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Sistem biometrik sangat berguna untuk membedakan karakteristik individu 

seseorang. Sistem identifikasi yang paling banyak digunakan diantaranya berdasarkan 

metode fingerprint, face detection, iris atu hand geometry. Penelitian ini mencoba 

untuk meningkatkan sistem biometrik menggunakan sinyal Photoplethysmography 

dari detak jantung. Algoritma yang diusulkan menggunakan seluruh ektraksi fitur 

yang didapatkan melalui sistem untuk pengenalan biometrik. Efesiensi dari algoritma 

yang diusulkan didemonstrasikan oleh hasil percobaan yang didapatkan menggunakan 

metode klasifikasi Multilayer Perceptron, Naïve Bayes dan Random Forest 

berdasarkan fitur ekstraksi yang didapatkan dari proses sinyal prosesing. Didapatkan 

51 subjek pada penelitian ini; sinyal PPG signals dari setiap individu didapatkan 

melalui sensor pada dua rentang waktu yang berbeda. 30 fitur karakteristik didapatkan 

dari setiap periode dan kemudian digunakan untuk proses klasifikasi. Sistem 

klasifikasi menggunakan metode Multilayer Perceptron, Naïve Bayes dan Random 

Forest; nilai true positive dari masing-masing metode adalah 94.6078 %, 92.1569 % 

dan 90.3922 %. Hasil yang didapatkan menunjukkan bahwa seluruh algoritma yang 

diusulkan dan sistem identifikasi biometrik dari pengembangan sinyal PPG ini sangat 

menjanjikan untuk sistem pengenalan individu manusia.  
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The importance of biometric system can distinguish the uniqueness of personal 

characteristics. The most popular identification systems have concerned the method 

based on fingerprint, face detection, iris or hand geometry. This study is trying to 

improve the biometric system using Photoplethysmography signal by heart rate. The 

proposed algorithm calculates the contribution of all extracted features to biometric 

recognition. The efficiency of the proposed algorithms is demonstrated by the 

experiment results obtained from the Multilayer Perceptron, Naïve Bayes and 

Random Forest classifier applications based on the extracted features. There are fifty 

one persons joined for the experiments; the PPG signals of each person were recorded 

for two different time spans. 30 characteristic features were extracted for each period 

and these characteristic features are used for the purpose of classification. The results 

were evaluated via the Multilayer Perceptron, Naïve Bayes and Random Forest 

classifier models; the true positive rates are then 94.6078 %, 92.1569 % and 90.3922 

%, respectively. The obtained results showed that both the proposed algorithm and the 

biometric identification model based on this developed PPG signal are very promising 

for contact less recognizing systems. 
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2.3.3 Näıve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Pulse Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xiii



3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Identification System of PPG Signal . . . . . . . . . . . . . . . . . . . 15

4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Classification Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xiv



List of Tables

3.1 Descriptive statistics for male and female groups . . . . . . . . . . . . 14

3.2 All 30 features defined for the system . . . . . . . . . . . . . . . . . . 22

4.1 Attribute Evaluator (supervised, Class (nominal): 30 class): Infor-

mation Gain Ranking Filter . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 The selected feature numbers and the percentages of classification

success using Multilayer Perceptron . . . . . . . . . . . . . . . . . . . 28

4.3 The selected feature numbers and the percentages of classification
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Chapter 1 Introduction

Several studies have been developed for many biometric identification using fin-

gerprint, face detection, iris, hand geometry, lip-movements, walkingstyle, electroen-

cephalography (EEG) and electrocardiography(ECG). This biometric system plays

an important role in network security issues. The uniqueness of each individual was

needed to improve the security system applications. Biometric identification meth-

ods greatly affect the security of information technology. Instead of using password

for access control, biometric identification can be used for authentication. Biometric

information is hard to be duplicated, lost, forgotten, shared or transferred because

it is a part of human body. Unfortunately, hackers can possibly get into system via

counterfeit biometric information. For example, the security system using finger-

print, face or iris recognitions can let the hackers use the duplicated images stored

in the network database do to the authentication. Fingerprints can be affected by

chemical reactions for the people who are working in the industry. Furthermore,

biometric identification system using voice can be changed seriously due to aging

and health condition. Finally, EEG and ECG-based methods are impractical as

various electrodes are required in order to acquire the bio-signals.

In this study, the photoplethysmography (PPG) signal was used for data input

that is capable of implementing identification functionality. PPG is a non-invasive

electro-optical method which gives information about the volume of blood flowing

through a testing zone of the body, close to the skin. PPG device receives and

responds to a signal or stimulus from pulse oximeter technology to capture changes

in blood volume based Light Emitting Diodes (LEDs). Due to changes in blood

volume corresponding to the number (synchronous) of the heartbeat, PPG technique

can be used to measure the beat of heart rate. In order to acquire PPG signal, a

source of light, the wavelength of which is λ, is placed on one side of a jut of the

body (e.g. a finger) and on the other side, a photo-detector is placed right across

the source to see the transmitted light. A typical PPG signal consists of a large DC

component passing through the skin, muscle and bone without passing through the

blood vessels, a small AC component passing directly through the blood vessels by
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detaching it self from the skin, muscle and bone and also a light passing through the

arterial blood vessels. Shortly after the systole, the amount of blood in the arteries

increase, thus the intensity of light received decreases. During the diastole, the

amount of blood in the arteries decrease and an increase in the light transmittance

is observed. The advantage of using the PPG signal is widely used, it is easier and

more affordable price sensors.

The method proposed for biometric recognition in this study is composed by

data acquisition, pre-processing, PPG signaling and the feature extraction of PPG

signal using smoothing PPG signal and its first and second derivatives. The process

of data acquisition was provided by 51 volunteers through a PPG data acquisition-

card. Various artifacts like analog circuit noises to be found in the signal acquired

by pre-processing, medium illuminance change, respiration and base deviation aris-

ing from movement are eliminated. 30 features of PPG signal in the time domain,

such as systolic peak, diastolic peak, augmentation index, and peak-to-peak interval

were found using the PPG signal and its derivatives. For each of these features,

feature ranking process was performed by separately calculating their contribution

to biometric recognition.

1.1 Related Work

Gu et. al. [1] provided a new approach of human verification using the PPG

signals acquired easily from the fingertips. For the group consisting of 17 healthy

subjects, they performed experimental studies by obtaining four feature parameters

from digitized PPG signals. A feature vector template was formulated using the

recorded signals, and later on, the discriminant function was applied in order to

verify the data. This promising method of human identification finally achieved a

90% success.

Yao et. al. [2], two important conclusions like the derivatives of PPG signals,

and the consistency of subjects within themselves and the distinguishability among

different subject are examined. Data taken using Pulse Oximeter Sensor, statisti-
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cally the results of same subject have a constant time interval against the generated

maximum/minimum points, and the derivatives can certainly indicate the features

of one’s PPG signal and can be used as biometrics for recognition.

Spachos et. al. [3], on the other hand, the feasibility of the application of

PPG signal as a single biometrical feature along with the signal-processing methods

for the matter involved is being researched. The PPG signals were acquired from

the fingertips of 29 healthy subjects using BvpPLUX System from OpenSignal PPG

Dataset and also using NONIN pulse oximeter from BioSec PPG Dataset. The

classification was applied using the Nearest Neighbor and Majority Voting for the

data to match the input signal. The accuracy results of identification depend on the

dataset used. This can occur because of the influence of the circuit, the sensor and

the current state of data collection. The experimental results suggesting biometrics

for identification can be used when PPG signals come under a controlled environment

with infallible sensors.

Wei et. al. [4] addressed that PPG signals could reflect numerous physiological

parameters, such as heart functions, blood vascular elasticity and blood viscosity.

This is a new non-invasive method with the advantages like smoothness and ac-

curacy. It is important to find out efficient pre-processing and feature extraction

algorithms in order to deal with the original PPG signal that could be affected by

many other factors. Most of the practical methods include median and FIR (finite

infinite response) filtration. In this study, a new algorithm is recommended in or-

der to eliminate the wavelet transform-based baseline deviation. The inference of

feature spots is another important issue. A sophisticated differential algorithm is

used to solve this problem. All these practical algorithms have created an effective

platform for determining the physiological parameters.

Gu et. al. [5], had showed a fuzzy-logic approach to examine the feasibility of

the application of PPG signals as a new method in the identification of humans.

The PPG signals were acquired from the fingertips of 17 healthy subjects and were

used as fuzzy entries for the classification of four distinctive features such as the

peak number, the upward slope, the downward slope, and the time interval. This
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fuzzy-based decision-making can reach up to 94% in the same testing and 82.3% for

two different trials. This outcome suggests that this new PPG-based biometry is

potentially feasible in the verification of humans.

In Wan et. al. [6], the design of an amplifier circuit intended for extracting the

DC component of the signal is being negotiated for PPG signals. Consequently, a

high AC signal with SNR (signal-to-noise ratio) is acquired from a raw PPG signal,

adding a bias-adjusted circuit to the amplifier. This hardware development resulted

in acquiring a better signal quality and a data handling convenience in recognition

(identification).

In Singh et. al. [7], the fingerprint of someone could be imitated by placing a

thin film or using the artificial copy of that print in a biometric system operating

via finger scanning. The uniqueness of a finger impact profile was approved in the

preliminary studies. This study creates researches into the possibility to utilize the

PPG signal as an additional parameter along with the fingerprint.

Kavsaoglu et. al. [8]got data using a microcontroller and sensors DCM03 then

using k-NN (k-Nearest Neighbor) to do classification. Forty different features were

used for feature extraction stage, including augmentation index, systolic and dias-

tolic peak, pulse width, and peak-to-peak interval. When the results were evaluated

for the k-NN classifier model created along with the proposed algorithm, an identi-

fication of 90.44% for the 1st configuration, 94.44% for the 2nd configuration, and

87.22% for the 3rd configuration has successfully been attained.

1.2 Organization of the Thesis

The following chapters describe the organization of this thesis. For the second

chapter, the basic theories used are explained. For the third chapter, the data

acquisition, signal processing and features extraction are described. Experiments to

evaluate the performance of the identification system for the proposed approach are

described in the fourth chapter. Finally, the conclusion remarks are included in the
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last chapter.
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Chapter 2 Overview

2.1 Photoplethysmoraphy Signal

Heart is a vital organ of the human body that have a function to circulate or

pump blood throughout the body. Owing to the pumping of blood in an organ

volume will change, Photoplethysmograph (PPG) is a device that can be used to

detect changes in the blood volume. Although it works to detect changes in blood

volume, commonly the use of PPG is to calculate and show the heart rate per minute,

while the changes in blood volume information is not displayed. It would be helpful

if the PPG, which shows the cardiac signal of the inspected person, displays the

data in graphical form for blood volume changes continuously. This study does

researches into the possibility to display blood volume information. PPG graph

continuous observation can be used to detect heart problems, for example, the heart

contraction premature, observing the observation cycle, and so on.

PPG is an instrument used to measure changes in blood volume within an

organ or the whole body. Usually the result of fluctuations in the volume of blood

or air contained therein. Photoplethysmograph (PPG) is an instrument that works

plesthysmograph using optical sensors [16]. In PPG technique known two kinds

of sensor mounting configuration modes: 1. Mode of transmission: a light source

(LED) mounted dealing with light sensor (LDR). LDR detects changes in the light

emitted by the LED due to absorption by organs (blood, skin, and meat / muscle)

directly. 2. Mode reflection: In reflection mode LED and LDR fitted lined. The

signal or light changes detected by LDR is reflected signal or reflection.

PPG signal was generated by periodic ejection of the heart, so it has a close

relationship with the ejection period, from which the heart rate could be extracted.

In another aspect, the blood flowing in the vessels was affected by the vessel elasticity

and blood viscosity. Hence, much cardiovascular information, like the degree of

angiosclerosis, could also be picked up from the PPG signal. All the physiological

parameters could be reflected in PPG signal feature points. In Figures 2.1 and 2.2,
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the relationships between the original PPG signals, its first and second derivatives

are shown, respectively. Feature points in PPG signals are determined using these

correlations. Systolic peak is the main peak of the signal. At this point, the blood

pressure (BP) is highest in the whole period. Another crest is called diastolic peak,

which could reflect the compliance of the arteriola. Heart rate could be obtained

from the interval of two main peaks (TPP); the time interval of systolic-diastolic

peak was an index of arteriosclerosis. However, due to the presence of various factors,

the feature points for real PPG signals were always hard to get directly. So there is

great meaning to find efficient and practical pre-processing and feature extraction

methods to pinpoint the PPG signal.

Figure 2.1: Signal measurements.(a) original fingertip PPG and (b) the first deriva-

tive of PPG

2.2 Signal Processing

The signal is measured by electrodes attached to the skin and is sensitive to

disturbances such as power source interference and noises due to movement artifacts.

Segmentation signal is part of signal processing that aims to remove motion artifact

and frequency noise contained in PPG signal. For object recognition system, the

7



Figure 2.2: Signal measurements.(a) original fingertip PPG and (b) the second

derivative of PPG

signal will be divided into several sections with a limit of two different signals. In

this study, the signal is divided as a wave where the wave has only one systolic

peak and diastolic peak then be normalized. Using the Savitzky-Golay filter, the

unwanted peaks are removed via a given threshold and only the systolic peak and

diastolic peak are determined and located. We perform the peak detection on the

smooth signals and use the logical indexing to find the locations of the peaks.

2.2.1 Savitzky-Golay Filter

Savitzky-Golay smoothing filters (also called digital smoothing polynomial fil-

ters or least-squares smoothing filters) are typically used to ”smooth out” a noisy

signal whose frequency span (without noise) is large. In this type of application,

Savitzky-Golay smoothing filters perform much better than standard averaging FIR

filters, which tend to filter out a significant portion of the signal’s high frequency

content along with the noise. Although Savitzky-Golay filters are more effective

at preserving the pertinent high frequency components of the signal, they are less

successful than standard averaging FIR filters at rejecting noise.

8



Savitzky-Golay filters are optimal in the sense that they minimize the least-

squares error in fitting a polynomial to frames of noisy data. An examples of

Savitzky-Golay smoothing filters is shown in Figure 2.3
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Figure 2.3: An example of Savitzky-Golay smoothing filters: the upper diagram

shows the original signals and the lower diagram shows the result after filtering.

2.3 Classification

2.3.1 Random Forest

Random forests is a novel ensemble classifier; it uses a similar but improved

method of bootstrap as bagging. It uses the strategy of a random selection of a

subset of m predictors to grow each tree, where each tree is grown on a bootstrap

sample of the training set. This number, m, is used to split the nodes and is

much smaller than the total number of variables available for analysis. For further

information, please see Breiman [9], in detail.
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2.3.2 Multilayer Perceptron

A neural network is an interconnected group of artificial neurons that uses

a computational model for information processing. The neural network selected

for this study is a multilayer perceptron [10]. The model of a neuron shown in

Figure 2.4 indicates that q input signals are received by a neuron. These inputs

are weighted and summed together. The threshold, which is treated as an extra

connection weight, is then applied to the weighted-sum result. Thus, the linear

combiner output (z) or input to the activation function is given by Equation 2.1.

z =
∑
i

wiui (2.1)

where ui is the i th input to the neuron and wi is the connection weight for the the

input ui. In addition, u0 = −1 and w0 is the threshold. The neuron output (h(z ))

is the output from the activation function and is denoted by Equation 2.2. As a

result, the output signal from each neuron is limited by a logistic sigmoid function.

The neuron model described above is used throughout the multilayer feed-forward

network.

h(z) =
1

1 + exp(−z)
. (2.2)

Figure 2.4: Schematic diagram of a multilayer perceptron: (a) computational model

of a neuron and (b) feed-forward network with one hidden layer.
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(a) Front side (b) Back side

Figure 2.5: The pulse sensor

2.3.3 Näıve Bayes

Bayesian classification is a statistical classification that is able to predict the

probability of a class. Bayesian classification is calculated based on Bayes’ Theorem

described in Equation 2.3.

P (H|X) =
P (X|H)P (H)

P (X)
(2.3)

Based on the formula described above, H and X represent a class of events and an

attribute, respectively. P (H) is called the prior probability of a class H. P (X) is the

prior probability of an attribute X. P (X|H) is the posterior probability that reflects

the probability of a class H on the attribute X. P (X|H) indicates the possibility of

predictors X in a class H.

2.4 Pulse Sensor

[11]Pulse Sensor is a well-designed plug-and-play heart-rate sensor for Arduino.

It can be used by students, artists, athletes, makers, and game & mobile developers

who want to easily incorporate live heartrate data into their projects. The sensor

clips onto a fingertip or earlobe and plugs right into Arduino. It also includes an

open-source monitoring app that graphs pulses obtained in real time.
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As shown in Figure 2.5, the front of the sensor with the Heart logo is the side

that makes contact with the skin. On the front, a small round hole is where the

LED shines through from the back, and there is also a little square just under the

LED. The square is an ambient light sensor, exactly like the one used in cellphones,

tablets, and laptops, to adjust the screen brightness in different light conditions.

The LED shines light into the fingertip or earlobe, or other capillary tissue, and

sensor reads the amount of light that bounces back. The other side of the sensor is

where the rest of the parts are mounted. The cable is a 24” flat color coded ribbon

cable with 3 male header connectors. Red wire = +3V to +5V, black wire = GND

and purple wire = Signal as seen in 2.6.

Figure 2.6: Pulse sensor wire

In 2.7., the schematic diagram of the pulse sensor used for acquiring the PPG

signal is shown.
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Figure 2.7: Schematic of Pulse sensor

13



Chapter 3 Approach

3.1 Data Acquisition

In this study, PPG signals are acquired from a total of fifty one healthy vol-

unteers, and twenty one of them are male and the remaining persons are female.

The statistics for age, weight and height of the volunteers are shown in Table 3.1.

The data were obtained from their right index fingers while they were seated in

a calm position. Total 90 period-signal was acquired from each individual at two

different time spans. 30 characteristic features were extracted for each period and

these characteristic features are used for the purpose of classification.

Groups Age Height Weight

(years) (cm) (kg)

Mean ± SD (range) for males 25±4.36 175±7.62 67.81±13.06

(18-41) (157-185) (48-95)

Mean ± SD (range) for females 24.46±2.44 157.87±3.75 55.37±9.59

(21-32) (150-165) (43-95)

Mean ± SD (range) for total 24.68±3.35 162.75±7.92 60.44±12.63

(18-41) (150-185) (43-95)

Table 3.1: Descriptive statistics for male and female groups

Pulse sensor is a heart rate detection sensor consisting of LEDs and An Avalanche

Photodiodes (APDs) and it is connected to the arduino. LEDs serve as the light

source while the LDR serves as the light receiver which receives the passing or re-

flected light by the skin. APDs can be considered as photodetectors which are

electronic semiconductor devices that utilize highly sensitive photoelectric effect to

convert light into electricity. APDs receive a light that changes according to changes

in blood flow in the skin. The Pulse Sensor connected to the Arduino catching the

heart beats in digital signals is shown in Figure 3.1. The Arduino is then connected

to a computer and the heart beat signals can be transferred to the computer for
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(a) Arduino and pulse sensor series (b) Data digital from sensor

Figure 3.1: The acquisition of PPG signal from the volunteers.

further analysis.

3.2 Identification System of PPG Signal

In this study, the block diagram of the identification system using PPG signals

is shown in Figure 3.2. In this system were the PPG signals acquired by an arduino

and a pulse sensor with a 5 Hz sampling frequency. In order to debug the noises in

the PPG signal as a pre-processing, a band-pass filter out of 3rd order Butterworth

low-pass and high-pass filters with cutoff frequencies of .8Hz and 5Hz is utilized.

Low order polynomial polyfit and the polynomial polyval are used to detrend

the signal with obvious baseline drift. This drift was mainly caused by the breathe

signal and the motion artifact. A Polynomial method is proposed to eliminate the

influence of the breathe signal. The result of the polynomial reconstruction method

is shown in Figure 3.4.

The method for detecting the peaks was implemented in MATLABr. Peaks

detection was implemented using the function findpeaks, in which, the data of

heartbeat have to be input and there are two input arguments have to be defined

as shown in Figure 3.5. The MinPeakDistance defines the function used to

specify the small peaks distance, or minimum separation between peaks as a positive

integer. We can use the MinPeakDistance option to specify that the algorithm
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Figure 3.2: The block diagram of an identification system using Heartbeat PPG

Signals.
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(a) PPG signal with a trend
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(b) PPG signal after trend removing

Figure 3.3: Detrend signal

ignore small peaks that occur in the neighborhood of a larger peak. When we

specify a value for MinPeakDistance, the algorithm initially identifies all the

peaks in the input data and sorts those peaks in descending order. Beginning with

the largest peak, the algorithm ignores all identified peaks not separated by more

than the value of MinPeakDistance. The MinPeakHeight function finds only

those peaks that are greater than the value of MinPeakHeight. findpeaks only

returns peaks that exceed the MinPeakHeight.

Figure 3.6 (a) shows the original signal which results from the sensor with a

baseline shift and therefore does not represent the true amplitude. In order to remove
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the trend, fit a low order polynomial to the signal and use the polynomial to remove

the trend. Figure 3.6(b) shows the detrend PPG signal. Before peak detection

step, determine the locations of the each proposed peak. Thresholding the peaks to

locate the proposed peak can remove unwanted peaks caused by noise and it can

be done by filtering. In this paper, Savitzky-Golay filtering is used to remove the

noise in the signal and the result is shown in Figure 3.6(c). After detrending as

shown in Figure 3.6(b), find the main-complex peaks, which are the most prominent

repeating peaks in the PPG signal, such as systolic peak (maximum value), diastolic

peak and minimum peak. Figure 3.6(d) shows the obtained peaks. The derivative

for one-dimensional signals can be calculated by Equations 3.1 and 3.2. The graphs

of the 1st and 2nd derivatives are shown in Figures 3.6(e) and 3.6(f), respectively.

1st derivative :
∂f

∂x
= f(x+ 1)− f(x) (3.1)

2nd derivative :
∂2f

∂x2
= f(x+ 1) + f(x− 1)− 2f(x) (3.2)

In Figures 3.7, we do some labels on the PPG signal and its corresponding first

derivative and second derivative. For example, x, y, z labeling from smoothing signal

means systolic peak, diastolic peak and minimum peak, respectively, with their

corresponding times are labeled as t1, t2, and t3, respectively. The other features

can be calculated by these major feature spots detected in the time domain. Time

between two systolic peak referred to as Time Peak to Peak (tpp). The distance

between the beginning and the end of the PPG waveform labeled as Time Pulse

Interval (tpi). Time between to diastolic peak labeled as Time between Middle

Peak (tmp). Augmentation index (AI) is defined for a ratio calculated from the

blood pressure waveform as the ratio of systolic peak to diastolic peak (diastolic

peak/systolic peak). Takazawa et. al. [12] defined the augmentation index ( AI )

as the ratio of y to x as Equation 3.3. Rubins et. al. [13] used the reflection index

as in Equation 3.4 and introduced an alternative augmentation index. The initial

peak point for the first derivative and second derivative are a1 and a2 respectively.

Then comes b1 and e1 points for the first derivative and b2 for the second derivative,

following the position of systolic peak point. Corresponding times of each feature
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from both first derivative and second derivative signals are labeled as a1 time, b1

time, c1 time, a2 time, and b2 time, respectively.

A total of 30 characteristic features are calculated. Table 3.2 shows all 30

features defined for the system. In second column from Table 3.2 are shown the

values of each labels from the signal of Figure 3.7.

AI :
diastolic peak(y)

systolic peak(x)
(3.3)

AlternativeAI :
systolic peak(x)− diastolic peak(y)

systolic peak(x)
(3.4)
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(a) Peak Detection in Original PPG Signal
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(b) Peak Detection in Median Filtering PPG Sig-

nal
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(c) Peak Detection in Savitzky-Golay Filtering

PPG Signal
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(d) Peak Detection in 3-point moving average Fil-

tering PPG Signal

Figure 3.4: Detrend signal
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Figure 3.5: Block Diagram of findpeaks function
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(b) Detrended PPG signal
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(c) Savitzky-Golay Filtering in PPG

Signal
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(d) Peak detection in Smoothing PPG

signal
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(e) Peak detection in 1-st derivative

PPG signal
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Figure 3.6: Peak detection result of Subject 1
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Figure 3.7: The specified parameters used to derive the characteristic features from

the PPG signal.
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No. Features The values of each label

1 Systolic peak (x) 363.907

2 Systolic peak time (t1) 41

3 Time peak to peak (tpp) 32

4 Minimum peak (z) 186.3494

5 Minimum peak time (t3) 63

6 Time Pulse interval (tpi) 35

7 Diastolic peak (y) -78.5053

8 Diastolic peak time (t3) 55

9 Time between diastolic peaks (tdp) 32

10 y/x (augmentation index) -0.21573

11 (x-z)/x (alternative augmentation index) 1.215729

12 t1/x (systolic peak output curve) 0.112666

13 y/(tpi-t3) (diastolic peak downward curve) 2.80376

14 t1/tpp 1.28125

15 t2/tpp 1.96875

16 t3/tpp 1.71875

17 ∆T1 (time between diastolic and systolic peaks) 14

18 ∆T2 (time between minimum and systolic peaks) 22

19 ∆T3 (time between minimum and diastolic peaks) 8

20 ∆T1/tpp 0.4375

21 a1 108.1641

22 a1 time 37

23 b1 84.50754

24 b1 time 44

25 c1 12.24569

26 c1 time 52

27 a2 28.34428

28 a2 time 33

29 b2 40.01237

30 b2 time 40

Table 3.2: All 30 features defined for the system
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Chapter 4 Experimental Results

4.1 Classification Result

After processing each subject in the dataset, the extracted features are used as

an input data in the classification stage. Four scenarios are used to test the accuracy

of the system: training set, supplying test set, cross validation and percentage split.

In the training set option, testing is performed by using the training data itself. In

the cross-validation option, 10-fold is used. As for the percentage split option, from

90-period-signal, 66% is used for the training data and the rest is used for testing

data. The data used for training and testing is chosen by the system itself. For the

supplying test set option, from 90-period-signal taken, 70-period-signal of the initial

data are used for training data and the remaining data are used for testing data.

Furthermore, classification methods using Näıve Bayes, Multilayer Perceptron and

Random Forest are proposed, respectively.

A feature ranking algorithm is proposed for the 30 features calculated during

this study and the result is shown in Table 4.1. The first 5, 10, 15, 20, 25 and 30

features from the ranked ones are selected and used as the classification input.

The percentages of classification success using Multilayer Perceptron are shown

in Table 4.2 and are graphically shown in Figure 4.1. The best classification success

rate is achieved as 98.6928% for using the training set option and 94.6078% for

supplying test set option, where all 30 features are used. As for the supplying test

set option, it is seen that the classification success having the same accuracy even

if there is feature selection and ranking process. The performance measurement

values calculated from Multilayer Perceptron, such as True Positive, False Positive,

Precision, Recall, F-measure and ROC Area, are shown in Table 4.5.

The percentages of classification success using Näıve Bayes are shown in Table

4.3 and are graphically shown in Figure 4.2. The best classification success rate is

achieved as 92.7451 % for supplied test set option, where the first 15 features are
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used. Besides, it is seen that when there is no feature selection and ranking process,

92.1569% of classification success at most could be achieved for the classification

algorithm in the event that all the features are used. In this case, a 0.58 % of

increase in the classification success is attained through the feature ranking and

selection process. The performance measurement values calculated from Nave Bayes,

such as True Positive, False Positive, Precision, Recall, F-measure and ROC Area,

are shown in Table 4.7.

The percentages of classification success using Random Forest are shown in

Table4.4 and are graphically shown in Figure 4.3. The best classification success

rate is achieved as 99.9346% for use training set option of the classification algorithm,

while 91.9164% is achieved for supplied test set option, where the first 25 features

are used. Besides, it is seen when there is no feature selection and ranking process,

90.3922% of classification success at most could be achieved for the classification

algorithm in the event that all the features are used. In this case, a 1.52% of

increase in the classification success is attained through the feature ranking and

selection process. The performance measurement values calculated from Random

Forest, such as True Positive, False Positive, Precision, Recall, F-measure and ROC

Area, are shown in Table 4.6.

Table 4.5, 4.6 and 4.7 the results of the accuracy of the classification method

implemented in where the 30 features used are shown. There are four options to

classify the data: use training set, supplied test set, cross validation and percentage

split. From those options, use training set is slightly higher than the rate for other

options, in particular the accuracy is higher for the Multilayer Perceptron. The value

indicating the accuracy of identification shows that Multilayer Perceptron method

has a slightly higher accuracy rate supplied test set, but it takes the more time of

computation.

True positive (TP) indicates that the type of signal from the PPG signal is

appropriately identified according to the class. False positive (FP) is a type of signal

from the PPG signal which should be identified correctly in class classification wrong

turns in the process of identification. The percentage of correct classified instances
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is often called accuracy or sample accuracy. Kappa is a chance corrected measure

of agreement between the classifications and the true classes. It is calculated by

taking the agreement, expected by chance away from the observed agreement and

dividing by the maximum possible agreement. A value greater than 0 means that

the classifier is doing better than chance. The error rates are used for numeric

prediction rather than classification. In numeric prediction, predictions are not just

right or wrong, the error has a magnitude, and these measures reflect that.

Table 4.8 the comparison of different classification methods to see how the per-

formance varies across different architectures are shown. The performance results

show accuracy (ACC), for the following architectures: Fuzzy, K-nn, Nave Bayes,

Random Forest and Multilayer Perceptron. The first column of Table 4.8 the per-

formance for fuzzy logic by Gu et al. and the second column the performance for

k-nn by Kasgaovlu et al. are shown for seventeen subjects and thirty subjects, re-

spectively. In our study, fifty one subjects joined for the experiments, this method

can achieve good performance for more data samples. In this case, a 0.6% increase

in the classification success is attained, compared with Fuzzy logic method and a

0.16% increase compared with K-nn method.

Clustering the data with poincare plots was used to clarify the PPG signal

characteristics possessed by each individual. Poincare plots are drawn for the three

major features: systolic peak, diastolic peak and minimum peak. While a poincare

plot with all the data points clustered together produces a good quality of the signal,

the poincare plot with the scattered data points produces the corrupted signals. This

clustering encompassed the data testing in five subjects is shown in Figure 4.4. As

shown in the graph clustering results, the value of the feature extraction on each

individual has their own characteristics. In some subjects, signal value changes in

heart rate is unstable, which is causes the data matching process task cannot be

optimal.
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Figure 4.1: The selected feature numbers and the percentages of classification success

using Multilayer Perceptron

Figure 4.2: The selected feature numbers and the percentages of classification success

using Näıve Bayes
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Ranked attributes % Accuracy features

1 2.8615 feature 19

2 2.81223 feature 18

3 2.42353 feature 17

4 2.14412 feature 20

5 1.91653 feature 11

6 1.7881 feature 10

7 1.71755 feature 23

8 1.68597 feature 29

9 1.63417 feature 21

10 1.57064 feature 1

11 1.49101 feature 4

12 1.4482 feature 27

13 1.21659 feature 25

14 1.08117 feature 7

15 1.0099 feature 3

16 0.76155 feature 9

17 0.61778 feature 6

18 0.59481 feature 13

19 0.54094 feature 12

20 0.018798 feature 8

21 0.017113 feature 26

22 0.09972 feature 2

23 0.09625 feature 28

24 0.09597 feature 22

25 0.08143 feature 16

26 0.0807 feature 30

27 0.07054 feature 15

28 0 feature 14

29 0 feature 5

30 0 feature 24

Table 4.1: Attribute Evaluator (supervised, Class (nominal): 30 class): Information

Gain Ranking Filter
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Multilayer Perceptron

The selected feature numbers

5 10 15 20 25 30

Using 62.7015% 91.7429% 95.3595% 96.7974% 97.7996% 98.6928%

training Set

Supplying 50.4995% 86.376% 90.2941% 91.644 % 93.3697% 94.6078%

Test Set

Cross 59.1503% 89.0196% 91.6993% 93.5294% 95.8606% 94.7277%

Validation

Percentage 55.6054% 85.9705% 90.7111% 92.5048% 93.9142% 94.4266%

Split

Table 4.2: The selected feature numbers and the percentages of classification success

using Multilayer Perceptron

Näıve Bayes

The selected feature numbers

5 10 15 20 25 30

Using 66.6449% 84.6623% 90.7625% 90.8932% 90.6536% 90.3486%

training Set

Supplying 61.2745% 87.0588% 92.7451% 92.4614 % 92.0073% 92.1569%

Test Set

Cross 64.0087% 83.8126% 90% 89.5425% 89.5425% 88.5839%

Validation

Percentage 62.9084% 82.319% 88.9814% 88.0846% 88.0205% 87.7002%

Split

Table 4.3: The selected feature numbers and the percentages of classification success

using Näıve Bayes
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Random Forest

The selected feature numbers

5 10 15 20 25 30

Using 98.8889% 99.7386% 99.9129% 99.8039% 99.9346% 99.8257%

training Set

Supplying 69.2157% 85.4902% 89.6078% 91.7348 % 91.9164% 90.3922%

Test Set

Cross 82.1786% 92.7669% 94.4227% 94.8802% 95.3377% 95.207%

Validation

Percentage 80.8456% 91.4158% 92.6329% 93.5298% 93.4017% 93.5939%

Split

Table 4.4: The selected feature numbers and the percentages of classification success

using Random Forest

Figure 4.3: The selected feature numbers and the percentages of classification success

using Random Forest
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Multilayer Perceptron

Use training Supplied Cross Percentage

Set Test Set Validation Split

Correctly Classified 98.6928% 94.6078% 94.7277% 94.4266%

Instances

Incorrectly Classified 1.3072% 5.3922% 5.2723% 5.5734%

Instances

Kappa statistic 0.9867 0.945 0.9462 0.9431

Mean absolute error 0.0015 0.0045 0.0036 0.0042

Root mean 0.0225 0.0456 0.0414 0.0435

squared error

Relative absolute error 4.0163% 11.6916% 9.3319% 10.8539%

Root relative 16.2607% 32.8716% 29.8865% 31.3847%

squared error

TP Rate 0.987 0.946 0.947 0.944

FP Rate 0 0.001 0.001 0.001

Precision 0.987 0.951 0.948 0.947

Recall 0.987 0.946 0.947 0.944

F-Measure 0.987 0.945 0.947 0.944

ROC Area 0.99 0.998 0.997 0.998

Calculation Time 754.75 s 954.31 s 330.42 376.27 s

Table 4.5: The results of the testing process with the target output using Multilayer

Perceptron with 30 features are used
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Näıve Bayes

Use training Supplied Cross Percentage

Set Test Set Validation Split

Correctly Classified 90.3486% 92.1569% 88.5839% 87.7002%

Instances

Incorrectly Classified 9.6514% 7.8431% 11.4161% 12.2998%

Instances

Kappa statistic 0.9.016 0.92 0.8836 0.8745

Mean absolute error 0.0038 0.0033 0.0046 0.005

Root mean 0.0572 0.051 0.0626 0.0657

squared error

Relative absolute error 10.0124% 8.5873% 11.8542% 12.9764%

Root relative 41.2403% 36.8115% 45.1387% 47.371%

squared error

TP Rate 0.903 0.922 0.886 0.877

FP Rate 0.002 0.002 0.002 0.002

Precision 0.911 0.931 0.894 0.893

Recall 0.903 0.922 0.886 0.877

F-Measure 0.905 0.923 0.887 0.88

ROC Area 0.99 0.997 0.99 0.995

Calculation Time 0.39 s 0.11 s 0.15 s 0.05 s

Table 4.6: The results of the testing process with the target output using Näıve

Bayes with 30 features are used
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Random Forest

Use training Supplied Cross Percentage

Set Test Set Validation Split

Correctly Classified 99.8257% 90.3922% 95.3595% 93.5939%

Instances

Incorrectly Classified 0.1743% 9.6078% 4.6405% 6.4061%

Instances

Kappa statistic 0.9982 0.902 0.9527 0.9346

Mean absolute error 0.0028 0.0125 0.0077 0.0086

Root mean 0.0225 0.0665 0.0493 0.053

squared error

Relative absolute error 7.3489% 32.39% 20.1467% 22.4212%

Root relative 16.2029% 47.9917% 35.5478% 38.2248%

squared error

TP Rate 0.998 0.904 0.954 0.936

FP Rate 0 0.002 0.001 0.001

Precision 0.998 0.911 0.954 0.937

Recall 0.998 0.904 0.954 0.936

F-Measure 0.998 0.902 0.953 0.935

ROC Area 1 0.993 0.99 0.996

Calculation Time 1.51 s 1.25 s 1.53 s 2.01 s

Table 4.7: The results of the testing process with the target output using Random

Forest with 30 features are used

Fuzzy K-nn Naive Bayes Random Forest MLP

ACC 94% 94.44% 92.15% 90.39% 94.6%

Table 4.8: Comparison with different classification methods.
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(a) The class distribution for the smoothing signal.
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(b) The class distribution for the 1st derivative signal.
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(c) The class distribution for the 2nd derivative signal.

Figure 4.4: The class distributions of five people according to the major features.
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Chapter 5 Conclusion

This study has tested the ability of PPG signals for biometric identification

system. Based on the research that has been done can be concluded that:

• Designed system can identify the heartbeat of each individual.

• Feature extraction based on the three major peaks value of the photoplethys-

mography signal.

• The results were evaluated via the Multilayer Perceptron, Nave Bayes and

Random Forest classifier models; the true positive rates are then 94.6078%,

92.1569% and 90.3922%, respectively. The obtained results showed that the

proposed algorithm and the biometric identification model based on this de-

veloped PPG signal are very promising for contact less recognizing systems.
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Abstract—The importance of biometric system can distinguish
the uniqueness of personal characteristics. The most popular
identification systems have concerned the method based on
fingerprint, face detection, or iris. This study is trying to improve
the biometric system using the Photoplethysmography signal by
heart rate. The proposed algorithm calculates the contribution
of all extracted features to biometric recognition. The efficiency
of the proposed algorithms is demonstrated by the experiment
results obtained from the Multilayer Perceptron, Nave Bayes
and Random Forest classifier applications based on the extracted
features. There are fifty one persons joined for the experiments;
the PPG signals of each person were recorded for two different
time spans. The first half data are used for training and the rest
are used for testing. 30 characteristic features were extracted
for each period and these characteristic features are used for
the purpose of classification. The results were evaluated via the
Multilayer Perceptron, Nave Bayes and Random Forest classifier
models; the true positive rates are then 94.6078%, 92.1569% and
90.3922%, respectively. The obtained results showed that both the
proposed algorithm and the biometric identification model based
on this developed PPG signal are very promising for contact less
recognizing systems.

Keywords—Bakteri Tuberkulosis, Segmentasi, Klasifikasi, Count-
ing,Probabilistic Neural Network.

I. INTRODUCTION

SEVERAL studies have been developed for many biometric
identification using fingerprint, face detection, iris, hand

geometry, lip-movements, walkingstyle, electroencephalogra-
phy (EEG) and electrocardiography(ECG). This biometric
system plays an important role in network security issues.
The uniqueness of each individual was needed to improve the
security system applications. Biometric identification methods
greatly affect the security of information technology. Instead
of using password for access control, biometric identification
can be used for authentication. Biometric information is hard
to be duplicated, lost, forgotten, shared or transferred because
it is a part of human body. Unfortunately, hackers can possibly
get into system via counterfeit biometric information.

In this study, the photoplethysmography (PPG) signal was
used for data input that is capable of implementing identi-
fication functionality. PPG is a non-invasive electro-optical
method which gives information about the volume of blood
flowing through a testing zone of the body, close to the skin.

PPG device receives and responds to a signal or stimulus
from pulse oximeter technology to capture changes in blood
volume based Light Emitting Diodes (LEDs). Due to changes
in blood volume corresponding to the number (synchronous)
of the heartbeat, PPG technique can be used to measure the
beat of heart rate.

Gu et. al. [3], had showed a fuzzy-logic approach to examine
the feasibility of the application of PPG signals as a new
method in the identification of humans. The PPG signals were
acquired from the fingertips of 17 healthy subjects and were
used as fuzzy entries for the classification of four distinctive
features such as the peak number, the upward slope, the down-
ward slope, and the time interval. This fuzzy-based decision-
making can reach up to 94% in the same testing and 82.3%
for two different trials. This outcome suggests that this new
PPG-based biometry is potentially feasible in the verification
of humans.

Spachos et. al. [2], on the other hand, the feasibility of the
application of PPG signal as a single biometrical feature along
with the signal-processing methods for the matter involved is
being researched. The PPG signals were acquired from the
fingertips of 29 healthy subjects using BvpPLUX System from
OpenSignal PPG Dataset and also using NONIN pulse oxime-
ter from BioSec PPG Dataset. The classification was applied
using the Nearest Neighbor and Majority Voting for the data to
match the input signal. The accuracy results of identification
depend on the dataset used. This can occur because of the
influence of the circuit, the sensor and the current state of data
collection. The experimental results suggesting biometrics for
identification can be used when PPG signals come under a
controlled environment with infallible sensors.

Kavsaoglu et. al. [4] got data using a microcontroller and
sensors DCM03 then using k-NN (k-Nearest Neighbor) to do
classification. Forty different features were used for feature
extraction stage, including augmentation index, systolic and
diastolic peak, pulse width, and peak-to-peak interval. When
the results were evaluated for the k-NN classifier model created
along with the proposed algorithm, an identification of 90.44%
for the 1st configuration, 94.44% for the 2nd configuration,
and 87.22% for the 3rd configuration has successfully been
attained.

The method proposed for biometric recognition in this study
is composed by data acquisition, pre-processing, PPG signaling
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and the feature extraction of PPG signal using smoothing PPG
signal and its first and second derivatives. The process of data
acquisition was provided by 51 volunteers through a PPG data
acquisitioncard. Various artifacts like analog circuit noises to
be found in the signal acquired by pre-processing, medium
illuminance change, respiration and base deviation arising from
movement are eliminated. 30 features of PPG signal in the time
domain, such as systolic peak, diastolic peak, augmentation
index, and peak-to-peak interval were found using the PPG
signal and its derivatives. For each of these features, feature
ranking process was performed by separately calculating their
contribution to biometric recognition.

II. DATA ACQUISITION AND METHODOLOGY

A. Data Acquisition

Pulse sensor is a heart rate detection sensor consisting
of LEDs and An Avalanche Photodiodes (APDs) and it is
connected to the arduino. LEDs serve as the light source
while the LDR serves as the light receiver which receives the
passing or reflected light by the skin. APDs can be considered
as photodetectors which are electronic semiconductor devices
that utilize highly sensitive photoelectric effect to convert light
into electricity. APDs receive a light that changes according to
changes in blood flow in the skin. The Pulse Sensor connected
to the Arduino catching the heart beats in digital signals
is shown in Figure 1. The Arduino is then connected to a
computer and the heart beat signals can be transferred to the
computer for further analysis.

Fig. 1. The acquisition of PPG signal from the volunteers.

B. Identification System of PPG Signal

In this study, the block diagram of the identification sys-
tem using PPG signals is shown in Figure 2. The signal is
measured by electrodes attached to the skin and is sensitive to
disturbances such as power source interference and noises due
to movement artifacts. Segmentation signal is part of signal
processing that aims to remove motion artifact and frequency
noise contained in PPG signal. For object recognition system,
the signal will be divided into several sections with a limit of
two different signals. In this study, the signal is divided as a
wave where the wave has only one systolic peak and diastolic
peak then be normalized. Using the Savitzky-Golay filter, the
unwanted peaks are removed via a given threshold and only the
systolic peak and diastolic peak are determined and located.
We perform the peak detection on the smooth signals and use
the logical indexing to find the locations of the peaks.

Fig. 2. The block diagram of an identification system using Heartbeat PPG
Signals.

After detrending and filtering, find the main-complex peaks,
which are the most prominent repeating peaks in the PPG
signal, such as systolic peak (maximum value), diastolic peak
and minimum peak. Figure 3 shows the obtained peaks. The
derivative for one-dimensional signals can be calculated by
Equations 1 and 2. The graphs of the 1st and 2nd derivatives
are shown in Figures 4 and 5, respectively.

Fig. 3. Peak detection in Smoothing PPG signal.

1st derivative :
∂f

∂x
= f(x+ 1)− f(x) (1)

2nd derivative :
∂2f

∂x2
= f(x+ 1) + f(x− 1)− 2f(x) (2)

In Figures 6, we do some labels on the PPG signal and
its corresponding first derivative and second derivative. For
example, x, y, z labeling from smoothing signal means sys-
tolic peak, diastolic peak and minimum peak, respectively,
with their corresponding times are labeled as t1, t2, and t3,
respectively. The other features can be calculated by these
major feature spots detected in the time domain. Time between
two systolic peak referred to as Time Peak to Peak (tpp).
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Fig. 4. Peak detection in 1-st derivative PPG signal.

Fig. 5. Peak detection in 2-nd derivative PPG signal.

The distance between the beginning and the end of the PPG
waveform labeled as Time Pulse Interval (tpi). Time between
to diastolic peak labeled as Time between Middle Peak (tmp).
Augmentation index (AI) is defined for a ratio calculated from
the blood pressure waveform as the ratio of systolic peak to
diastolic peak (diastolic peak/systolic peak). Takazawa et. al.
[6] defined the augmentation index ( AI ) as the ratio of y to
x as Equation 3. Rubins et. al. [7] used the reflection index
as in Equation 4 and introduced an alternative augmentation
index. The initial peak point for the first derivative and second
derivative are a1 and a2 respectively. Then comes b1 and e1
points for the first derivative and b2 for the second derivative,
following the position of systolic peak point. Corresponding
times of each feature from both first derivative and second
derivative signals are labeled as a1 time, b1 time, c1 time, a2
time, and b2 time, respectively.

A total of 30 characteristic features are calculated. Table I
shows all 30 features defined for the system. In second column
from Table I are shown the values of each labels from the
signal of Figure 6.

Fig. 6. The specified parameters used to derive the characteristic features
from the PPG signal.

AI :
y

x
(3)

Alternative AI :
x− y

x
(4)

C. Classification Result
After processing each subject in the dataset, the extracted

features are used as an input data in the classification stage.
Four scenarios are used to test the accuracy of the system:
training set, supplying test set, cross validation and percentage
split. In the training set option, testing is performed by using
the training data itself. In the cross-validation option, 10-fold
is used. As for the percentage split option, from 90-period-
signal, 66% is used for the training data and the rest is used
for testing data. The data used for training and testing is
chosen by the system itself. For the supplying test set option,
from 90-period-signal taken, 70-period-signal of the initial
data are used for training data and the remaining data are
used for testing data. Furthermore, classification methods using
Naı̈ve Bayes, Multilayer Perceptron and Random Forest are
proposed, respectively.

A feature ranking algorithm is proposed for the 30 features
calculated during this study and the result is shown in Table
II. The first 5, 10, 15, 20, 25 and 30 features from the ranked
ones are selected and used as the classification input.

The percentages of classification success using Multilayer
Perceptron are shown in Table III and are graphically shown
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TABLE I. ALL 30 FEATURES DEFINED FOR THE SYSTEM

No. Features The values of each label
1 Minimum peak (z) 363.907
2 Minimum peak time (t1) 41
3 Distance between minimum peak 32
4 Systolic peak (x) 186.3494
5 Systolic peak time (t2) 63
6 peak to peak (tpp) 35
7 Diastolic peak (y) -78.5053
8 Diastolic peak time (t3) 55
9 pulse interval (tpi) 32
10 x/z (augmentation index) -0.21573
11 (x-z)/x (alternative augmentation index) 1.215729
12 ∆T (time between systolic 0.112666

and diastolic peaks)
13 ∆T2 (time between systolic 2.80376

and minimum peaks)
14 ∆T3 (time between minimum 1.28125

and diastolic peaks)
15 t2/x (systolic peak output curve) 1.96875
16 y/(tpi-t3) (diastolic peak downward curve) 1.71875
17 t1/tpp 14
18 t2/tpp 22
19 t3/tpp 8
20 ∆T/tpp 0.4375
21 a1 108.1641
22 a1 time 37
23 b1 84.50754
24 b1 time 44
25 c1 12.24569
26 c1 time 52
27 a2 28.34428
28 a2 time 33
29 b2 40.01237
30 b2 time 40

in Figure ??. The best classification success rate is achieved as
98.6928% for using the training set option and 94.6078% for
supplying test set option, where all 30 features are used. As for
the supplying test set option, it is seen that the classification
success having the same accuracy even if there is feature
selection and ranking process. The performance measurement
values calculated from Multilayer Perceptron, such as True
Positive, False Positive, Precision, Recall, F-measure and ROC
Area, are shown in Table VI.

The percentages of classification success using Naı̈ve Bayes
are shown in Table IV and are graphically shown in Figure ??.
The best classification success rate is achieved as 92.7451 %
for supplied test set option, where the first 15 features are used.
Besides, it is seen that when there is no feature selection and
ranking process, 92.1569% of classification success at most
could be achieved for the classification algorithm in the event
that all the features are used. In this case, a 0.58 % of increase
in the classification success is attained through the feature
ranking and selection process. The performance measurement
values calculated from Nave Bayes, such as True Positive,
False Positive, Precision, Recall, F-measure and ROC Area,
are shown in Table VIII.

The percentages of classification success using Random
Forest are shown in TableV and are graphically shown in
Figure ??. The best classification success rate is achieved
as 99.9346% for use training set option of the classification
algorithm, while 91.9164% is achieved for supplied test set
option, where the first 25 features are used. Besides, it is
seen when there is no feature selection and ranking process,
90.3922% of classification success at most could be achieved

TABLE II. ATTRIBUTE EVALUATOR (SUPERVISED, CLASS (NOMINAL):
30 CLASS): INFORMATION GAIN RANKING FILTER

Ranked attributes % Accuracy features
1 2.8615 feature 19
2 2.81223 feature 18
3 2.42353 feature 17
4 2.14412 feature 20
5 1.91653 feature 11
6 1.7881 feature 10
7 1.71755 feature 23
8 1.68597 feature 29
9 1.63417 feature 21
10 1.57064 feature 1
11 1.49101 feature 4
12 1.4482 feature 27
13 1.21659 feature 25
14 1.08117 feature 7
15 1.0099 feature 3
16 0.76155 feature 9
17 0.61778 feature 6
18 0.59481 feature 13
19 0.54094 feature 12
20 0.018798 feature 8
21 0.017113 feature 26
22 0.09972 feature 2
23 0.09625 feature 28
24 0.09597 feature 22
25 0.08143 feature 16
26 0.0807 feature 30
27 0.07054 feature 15
28 0 feature 14
29 0 feature 5
30 0 feature 24

for the classification algorithm in the event that all the features
are used. In this case, a 1.52% of increase in the classification
success is attained through the feature ranking and selection
process. The performance measurement values calculated from
Random Forest, such as True Positive, False Positive, Preci-
sion, Recall, F-measure and ROC Area, are shown in Table
VII.

Table VI, VII and VIII the results of the accuracy of the
classification method implemented in where the 30 features
used are shown. There are four options to classify the data: use
training set, supplied test set, cross validation and percentage
split. From those options, use training set is slightly higher
than the rate for other options, in particular the accuracy is
higher for the Multilayer Perceptron. The value indicating the
accuracy of identification shows that Multilayer Perceptron
method has a slightly higher accuracy rate supplied test set,
but it takes the more time of computation.

True positive (TP) indicates that the type of signal from the
PPG signal is appropriately identified according to the class.
False positive (FP) is a type of signal from the PPG signal
which should be identified correctly in class classification
wrong turns in the process of identification. The percentage
of correct classified instances is often called accuracy or
sample accuracy. Kappa is a chance corrected measure of
agreement between the classifications and the true classes. It is
calculated by taking the agreement, expected by chance away
from the observed agreement and dividing by the maximum
possible agreement. A value greater than 0 means that the
classifier is doing better than chance. The error rates are used
for numeric prediction rather than classification. In numeric
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prediction, predictions are not just right or wrong, the error
has a magnitude, and these measures reflect that.

Table IX the comparison of different classification methods
to see how the performance varies across different architectures
are shown. The performance results show accuracy (ACC), for
the following architectures: Fuzzy, K-nn, Nave Bayes, Random
Forest and Multilayer Perceptron. The first column of Table 4.8
the performance for fuzzy logic by Gu et al. and the second
column the performance for k-nn by Kasgaovlu et al. are
shown for seventeen subjects and thirty subjects, respectively.
In our study, fifty one subjects joined for the experiments, this
method can achieve good performance for more data samples.
In this case, a 0.6% increase in the classification success is
attained, compared with Fuzzy logic method and a 0.16%
increase compared with K-nn method.

III. CONCLUSION

This study has tested the ability of PPG signals for biometric
identification system. Based on the research that has been done
can be concluded that:

• Designed system can identify the heartbeat of each
individual.

• Feature extraction based on the three major peaks value
of the photoplethysmography signal.

• The results were evaluated via the Multilayer Perceptron,
Nave Bayes and Random Forest classifier models; the
true positive rates are then 94.6078%, 92.1569% and
90.3922%, respectively. The obtained results showed
that the proposed algorithm and the biometric identi-
fication model based on this developed PPG signal are
very promising for contact less recognizing systems.

REFERENCES

[1] Y. Gu, Y. Zhang, and Y. Zhang, ”A novel biometric approach in human
veri
cation by photoplethysmographic signals,” in Information Technology
Applications in Biomedicine, 2003. 4th International IEEE EMBS Spe-
cial Topic Conference on, pp. 13-14, April 2003.

[2] P. Spachos, J. Gao, and D. Hatzinakos, ”Feasibility study of photoplethys-
mographic signals for biometric identi
cation,” in Digital Signal Processing (DSP), 2011 17th International
Conference on, pp. 1-5, July 2011.

[3] Y. Gu and Y. Zhang, ”Photoplethysmographic authentication through
fuzzy logic,” in Biomedical Engineering, 2003. IEEE EMBS Asian-Paci
c Conference on, pp. 136-137, Oct 2003.

[4] A. R. Kavsaoglu, K. Polat, and M. R. Bozkurt, ”A novel feature ranking
algorithm for biometric recognition with fPPGg signals,” Computers in
Biology and Medicine, vol. 49, no. 0, pp. 1-14, 2014.

[5] M. Joel and G. Yury, ”http://pulsesensor.com/.”
[6] K. Takazawa, N. Tanaka, M. Fujita, O. Matsuoka, T. Saiki, M. Aikawa,

S. Tamura, and C. Ibukiyama, ”Assessment of vasoactive agents and vas-
cular aging by the second derivative of photoplethysmogram waveform,”
in Hypertension, p. 32(2): 365370, August 1998.

[7] U. Rubins, A. Grabovskis, J. Grube, and I. Kukulis, ”Photoplethys-
mography analysis of artery properties in patients with cardiovascular
diseases,” in 14th Nordic-Baltic Conference on Biomedical Engineering
and Medical Physics (A. Katashev, Y. Dekhtyar, and J. Spigulis, eds.),
vol. 20 of IFMBE Proceedings, pp. 319-322, Springer Berlin Heidelberg,
2008.

TABLE III. THE SELECTED FEATURE NUMBERS AND THE
PERCENTAGES OF CLASSIFICATION SUCCESS USING MULTILAYER

PERCEPTRON

Multilayer Perceptron
The selected feature numbers

5 10 15 20 25 30
Using 62.70% 91.74% 95.36% 96.80% 97.80% 98.69%
training Set
Supplying 50.50% 86.38% 90.30% 91.64% 93.37% 94.61%
Test Set
Cross 59.15% 89.02% 91.70% 93.53% 95.86% 94.73%
Validation
Percentage 55.60% 85.97% 90.71% 92.50% 93.91% 94.42%
Split

TABLE IV. THE SELECTED FEATURE NUMBERS AND THE
PERCENTAGES OF CLASSIFICATION SUCCESS USING NAÏVE BAYES

Naive Bayes
The selected feature numbers

5 10 15 20 25 30
Using 66.65% 84.66% 90.76% 90.89% 90.65% 90.34%
training Set
Supplying 61.27% 87.06% 92.74% 92.46% 92.01% 92.16%
Test Set
Cross 64.01% 83.8% 90% 89.54% 89.54% 88.58%
Validation
Percentage 62.91% 82.32% 88.98% 88.08% 88.02% 87.70%
Split

TABLE V. THE SELECTED FEATURE NUMBERS AND THE
PERCENTAGES OF CLASSIFICATION SUCCESS USING RANDOM FOREST

Random Forest
The selected feature numbers

5 10 15 20 25 30
Using 98.89% 99.74% 99.91% 99.80% 99.93% 99.82%
training Set
Supplying 69.21% 85.49% 89.61% 91.73% 91.91% 90.39%
Test Set
Cross 82.18% 92.76% 94.42% 94.88% 95.34% 95.21%
Validation
Percentage 80.85% 91.42% 92.63% 93.52% 93.40% 93.59%
Split

TABLE VI. THE RESULTS OF THE TESTING PROCESS WITH THE
TARGET OUTPUT USING MULTILAYER PERCEPTRON WITH 30 FEATURES

ARE USED

Multilayer Perceptron
Use training Supplied Cross Percentage

Set Test Set Validation Split
Correctly Classified 98.6928% 94.6078% 94.7277% 94.4266%
Instances
Incorrectly Classified 1.3072% 5.3922% 5.2723% 5.5734%
Instances
Kappa statistic 0.9867 0.945 0.9462 0.9431
Mean absolute error 0.0015 0.0045 0.0036 0.0042
Root mean 0.0225 0.0456 0.0414 0.0435
squared error
Relative absolute error 4.0163% 11.6916% 9.3319% 10.8539%
Root relative 16.2607% 32.8716% 29.8865% 31.3847%
squared error
TP Rate 0.987 0.946 0.947 0.944
FP Rate 0 0.001 0.001 0.001
Precision 0.987 0.951 0.948 0.947
Recall 0.987 0.946 0.947 0.944
F-Measure 0.987 0.945 0.947 0.944
ROC Area 0.99 0.998 0.997 0.998
Calculation Time 754.75 s 954.31 s 330.42 376.27 s
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TABLE VII. THE RESULTS OF THE TESTING PROCESS WITH THE
TARGET OUTPUT USING NAÏVE BAYES WITH 30 FEATURES ARE USED

Naı̈ve Bayes
Use training Supplied Cross Percentage

Set Test Set Validation Split
Correctly Classified 90.3486% 92.1569% 88.5839% 87.7002%
Instances
Incorrectly Classified 9.6514% 7.8431% 11.4161% 12.2998%
Instances
Kappa statistic 0.9.016 0.92 0.8836 0.8745
Mean absolute error 0.0038 0.0033 0.0046 0.005
Root mean 0.0572 0.051 0.0626 0.0657
squared error
Relative absolute error 10.0124% 8.5873% 11.8542% 12.9764%
Root relative 41.2403% 36.8115% 45.1387% 47.371%
squared error
TP Rate 0.903 0.922 0.886 0.877
FP Rate 0.002 0.002 0.002 0.002
Precision 0.911 0.931 0.894 0.893
Recall 0.903 0.922 0.886 0.877
F-Measure 0.905 0.923 0.887 0.88
ROC Area 0.99 0.997 0.99 0.995
Calculation Time 0.39 s 0.11 s 0.15 s 0.05 s

TABLE VIII. THE RESULTS OF THE TESTING PROCESS WITH THE
TARGET OUTPUT USING RANDOM FOREST WITH 30 FEATURES ARE USED

Random Forest
Use training Supplied Cross Percentage

Set Test Set Validation Split
Correctly Classified 99.8257% 90.3922% 95.3595% 93.5939%
Instances
Incorrectly Classified 0.1743% 9.6078% 4.6405% 6.4061%
Instances
Kappa statistic 0.9982 0.902 0.9527 0.9346
Mean absolute error 0.0028 0.0125 0.0077 0.0086
Root mean 0.0225 0.0665 0.0493 0.053
squared error
Relative absolute error 7.3489% 32.39% 20.1467% 22.4212%
Root relative 16.2029% 47.9917% 35.5478% 38.2248%
squared error
TP Rate 0.998 0.904 0.954 0.936
FP Rate 0 0.002 0.001 0.001
Precision 0.998 0.911 0.954 0.937
Recall 0.998 0.904 0.954 0.936
F-Measure 0.998 0.902 0.953 0.935
ROC Area 1 0.993 0.99 0.996
Calculation Time 1.51 s 1.25 s 1.53 s 2.01 s

TABLE IX. COMPARISON WITH DIFFERENT CLASSIFICATION
METHODS.

Fuzzy K-nn Naive Bayes Random Forest MLP
ACC 94% 94.44% 92.15% 90.39% 94.6%
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Introduction

• Several studies have been developed for many biometric 

identification using fingerprint, face detection, iris, hand 

geometry, lip-movements, walking style, 

electroencephalography (EEG) and 

electrocardiography(ECG).

• In this study, the Photoplethysmography (PPG) signal was used 

for data input that is capable of implementing identification 

functionality. 

• PPG is a non-invasive electro-optical method which gives 

information about the volume of blood owing through a testing 

zone of the body, close to the skin.



The relationships between the original fingertip PPG, its first derivative 

and  second derivative



Related Works
No. Authors Year Proposed Works

1 Gu et. al. 2003 • 17 subjects

• 4 features

• 94% accuracy using Fuzzy-logic

2 Yao et. al. 2007 • 2 subjects

• Proved the consistency of subjects within themselves and the 

distinguish ability among different subject

3 Spachos et. al. 2011 • 29 subjects

• Nearest Neighbor and Majority Voting

4 Wei et. al. 2011 • Purposed : to find efficient pre-processing and feature extraction 

algorithms

• Preprocessing : median filter and FIR

• Feature Extraction : interpolation, differentiation and extreme point 

extraction

5 Kavsaoglu et. al. 2014 • 30 subjects

• 40 features

• 94.44% accuracy using K-nn



Methodology

The acquisition 
of PPG signal

• Using pulse 
sensor

Pre-processing 
PPG signal

• Polynomial

• Savitzky-
Golay 
filtering

Feature 
Extraction

• 30 
characteristic 
features

Classification

• Naive Bayes

• Multilayer 
Perceptron

• Random 
Forest

The block diagram of an identification system using Heartbeat PPG Signals



Data Acquisition 
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Descriptive statistics for subjects

• In this study, PPG signals are acquired from a total of 51 healthy subjects.

• Twenty one of them are male and the remaining persons are female.



Block Diagram of findpeaks function

• The MinPeakDistance defines the function used to specify the minimum peak 

distance, or minimum separation between peaks as a positive integer. 

• The MinPeakHeight function finds only those peaks that are greater than the value 

of MinPeakHeight.



Signal Preprocessing
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(a) Original signal of PPG (b) PPG signal after removing 

the Trend

(c) Savitzky-Golay filtering 

in PPG signal



Feature Extraction
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PPG Signal
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PPG Signal
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(a)Peak detection in

smoothing PPG signal

(b) Peak detection in 1-st 

derivative PPG signal

(c) Peak detection in 2-nd 

derivative PPG signal



Feature Extraction

The specified parameters are 

used to derive the characteristic 

features from the PPG signal.



No. Features The values of 
each label

1 Systolic peak (x) 363.907

2 Systolic peak time (t1) 41

3 Time peak to peak (tpp) 32

4 Minimum peak (z) 186.3494

5 Minimum peak time (t3) 63

6 Time Pulse interval (tpi) 35

7 Diastolic peak (y) -78.5053

8 Diastolic peak time (t2) 55

9 Time between diastolic peaks (tdp) 32

10 y/x (augmentation index) -0.21573

11 (x-z)/x (alternative augmentation 
index)

1.215729

12 t1/x (systolic peak output curve) 0.112666

13 y/(tpi-t3) (diastolic peak downward 
curve)

2.80376

14 t1/tpp 1.28125

15 t2/tpp 1.96875

No. Features The values of 
each label

16 t3/tpp 1.71875

17 ɅT1 (time between diastolic and 
systolic peaks)

14

18 ɅT2 (time between minimum and 
systolic peaks)

22

19 ɅT3 (time between minimum and 
diastolic peaks)

8

20 ɅT1/tpp 0.4375

21 a1 108.1641

22 a1 time 37

23 b1 84.50754

24 b1 time 44

25 c1 12.24569

26 c1 time 52

27 a2 28.34428

28 a2 time 33

29 b2 40.01237

30 b2 time 40



Experimental Results
• After processing each subject in the dataset, the results of the process of feature extraction are 

used to input data in the classification stage. 

• Classification methods using Naïve Bayes, Multilayer Perceptron and Random Forest are proposed, 

respectively.

• Four scenarios are used to test the accuracy of the system: 

• use training set : Testing is performed by using the training data itself

• supply test set : From 90-period-signal taken, 70-period-signal are used for training 

data and the remaining data are used for testing data

• cross validation : 10-fold is used

• percentage split : Training data 66% and Testing data 34%

• A features ranking algorithm is proposed for the 30 features calculated.



Features Ranking Algorithm
Ranked attributes % Accuracy features

1 2.8615 feature_19

2 2.81223 feature_18

3 2.42353 feature_17

4 2.14412 feature_20

5 1.91653 feature_11

6 1.7881 feature_10

7 1.71755 feature_23

8 1.68597 feature_29

9 1.63417 feature_21

10 1.57064 feature_1

11 1.49101 feature_4

12 1.4482 feature_27

13 1.21659 feature_25

14 1.08117 feature_7

15 1.0099 feature_3

Ranked attributes % Accuracy features

16 0.76155 feature_9

17 0.61778 feature_6

18 0.59481 feature_13

19 0.54094 feature_12

20 0.18798 feature_8

21 0.17113 feature_26

22 0.09972 feature_2

23 0.09625 feature_28

24 0.09597 feature_22

25 0.08143 feature_16

26 0.0807 feature_30

27 0.07054 feature_15

28 0 feature_14

29 0 feature_5

30 0 feature_24



Multilayer Perceptron

The selected feature numbers

5 10 15 20 25 30

Use training 

Set
62.7015 % 91.7429 % 95.3595 % 96.7974 % 97.7996 % 98.6928 %

Supplied 

Test Set
50.4995 % 86.376  % 90.2941 % 91.644  % 93.3697 % 94.6078 %

Cross 

Validation
59.1503 % 89.0196 % 91.6993 % 93.5294 % 95.8606 % 94.7277 %

Percentage 

Split
55.6054 % 85.9705 % 90.7111 % 92.5048 % 93.9142 % 94.4266 %

The selected feature numbers and the percentages of classification 

success using Multilayer Perceptron



Random Forest

The selected feature numbers

5 10 15 20 25 30

Use training 

Set
98.8889 % 99.7386 % 99.9129 % 99.8039 % 99.9346 % 99.8257 %

Supplied 

Test Set
69.2157 % 85.4902 % 89.6078 % 91.7348 % 91.9164 % 90.3922 %

Cross 

Validation
82.1786 % 92.7669 % 94.4227 % 94.8802 % 95.3377 % 95.207 %

Percentage 

Split
80.8456 % 91.4158 % 92.6329 % 93.5298 % 93.4017 % 93.5939 %

The selected feature numbers and the percentages of classification 

success using Random Forest



Naïve Bayes

The selected feature numbers

5 10 15 20 25 30

Use training 

Set
66.6449 % 84.6623 % 90.7625 % 90.8932 % 90.6536 % 90.3486 %

Supplied 

Test Set
61.2745 % 87.0588 % 92.745 % 92.4614 % 92.0073 % 92.1569 %

Cross 

Validation
64.0087 % 83.8126 % 90 % 89.5425 % 89.5425 % 88.5839 %

Percentage 

Split
62.9084 % 82.319  %

88.9814 

%
88.0846 % 88.0205 % 87.7002 %

The selected feature numbers and the percentages of classification 

success using Naïve Bayes



The results of the testing process with the 

target output using Multilayer Perceptron 

with 30 features are used



The results of the testing process with the 

target output using Naïve Bayes with 30 

features are used



The results of the testing process with the 

target output using Random Forest with 

30 features are used



Comparison with other studies

Fuzzy [5] K-nn [8] Naïve Bayes
Random 

Forest
Multilayer 
Perceptron

ACC 94% 94.44% 92.15% 90.39% 94.6%

[5] Y. Gu and Y. Zhang, “Photoplethysmographic authentication through fuzzy logic,“in Biomedical Engineering,

2003. IEEE EMBS Asian-Pacific Conference on, pp. 136-137, Oct 2003.

[8] A. R. Kavsaoglu, K. Polat, and M. R. Bozkurt,“A novel feature ranking algorithm

for biometric recognition with {PPG} signals, "Computers in Biology and Medicine, vol. 49, no. 0, pp. 1-14,

2014.



The class distributions

The class distribution for the 
smoothing signal

The class distribution for the 1st

derivative signal
The class distribution for the 2nd

derivative signal



Conclusion

This study has tested the ability of PPG signals for biometric identification system. Based on

the research that has been done can be concluded that:

• The designed system can identify the heartbeat of each individual.

• Feature extraction based on the three major peaks value of the photoplethysmography

signal.

• The results were evaluated via the Multilayer Perceptron, Naïve Bayes and Random Forest

classifier models; the true positive rates are then 94.6078%, 92.1569% and 90.3922%,

respectively. The obtained results showed that the proposed algorithm and the biometric

identification model based on this developed PPG signal are very promising for contact

less recognizing systems.



THANK YOU
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