (Fig. 1D), indicating that cytotoxicity is at least partly
driven by apoptosis. Neither primary mouse embryonic fibro-
blasts (MEFs) nor SKNAS cells exhibited increased sub-G1 content
after BMOV treatment (Supplementary Fig. S3A and B), even at
100 uM BMOV on MEFs (not shown). Thus compared to non-
neuroblastoma cells, oxovanadium cytotoxicity shows some
selectivity towards a subset of neuroblastoma cell lines.

From the pattern of BMOV sensitivity it appeared that high MYCN
level might correlate with BMOV sensitivity. However subsequent
analysis of MYCN-inducible lines showed that high MYCN expres-
sion was not sufficient to impart BMOV sensitivity (Supplementary
Fig. S2).

Oxovanadium compounds can inhibit ion channel ATPases [23].
To assess if this underlies BMOV cytotoxicity, cells were treated with
the Na*/K* channel blocker ouabain and Ca** channel blocker

Table 1

Neuroblastoma cell lines used.
Cell line MYCN p53
LAN-5 A wt
KCNR A wt
IMR32 A wt
N206 A mut
SK-N-AS NA mut
SK-N-DZ A mut
SH-SY5Y NA wt
SK-N-SH NA wt

MYCN gene amplified (A) or non-amplified (NA). p53 protein is wild type (wt) or
mutant (mut).
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Fig. 1. Cytotoxicity of oxovanadium compounds in neuroblastoma cells. (A) Neuroblastoma cell lines and unrelated cell lines were treated with vanadate (VA) at 5 uM for
6 days and subjected to sub-G1 analysis. Only LAN-5 exhibited significant evidence of apoptosis. (B) LAN-5, IMR32 and SMS-KCNR were treated for 6 days with VA, then
crystal violet stained. VA killed IMR32 and KCNR effectively, and partially killed LAN-5. (C) Six neuroblastoma lines treated with either VA (5 uM) or BMOV (10 uM) for 3-6
days. The cells are either oxovanadium-sensitive (LAN-5, IMR-32, KCNR, N206) or -resistant (SKNAS and SKNDZ). Arrows indicate dead and dying cells. Scale bar =10 pm.
(D) Immunofluorescence study of BMOV-treated cells (48 hours, 10 uM) using activated-caspase 3 antibody, highlighting apoptotic cells. (E) KCNR cells were treated with
the pan-caspase inhibitor Z-vad-FMK (20 uM) during 48 hours of BMOV (10 uM) treatment. Z-vad-FMK reduces BMOV-induced cell death.
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thapsigargin. Although these induced cell death, they did so in both
BMOV-resistant (SKNAS, SKNDZ), and BMOV-sensitive cells (N206,
KCNR, IMR32, LAN5, LAN-1, SKNBE(2)), between 50 nM and 250 nM
(Fig. 2A). SKNAS and SKNDZ were more sensitive to ouabain than
BMOV-sensitive N206. Moreover, SKNDZ and SKNSH underwent cell
death with thapsigargin treatment just as readily as did BMOV-
sensitive cell lines. The phenotypic responses to 10 uM BMOV
therefore cannot readily be explained by inhibition of either Na*/
K* or Ca** channel ATPases.

BMOV-induced cytotoxicity is dependent on an oxidised redox state

Many cytotoxic drugs increase ROS levels in tumour cells, or
reduce the cell’s capacity to withstand ROS damage [26,35]. An
oxidised, cellular redox state can affect the oxidation state of
vanadium, favouring V(V), the most inhibitory state for PTPs and
ATPases. To test the potential requirement of an oxidising environ-
ment for BMOV-driven apoptosis, cells were treated with thiol-
based ROS scavenger N-acetyl-L-cysteine (NAC). Low levels of NAC
led to improved cell survival in BMOV-treated LAN-5 (Fig. 2B). NAC
also reduced cell death in KCNR, albeit requiring higher levels of
NAC (5 mM) (Fig. 2C). To assess the dependence of BMOV cytotox-
icity on thiols such as GSH, we co-treated cells with GSH ethyl ester.
This largely abolished BMOV-induced cytotoxicity in KCNR cells
(Fig. 2D). BMOV-induced cytotoxicity thus requires a cytoplasm that
encourages an oxidised thiol status.

BMOV cytotoxicity is enhanced by depletion of cellular glutathione

Two predictions arise from the above data. First, BMOV is likely
to reduce cytoplasmic levels of major cellular antioxidants such
as glutathione (GSH), by generating oxidised GSSG which is then
exported and lost. Second, an experimental reduction in thiol-
based, antioxidant defences should enhance BMOV'’s cytotoxicity.
Using monochlorobimane (MCB) to detect total GSH, BMOV did
indeed reduce GSH by 10-25% in LAN-5, N206, IMR32 and SKNAS
over 24 hours (Fig. 2E). To test the second prediction, we co-
treated cells with the GSH synthesis inhibitor BSO and BMOV. BSO
has been used in clinical trials as an enhancer of anti-cancer drugs
in various cancers including neuroblastoma [36-38]. BSO alone could
deplete GSH by 10-40% in N206, IMR32, LAN-5 and SKNAS (Fig. 2E).
Combination treatment of BSO+BMOV induced a further, signifi-
cant reduction in GSH in LAN-5, N206 and IMR32 and a similar trend
in SKNAS.

In our hands 10 uM BSO exerted little if any toxicity in most
neuroblastoma cell lines. Exceptions included SKNDZ, killed by con-
centrations over 100 uM, and LAN-1, sensitive to 10 uM and above,
in agreement with other studies [39]. Surprisingly, when 10 uM BSO
was combined with 10 uM BMOV in BMOV-sensitive cells, this
induced complete or nearly complete loss of cell survival over three
days. This cytotoxicity was much greater than with either chemi-
cal alone, indicating a synergistic response (Fig. 3A and B). This
correlated with an enhanced sub-G1 response as shown in KCNR
(Fig. 3C). A similar 100% cell death response was observed in the
normally BMOV-resistant cell line SKNDZ (Supplementary Fig. S1),
and a 50% response in SKNAS (Fig. 3A and B). Similar cytotoxicity
could be generated at lower BMOV concentrations, by compensa-
tory increases in BSO (Supplementary Fig. S6). Interestingly, SKNSH
and SH-SY5Y, which differentiate in response to BMOV [17], are rel-
atively resistant to this chemical combination (Supplementary
Fig. S6). Similarly, monolayer cultures of the glioma line T98G, and
MEFs, were resistant (Fig. 3A and B). Therefore BMOV cytotoxicity,
when enhanced by BSO, exhibits promising efficacy and main-
tains some cell-type specificity in neuroblastoma-derived cell lines.

The ability of tumour cells to form 3D spheroids in semi-solid
media reflects their transformed phenotype and resistance to anoikis.

Neuroblastoma cells seeded in Methocel™ showed increased sen-
sitivity to BMOV and BSO, and the combination treatment was highly
effective at preventing colony formation in all cell lines tested (Sup-
plementary Figs. S4 and S5).

BMOV/BSO stimulation of AKT is not necessary for cytotoxicity

It is possible that BSO enhances the cytotoxicity of BMOV by aug-
menting its chemical actions, for example by increasing V(V) in cells,
leading to greater PTP inhibition. As an indication of this, we might
expect to see elevated RTK signalling and increased phospho-AKT
in combination-treated cells. Indeed this was observed, with much
greater AKT activation in IMR32, LAN-5 and KELLY cells, and to a
lesser degree with KCNR (Fig. 4A). We have seen related, strong AKT
activation in our studies of combination BMOV/retinoic acid treat-
ment on neuroblastoma cells [17]. In that study, hyperactivation of
AKT was necessary in part for driving senescence in SKNSH and
SK-SY5Y cells. Here we have similarly asked whether the high
phospho-AKT arising from BMOV+BSO was necessary for the ob-
served cytotoxic response. IMR32 cells were treated with BMOV+BSO
along with the specific AKT inhibitor MK-2206. At 1 uM, MK-2206
efficiently blocked AKT phosphorylation (Fig. 4B), but it did not alter
the ability of BMOV or the combined treatment to induce cell death
(Fig. 4C). A similar result was seen with N206 cells (data not shown).
Thus although BMOV and BSO can stimulate signalling down-
stream of RTKs in neuroblastoma cells, non-AKT-dependent pathways
must be necessary to generate the cytotoxic synergy.

BMOV cytotoxicity and the AKT/mTOR axis

The stimulation of AKT by BMOV and BSO is not necessary for
cytotoxicity. Instead, this AKT stimulation may be a pro-survival by-
stander effect of BMOV treatment, countering qualitatively distinct
anti-survival effects of BMOV. We therefore investigated the PI3K-
mTOR axis further, asking whether the inhibition of PI3K enzymes
could enhance the BMOV cytotoxicity and whether BMOV has other
downstream influences over mTOR signalling.

BMOV stimulates AKT and should therefore activate mTOR. BMOV
does stimulate S6K1, as evidenced by increased phosphorylation of
substrate S6 ribosomal protein (Fig. 5A). The class 1 PI3K inhibitor
LY294002 (LY29) suppressed this S6 phosphorylation as expected.
LY29 also stimulated an increase in BMOV-driven apoptosis in LAN5
and KCNR cells (Fig. 5B). LY29 was not, however, an ideal inhibitor
in these cells, since it led paradoxically to an increase in AKT phos-
phorylation, exaggerated by BMOV (Fig. 5A). This is most likely due
to suppression of mTORC1 and the well known negative feedback
loop from S6 Kinase 1 [40-42]. To bypass this problem, we used
the narrower spectrum PI3K/mTOR inhibitor PI103 [43] and the
mTOR inhibitor rapamycin (at a level that should inhibit both
mTORC1 and mTORC2). Both inhibitors suppressed BMOV-induced
phospho-AKT (Fig. 5C and G). PI103 also caused an increase in
BMOV-driven apoptosis (Fig. 5D). Neither of the combined treat-
ments of BMOV/LY29 and BMOV/PI103 induced toxicity on MEFs
(Supplementary Fig. S1C).

Concurrent inhibition of PI3K alongside BMOV treatment thus
enhances cytotoxicity. We examined whether BMOV has any further
influence over the mTOR signalling pathway in these cells. AKT
activates mTOR, inhibiting autophagy and stimulating protein trans-
lation [44,45]. After PI103 or rapamycin treatment, autophagy
activation occurred as judged by increased LC3II (Fig. 5E). 4E-BP1
phosphorylation was also suppressed (Fig. 5F). Although BMOV did
not affect basal LC3II levels, it blocked induction of LC3II by PI103
and Rapamycin (Fig. 5G). This was not the result of mTOR reacti-
vation, since PI103-induced dephosphorylation of 4E-BP1 still
occurred with BMOV (Fig. 5F). Even though BMOV induces pS6 phos-
phorylation, it does not induce phosphorylation of p4E-BP1 (Fig. 5F).
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In fact in most KCNR experiments BMOV suppressed 4E-BP1 phos-
phorylation, while concurrently activating AKT (Fig. 5G). BMOV may
therefore interfere with translational control even in the presence
of elevated phospho-AKT and pS6.

BMOV and oxidative stress

We have described how BMOV and BSO can strongly stimulate
pathways through AKT, most likely reflecting their PTP-inhibitory
role. However, the concomitant cytotoxicity is not dependent on AKT
activation and so non-AKT pathways must be involved. Another
chemical action of oxovanadium inside cells is the generation of re-
active oxygen species (ROS) [14,19,24]. High ROS levels can lead to
non-specific oxidative stress and cellular damage, leading to cell

death. We have therefore assessed the potential role of ROS and
oxidative stress in BMOV-induced neuroblastoma cell death.

ROS were examined directly with DHR-123 in live cells. Using
N206 and the more BMOV-resistant SKNAS, the DHR-123 dye in-
dicated similar, modest increases in ROS with single BMOV or BSO
treatments. In combination treatments there was no significant,
further increase in ROS (Fig. 6A and B). Moreover, the similar ROS
patterns in both N206 and SKNAS showed that ROS levels were not
predictive of BMOV sensitivity. ROS production in cells can also
involve increased hydrogen peroxide levels. To test whether hy-
drogen peroxide production might underlie BMOV-induced signalling
and apoptosis, we added catalase to the media of treated cultures.
Catalase can for example block vanadate-induced apoptosis in JB6
mouse fibroblasts [46]. In neuroblastoma cells, however, catalase
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related LC3-II band (lower) is induced by rapamycin (200 nM) and PI103 (1 pM) over 15 hours in both N206 and KCNR. BMOV inhibits this stimulation of LC3-II. (F) Analysis
of reduced phosphorylation of 4E-BP1 and AKT over 24 hours by PI103, in the presence or absence of BMOV.

did not improve cell survival in N206 cells (Fig. 6C) or in LAN-5 (not
shown). In addition, catalase did not alter phospho-AKT stimula-
tion by BMOV and BSO, indicating that this aspect of BMOV’s
chemical action is unaffected (Fig. 6D). This also holds true for
phospho-ERK activation by BMOV (data not shown). These data
therefore do not readily support a role for high ROS production, or
peroxide specifically, in BMOV-induced cytotoxicity.

We next examined p38MAPK status and PTEN oxidation levels,
to assess oxidative stress. BMOV did not reproducibly increase the
expression or phosphorylation of p38 stress-sensitive kinase (Fig. 6E).
The lipid-specific PTP enzyme PTEN is particularly sensitive to ox-
idation in neuroblastoma cells following growth factor activation
[14,47]. PTEN is not however oxidised after BMOV or BMOV+BSO
treatment in either KCNR or SKNSH cells (Fig. 6F). Finally, al-
though it is known that high oxovanadium concentrations can trigger

a genotoxic response in some cells [46], 10 uM BMOV did not trigger
p53 signalling in LAN-5, IMR32 or KCNR (all express wild type p53)
(Fig. 6G). Moreover, BMOV killed p53-mutant N206 cells (Figs. 1 and
3B), LAN-1 cells (Supplementary Fig. S1) and SKNBE(2) (not shown).
Therefore neither the activation of p53, nor non-specific oxidative
damage apparently underlies BMIOV cytotoxicity. Thus although the
key mechanism(s) remains to be determined, we have ruled out
several of the more expected mechanisms for the highly cytotoxic
action of BMOV+BSO in neuroblastoma cells.

Discussion
This study provides the first demonstration that oxovanadium-

based chemicals can effectively induce cell death in a broad range
of neuroblastoma tumour-derived cell lines, in part through
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apoptosis (summarised in Supplementary Table S1). In the vana-
date state, oxovanadium compounds are potent, broad inhibitors of
PTPs in their V(V) oxidised state. The V(IV):V(V) redox equilibri-
um also catalyses ROS generation, but our data do not support
oxidative stress nor ROS production as directly underlying BMOV
cytotoxicity at the concentration we are using it at. Nevertheless,
cytotoxicity can still be blocked by reducing thiols, which may dis-
courage PTP-inhibitory V(V) or reactivate oxidised PTPs. In contrast,
BMOV-induced cell death is greatly enhanced by its combination
with glutathione synthesis inhibitor BSO. Significantly, the cyto-
toxic mechanism of BMOV does not rely on p53 activation, making
this potentially relevant for p53-mutated neuroblastomas found com-
monly at relapse. The novel chemical combination of oxovanadium
compounds with BSO could thus generate interesting therapeutic
possibilities for neuroblastoma.

Conventional chemotherapy often triggers oxidative damage in
tumour cells, but the side effects can be severe. To circumvent this
and minimise therapeutic resistance, one might target a non-
oncogene-dependent ‘Achilles’ heal’ of cancer cells. Sub-lethal
oxidative stress is one of these [48], with cells relying on height-
ened antioxidant defences to defend themselves against endogenous
ROS [25,26]. This “primed” state of stress can potentially be har-
nessed in redox-related therapeutic approaches [35]. PTPs are
particularly redox-sensitive enzymes, having ROS-sensitive active
site cysteines [41,47,49-51]. Some PTP members may also act non-
oncogenically to promote tumour cell survival and therapeutic
resistance [12], and some may also act oncogenically in neuroblas-
toma [41,52]. If tumour cells are oxidatively primed with partial
PTP inhibition already, they may be susceptible to more direct PTP
inhibition treatments such as with BMOV.
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Oxovanadium compounds are broad specificity PTP inhibitors,
reversibly inhibiting tyrosine-specific and dual-specificity enzymes
[24,53,54]. An oxidising tumour cell environment should encour-
age the V(V) PTP inhibitory state of vanadium [55]. We have recently
found that many of our untreated cell lines are in fact in a rela-
tively oxidised state as assessed with RedoxSensor dye (Stoker,
unpublished work). Our data indicate that by imposing a reducing
state on cells, BMOV-induced cytotoxicity is less effective. This
supports the need for an oxidising redox state in promoting
oxovanadium action. Such an oxidising environment does not
however go as far as to induce clear oxidative stress. How does BSO
therefore enhance BMOV cytotoxicity? This could be either direct
or indirect. Oxidised, active site thiols of PTPs are directly tar-
geted by GSH, leading to enzyme reactivation. Together with the
propensity of GSH to directly discourage the formation of PTP-
inhibitory V(V) [56,57], this may explain why BSO can generate a
potent mixture with BMOV to potentially block critical members
of this enzyme family.

Although vanadate can inhibit some other classes of enzymes, these
are not directly thiol dependent [58]. For example, vanadate can inhibit
some ion channel ATPases, but this does not appear to underlie BMIOV
cytotoxicity here in neuroblastoma cells. This may be further sup-
ported by research showing that, in contrast to BMOV ([17] and the
present study), ouabain induces ERK in SKNAS [59] and p53 in SHSY5Y
(but not phospho-AKT) [60], as well as cell cycle arrest in SHSY5Y, KELLY/
N206 and SKNAS [61]. Moreover, unlike BMOV, AKT phosphorylation
is suppressed by thapsigargin in SHSY5Y cells [62]. This further
supports the parsimonious explanation for BMOV action here in neu-
roblastoma cells as being in part through critical PTP inhibition.
Inhibition of cellular PTPs by BMOV can readily explain the elevation
in phospho-AKT found in neuroblastoma cells, most likely through neg-
ative regulators of RTK signalling such as PTPN2, PTPR] or PTEN [63].
The very high phospho-AKT levels seen with BMOV+BSO treatment are
not, however, required for a cytotoxic response. This contrasts with the
requirement for high phospho-AKT for senescence of SKNSH cells during
BMOV-+retinoic acid treatment [17] and apoptosis in other systems [64].
Although AKT activation by BMOV (+BSO) is a likely result of PTP in-
hibition, it therefore appears to be a “bystander” cell survival response,
since blocking PI3K signals alongside BMOV treatment increases the
cytotoxic response. This may even be exploitable therapeutically, given
that PI3K and AKT are currently high profile targets for neuroblas-
toma treatment.

There are some further, interesting aspects to BMOV'’s effects on
the PI3K/mTOR axis. In KCNR cells BMOV surprisingly causes de-
phosphorylation and probable activation of 4E-BP1 downstream of
mTOR, even though AKT is activated. Moreover, BMOV can condi-
tionally block autophagic induction during PI103 or Rapamycin
treatment. Autophagy is a potentially protective mechanism fol-
lowing oxidative stress in SH-SY5Y neuroblastoma cells [65-67] and
is a target in cancer trials [68,69]. How BMOV prevents LC3II acti-
vation remains to be understood, but a number of its potential PTP
targets can influence autophagy both positively and negatively [70].
Translational regulation and blockade of autophagy could there-
fore be further facets of BMIOV’s cytotoxic arsenal.

Our finding that oxovanadium compounds can kill neuroblastoma
cells without activating p53 was unexpected. Vanadate’s documented
influence over p53 is rather complex, however, since 100 UM vana-
date suppresses radiation-induced p53 activation, but not p53-
independent apoptosis in MOLT-4 leukaemia cells [71]. In JB6 mouse
fibroblasts, 100 uM vanadate induces p53-dependent apoptosis,
suppressible by culturing in catalase [46]. In the neuroblastoma cells
in this study, 10 uM BMOV does not trigger these p53 events. BMOV
must therefore require a non-p53-dependent pathway(s) to kill
neuroblastoma cells. This could be advantageous given that relapse
of neuroblastoma often occurs alongside disruption of the p53
pathway [72,73].

Why are neuroblastoma cell lines so susceptible to oxovanadium?
This may reflect either their particular pattern of PTP depen-
dence, or sensitised metabolic or oxidised state. Is the cytotoxicity
specific for neuroblastoma? Although we have found resistance in
fibroblasts, some non-tumour cells and T98G glioma cells, a pre-
liminary screen of paediatric glioma lines shows that a minority can
also be killed by BMOV and this is increased by BSO (Stoker, un-
published work). Oxovanadium may therefore be of interest in brain
cancers, as has recently also been reported [74].

In conclusion, we have demonstrated that oxovanadium
compounds are effective cytotoxic agents in neuroblastoma tumour-
derived cell lines, irrespective of p53 status. This complements our
previous work showing oxovanadium-induced differentiation and
senescence in SK-N-SH, SH-SY5Y and LAN-5 [17]. Moreover, low
levels of the redox modulator BSO can synergise with BMOV to
become highly cytotoxic in 80% of tested cell lines. Although we do
not know the key cytotoxic mechanism(s) yet, we have already ruled
out a number of the potentially non-specific mechanisms of BMOV
action. Our data remain most consistent with BMOV being able to
trigger cell death through a non-AKT-dependent pathway down-
stream of PTP inhibition. If correct, this would indicate the existence
of critical, survival-promoting PTPs in neuroblastoma cells and
we are currently searching for such enzymes. This would be con-
cordant with growing evidence of PTPs as pro-oncogenic effectors
and novel therapeutic targets [12,41,52]. The finding that a novel
combination of BMOV plus BSO can amplify cytotoxicity in neuro-
blastoma and some other cancer cell lines may encourage a
reassessment of oxovanadium compounds as anti-tumour agents.
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