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We consider a very natural generalization of quantum theory by letting the dimension
of the Bloch ball be not necessarily three. We analyze bipartite state spaces where
each of the components has a d-dimensional Euclidean ball as state space. In addition
to this, we impose two very natural assumptions: the continuity and reversibility of
dynamics and the possibility of characterizing bipartite states by local measurements.
We classify all these bipartite state spaces and prove that, except for the quantum two-
qubit state space, none of them contains entangled states. Equivalently, in any of these
non-quantum theories, interacting dynamics is impossible. This result reveals that
“existence of entanglement” is the requirement with minimal logical content which
singles out quantum theory from our family of theories. C 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4903510]

I. INTRODUCTION

What consistent and physically plausible modifications of quantum theory (QT) are possible?
This is a question that has come up in several fields of physics, most notably in constructions of
experimental tests of QT, in quantum gravity, and in the study of correlations in quantum informa-
tion theory. Some well-known modifications of QT which are based on straightforward alterations
of its mathematical formalism9,10 lead to inconsistencies.11 But here, we use a different method
to obtain modifications and generalizations of QT which always provides consistent theories: we
choose some desirable physical features of QT and classify all theories which satisfy them. This is
a double-win project: if only QT satisfies the requirements, then we obtain a new axiomatization in
terms of simple physical properties; on the contrary, if other theories also satisfy the requirements,
then we obtain consistent alternative theories which still keep the physical features that we have
chosen. The search for alternative axiomatizations of QT is an old topic that goes back to Birkhoff
and von Neumann.1–3 But we embrace a more operational and less mathematical approach, initiated
by Hardy’s work4 and continued in Refs. 5–8.

In our journey beyond QT, we do not want to go excessively far in theory space, so we
keep within the framework of generalized probability theory,4,6–8,12–15 which is based on opera-
tional notions. For instance, the state of a system can be represented by the probabilities of some
pre-established measurement outcomes, which suffices to predict the probabilities for all measure-
ments performable to that system. On top of this foundation, the quantum features that we want
to preserve are continuous reversibility (for every pair of pure states, there is a continuous revers-
ible transformation which maps one state onto the other) and tomographic locality (the state of a
composite system is characterized by the statistics of measurements on the individual components).
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These two axioms were introduced in Ref. 4 and also considered in Refs. 5 and 6. One of the moti-
vations to assume the reversibility and continuity of time-dynamics is that the most fundamental
theories that we know—classical or quantum—enjoy it. The axiom of tomographic locality has a
well-defined operational meaning, but additionally, it is mathematically very natural since it endows
state-spaces of multipartite systems with the familiar tensor-product structure.

In this work we classify all continuously reversible and locally tomographic theories for bipar-
tite systems where each subsystem has a state space with the geometry of the Euclidean ball (like
the Bloch ball of a quantum binary system but with its dimension not being necessarily equal to
three). It turns out that in all such theories, with the exception of QT, binary systems do not interact,
hence they cannot be entangled nor violate any Bell inequality. These findings push forward the
results obtained in Ref. 16: the toy theory called “box world,” which violates all Bell inequalities
maximally, does not admit any entangling reversible dynamics.

The requirement that a state space has the geometry of the Euclidean ball does not look, at
first sight, physically motivated. However, some axiomatizations of QT derive this fact from phys-
ical principles as an initial step,4–7 before obtaining the full structure of QT. Also, this fact is a
consequence of each of the following proposed principles individually: Information causality17 (see
Ref. 18), branch locality,19 and “no information gain implies no disturbance.”20 Therefore, we see
the results in this paper as a kind of module which can be used in many derivations of quantum
theory: as soon as a physical principle implies that the state space of a system is a Euclidean ball,
one can supplement this with tomographic locality and continuous reversibility, and use our results
to get most of the structure of QT (see Refs. 18 and 26).

Let us finally stress that, on the mathematical side, we refine the classification of groups that act
continuously and transitively on the unit sphere,30,31 by providing explicit characterizations of all
inequivalent linear actions on the unit sphere that are transitive. Also, due to the reversibility axiom,
the set of pure states is a compact homogenous space28 and the full state space is an orbitope.24

As such, our work provides new ways to look at these mathematical objects and provokes new
questions within the theories of homogenous spaces and orbitopes (Sec. V).

The derivation of the three-dimensionality of the Bloch ball by imposing tomographic locality
and continuous reversibility on the bipartite state space has also been achieved in Refs. 5 and 6.
There, however, some additional strong assumptions such as the “Subspace Axiom” were made for
this purpose. In contrast, it follows from our work that, the existence of interacting dynamics (or
equivalently, the existence of entanglement or the violation of Bell inequalities) is the requirement
with minimal logical content that has to be imposed in order to single out dimension three. This
result has been used in Ref. 18 to derive the full Hilbert space formalism of QT from postulates
having direct physical meaning. Also, it has been used in Ref. 26 to derive the three-dimensionality
of physical space from some operational assumptions.

II. RESULTS: NO INTERACTION BEYOND QT

In this section, we explain the results without introducing the framework of generalized proba-
bility theory, which is left for Sec. III. In this work, we only consider bipartite systems where each
constituent is a binary system. A binary system contains two perfectly distinguishable states and no
more, hence, it is the generalization of a quantum two-level system or qubit.

A. Two binary systems in QT

States of two-qubit systems are represented by 4 × 4 Hermitian matrices ρ that are positive,
ρ ≥ 0, and have unit trace trρ = 1. These can be written in the following basis:

σ1 =



0 1
1 0


, σ2 =



0 −i
i 0


, σ3 =



1 0
0 −1


, 1 =



1 0
0 1


,
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that is,

ρ =
1
4
*.
,
1 ⊗ 1 +


i

bi 1 ⊗ σi +

i

ai σi ⊗ 1 +

i, j

ci j σi ⊗ σ j
+/
-
. (1)

Hence, a two-qubit state ρ is specified by the three vectors a = (a1,a2,a3) ∈ R3, b ∈ R3, and
c ∈ R3 ⊗ R3. The condition ρ ≥ 0 translates to some algebraic constraints for b,a,c. The reduced
states for each of the qubits represented by (1) are given by the partial traces

tr2ρ =
1
2
*
,
1 +


i

ai σi
+
-
, tr1ρ =

1
2
*
,
1 +


i

bi σi
+
-
.

The reduced states are characterized by the Bloch vectors a,b, which satisfy |a|, |b| ≤ 1, where

|a| = √a · a =


i a2
i is the Euclidean norm. Local reversible transformations act on the state as



b
a
c



→



B 0 0
0 A 0
0 0 A ⊗ B





b
a
c



, (2)

where A,B ∈ SO(3), since SO(3) is the adjoint action of SU(2). The matrix group corresponding
to all reversible transformations of two qubits (local and non-local) is the adjoint action of SU(4),
denoted by G. (See Ref. 21 for a characterization.)

Product states are the ones such that c = a ⊗ b, and as it is shown below, have no correlations.
It is convenient to write product states and local transformations (2) in tensor-product form; this can
be done by adopting the hat notation

â =


1
a


, Â =



1 0
0 A


, (3)

where 0 denotes the zero matrix (or vector) with dimensions specified by the context. In accordance
with the claimed form of product states and local transformations, we get

â ⊗ b̂ =



1
b
a

a ⊗ b



, Â ⊗ B̂ =



1 0 0 0
0 B 0 0
0 0 A 0
0 0 0 A ⊗ B



. (4)

Note that here, the ordering of the components under the ⊗-action is not the standard one. The
redundant “1” in (3) and (4) is equivalent to the redundant information that ρ contains, since it
obeys trρ = 1. A single-qubit projective measurement is characterized by a unit-length Bloch vector
x; the probabilities for the two corresponding outcomes “+” and “−” when the state is a are

p(+) = 1 + x · a
2

=
x̂
2
· â , p(−) = 1 − x · a

2
=

(−x)∧
2
· â .

For two-qubit systems, the joint probability of the local measurement outcomes x,y is

p(x,y) = x̂
2
⊗ ŷ

2
·



1
b
a
c



. (5)

As mentioned above, product states give product distributions, and hence no correlations.
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B. Two binary systems beyond QT

In this section, we define a family of theories for bipartite systems, which is a natural gener-
alization of the above representation for two-qubit systems. In Sec. III, this family is axioma-
tized. These theories have arbitrary Bloch dimension d = 2,3,4, . . . but still satisfy Eqs. (2)-(5)
with a,b,x,y ∈ Rd, |a|, |b| ≤ 1, |x|, |y| = 1, c ∈ Rd ⊗ Rd, and A,B ∈ SO(d) (below we also consider
groups of reversible transformations which are proper subgroups of SO(d)). However, what is
not immediately clear, is how the set of non-product states and the set of non-local reversible
transformations generalize. We address these two issues in the following paragraphs.

One of the definitorial properties of these theories is that the state space of a subsystem has the
geometry of a Euclidean ball, that is, states can be represented by Bloch vectors of arbitrary dimen-
sion (a ∈ Rd with |a| ≤ 1). One can see that these state spaces have two perfectly distinguishable
states and no more (as with qubits)—so we refer to them as binary systems. Joint states for two
binary systems are represented by vectors



1
b
a
c



∈ R1+d ⊗ R1+d. (6)

In analogy with the quantum case (5), it is natural to assume that the joint states satisfy

x̂
2
⊗ ŷ

2
·



1
b
a
c



∈ [0,1] (7)

for any Bloch vectors x,y. In Sec. III C, this condition is derived from some axioms.
Joint reversible transformations for two binary system are (d + 1)2 × (d + 1)2 real invertible

matrices, which map a state (6) onto another state (6). Since physical transformations can be
composed, they form a group, denoted by G. We consider theories where the sets of states and
reversible transformations have related geometries, since we impose the following axiom.

Continuous reversibility: in each type of system, for every pair of pure states, there is a continuous
reversible transformation mapping one state onto the other.

By continuous, we mean that the evolution of the state (6) is continuous in time. Or that every
reversible transformation is part of a continuous one-parameter subgroup {G(t)}t ∈R, where t ∈ R
can be interpreted as time. This is equivalent to saying that the group of reversible transformations is
connected. This was introduced in the axiomatization for QT given in Ref. 4, under the name “conti-
nuity axiom.” The continuity of reversible transformations is suggested by the apparent continuity
of time-evolution in the physical world.

As pointed out in Ref. 4, in classical probability theory, finite dimensional systems violate
this axiom since the set of reversible transformations is the group of permutations which is not
connected. In the infinite-dimensional case, this axiom is also violated if arbitrarily sharp effects
are allowed. But in classical mechanics, it makes little sense to include these unphysical measure-
ments. For instance, they allow for computing functions that are logically uncomputable. Also, an
external agent performing arbitrarily sharp measurements and preparations can violate Hamilton’s
equations.

Continuous reversibility implies that once the group of reversible transformations G is given,
the set of states (6) is fixed, since the set of pure states is {G(â ⊗ â) : G ∈ G} for any fixed a ∈ Rd

with |a| = 1; and the set of all states (pure and mixed) is the corresponding convex hull.27 All states
generated in this fashion must give consistent probabilities, as required in (7), hence

1
4
(â ⊗ â) · G(â ⊗ â) ∈ [0,1] for all G ∈ G . (8)
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Since all pure product states can be reversibly mapped to all other pure product states, this
constraint is equivalent to

1
4
(x̂ ⊗ ŷ) · G(â ⊗ b̂) ∈ [0,1] for all G ∈ G and |a| = |b| = |x| = |y| = 1. (9)

Continuous reversibility applies to all types of systems, and in particular to a single binary system.
The group of reversible transformations for a binary system, denoted by H , comprises d × d real
matrices H ∈ H which map states to states (|a| ≤ 1⇒ |Ha| ≤ 1), and map any point in the unit
sphere to any other. Table I in Sec. IV A contains the list of all such groups, which consists of
SO(d) and some of its subgroups. Following the hat notation (3), we denote by Ĥ the represen-
tation of H which acts on the (d + 1)-dimensional vector â. The group of local transformations
for two binary systems is Ĥ × Ĥ = { Â ⊗ B̂ : A,B ∈ H } ≤ G, where the hat notation works as
in (4). Clearly, local transformations constitute a subgroup of general reversible transformations
Ĥ × Ĥ ≤ G. Except for this and (8), the group G is totally unconstrained.

In summary, each theory from this family is characterized by

1. the dimension of a binary system d = 2,3, . . .,
2. a group of reversible transformations for a binary systemH (from Table I with the right d),
3. a compact connected group of (d + 1)2 × (d + 1)2 real matricesG satisfying (8) and Ĥ × Ĥ ≤ G.

For every d and H , there is at least one such theory: the one where only local transformations
are allowed G = Ĥ × Ĥ . This type of theory has no interacting dynamics, in the sense that each
subsystem evolves independently of the other. In other words, the corresponding Hamiltonians (Lie
algebra elements) are of the form H12 = H1 ⊗ 12 + 11 ⊗ H2. In such theories, there are no entangled
states, and Bell inequalities are not violated. However, there could be other theories within our
family which violate Bell inequalities, even more than QT. The main contribution of this work
establishes that this is not the case.

Theorem 1. Let H be a group from Table I different from SO(3), let d be its associated
dimension, and let a ∈ Rd be a unit vector. All connected groups G satisfying Ĥ × Ĥ ≤ G and
1
4 (â ⊗ â) · G(â ⊗ â) ⊆ [0,1] are subgroups of SO(d)∧ × SO(d)∧.

All such groups G correspond to dynamics with no interaction, hence, the associated theories
have no entanglement. In Ref. 21, the following is shown.

Theorem 2. Let d = 3 and let a ∈ R3 be a unit vector. All connected groups G satisfying
SO(3)∧ × SO(3)∧ ≤ G and 1

4 (â ⊗ â) · G(â ⊗ â) ⊆ [0,1] are

1. SO(3)∧ × SO(3)∧,
2. the adjoint action of SU(4),
3. the partially transposed adjoint action of SU(4).

As mentioned above, the adjoint action of SU(4) corresponds to QT for a 4-level system.
Partially transposed quantum theory and (standard) quantum theory are two representations of the
same theory; since there is a reversible linear map for states, transformations and effects mapping
one theory onto the other. Actually, in Ref. 21, they show a generalization of Theorem 2 for an
arbitrary number of binary systems. Theorems 1 and 2 imply that

The only theory from the family under consideration which has interacting dynamics is QT.

III. AXIOMATIZATION OF THE FAMILY OF THEORIES

In this section, we axiomatize the family of theories under consideration. But before, we
introduce a framework which allows to represent states, measurements, and transformations inde-
pendently of the theory that we are considering.
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A. Generalized probability theory

In classical probability theory, there can always be a joint probability distribution for all
random variables under consideration. In the framework of generalized probability theory4,6–8,12–15,23

this is relaxed by allowing the possibility of random variables that cannot have a joint probability
distribution or cannot be simultaneously measured (like non-commuting observables in QT).

In this framework, a state can be represented by the probabilities of some pre-established
measurement outcomes x1, . . . , xK which are called fiducial

ω =



p(x1)
...

p(xK)



∈ S ⊂ RK .

This list of probabilities has to be minimal and contain sufficient information to predict the proba-
bility distribution of all measurements that can be performed on the system under consideration. We
include the possibility that the system is absent, indicated by the fact that a measurement gives no
outcome, hence the state space contains the null vector 0 ∈ S. One example is the set of probability
distribution normalized to any value within [0,1]. Another example is a spin- 1

2 particle in QT, where
the fiducial probabilities can be [p(σ1 = 1),p(σ2 = 1),p(σ3 = 1),p(σ3 = −1)], and the probability
that the system is present is p(σ3 = 1) + p(σ3 = −1). Note that in classical probability theory, all
fiducial outcomes are simultaneously measurable, while in QT this is not the case. Also, note that
the set of fiducial outcomes need not be unique, since any three linearly independent spin directions
characterize the state of the spin- 1

2 particle. The set of all allowed states S is convex27 because if
ω1,ω2 ∈ S, then one can prepare ω1 with probability q and ω2 otherwise, effectively preparing the
state qω1 + (1 − q)ω2. The number of fiducial outcomes K is equal to the dimension of S, otherwise
one fiducial probability would be linearly related to the others, and the list is not minimal. In this
work, we only consider finite-dimensional state spaces.

The probability of a measurement outcome x when the system is in state ω is given by a
function Ex(ω). Suppose the system is prepared in the mixture qω1 + (1 − q)ω2, then the relative
frequency of outcome x should not depend on whether the label of the actual preparation ωk is
ignored before or after the measurement, hence

Ex

�
qω1 + (1 − q)ω2

�
= qEx(ω1) + (1 − q)Ex(ω2) .

This and the fact that when there is no state there is no outcome, Ex(0) = 0, implies that Ex is
linear. Linear functions mapping E : S → [0,1] are called effects and can be written as a scalar
product E(ω) = E · ω = K

i=1 Eip(xi). One can always measure whether there is a system or not
by checking that a measurement gives one outcome. The associated effect is denoted by U, and
the subset of normalized states S1 B {ω ∈ S : U · ω = 1} must satisfy the consistency constraint
S = {pω : ω ∈ S1 and p ∈ [0,1]}. The pure states are the extreme points of S1.27

Each type of system has associated to it: a state space S, a set of measurements, and a set
of transformations. A transformation is a map T : S → S which, for the same reason as outcome
probabilities, has to be linear. A transformation T is reversible if its inverse T−1 exists and belongs to
the set of transformations allowed by the theory. The set of reversible transformations of a particular
state space S forms a group H . Motivated by the physical interpretation, we assume that S and H
are both topologically closed.

Note that the geometry of the state space depends on the choice of fiducial outcomes. For
example, the state space of a spin- 1

2 particle in QT is a Euclidean ball when the fiducial outcomes
correspond to three orthogonal spin directions; otherwise the state space becomes an ellipsoid.
However, both geometries are related by a linear transformation.

B. Composite systems

To a setup like Figure 1, we associate a system if, for each configuration of the preparation,
transformation, and measurement devices, the relative frequencies of the outcomes tend to a unique
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FIG. 1. General experimental setup. From left to right there are the preparation, transformation, and measurement devices.
As soon as the release button is pressed, the preparation device outputs a physical system in the state specified by its knobs.
The next device performs the transformation specified by its knobs (which in particular can be “do nothing”). The device
on the right performs the measurement specified by its knobs, and the outcome (x or x̄) is indicated by the corresponding
light. (Reprinted with permission from Ll. Masanes and M. P. Muller, New J. Phys. 13, 063001 (2011). Copyright 2011 New
Journal of Physics.)

probability distribution. Two systems A and B constitute a composite system AB if a measurement
for A together with a measurement for B uniquely specifies a measurement for AB, independently
of the temporal ordering. The fact that subsystems are themselves systems implies that each has a
well-defined reduced state ωA,ωB which does not depend on which transformations and measure-
ments are performed on the other subsystem; this is often referred to as no-signaling. Some bipartite
correlations satisfying the no-signaling constraint violate Bell inequalities more than QT does;22

however, as we will show, these are incompatible with the axioms stated below. Naturally, system A
can be considered on its own or as part of a composite system AB. Hence, for any state ωA, there is
a state ωAB which has ωA as its reduced state.

A bipartite system is a system, so its states can be represented by the probabilities of some
fiducial outcomes. What is the relationship between these and the fiducial outcomes of the subsys-
tems, x1, . . . , xKA

and y1, . . . , yKB
? The fact that p(x, y) does not depend on the ordering of the

measurements giving outcomes x, y implies the following.

Lemma. The joint probability of any pair of subsystem outcomes p(x, y) is given by

p(x, y) = (Ex ⊗ Ey) · ωAB, (10)

where

ωAB =



p(x1, y1)
p(x1, y2)

...

p(xKA
, yKB

)



∈ SAB ⊂ RKA ⊗ RKB (11)

and the set of all these vectors ωAB spans the space RKA ⊗ RKB.

Proof. If system B is measured first giving outcome y j, then system A is in the state deter-
mined by the fiducial probabilities p(xi |y j) = p(xi, y j)/p(y j), and the single-system probability
rule can be applied p(x |y j) = 

i Ei
x p(xi |y j). Multiplying by p(y j)/p(x) and using the Bayes

rule gives p(y j |x) = 
i Ei

x p(xi, y j)/p(x). By using the freedom in the ordering of measurements,
we can interpret p(y j |x) as the state of system B once system A has been measured giving
outcome x, and the single-system probability rule can be applied again p(y |x) = 

j E j
y p(y j |x) =

i, j Ei
x E j

y p(xi, y j)/p(x). Multiplying both sides of this equality by p(x) gives (10). Clearly, the
marginal states are given by ωA = (1 ⊗ U)(ωAB) and ωB = (U ⊗ 1)(ωAB).

Let us see that the ωAB span the full tensor product space. In QT, the only states ωAB ∈ SAB

which have pure states as marginals ωA ∈ SA,ωB ∈ SB are product ones ωAB = ωA ⊗ ωB. The
same proof technique applies to generalized probability theory. This implies that SAB contains all
product states, otherwise there would be a state in SA or SB which is not the marginal of any state
in SAB. Next, note that by minimality, SA contains KA linearly independent vectors and analogously
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for SB. The tensor products of these vectors are a set of KAB = KAKB linearly independent vectors
in SAB, so the set SAB has full dimension. �

What about global measurements? The axiom of tomographic locality states that the proba-
bility for the outcome of any measurement, local or global, is determined by the joint probability
p(x, y) of all local measurements. This implies that (11) is a representation of a bipartite state, since
all outcome probabilities can be calculated from it.

C. Axioms

The following axioms single out the family of theories defined at the beginning of Sec. II B.

Tomographic locality: the state of a composite system is characterized by the statistics of measure-
ments on the individual components.

Roundness: the set of normalized states of a binary system is strictly convex.

Continuous reversibility: in each type of system, for every pair of pure states, there is a continuous
reversible transformation that maps one state to the other.

As in Sec. II, consider a bipartite system where each subsystem is binary. Let S be the state space
of a binary system and S1 = {ω ∈ S : U · ω = 1} the subset of normalized states. The roundness
axiom implies that the convex set S1 is strictly convex, that is, its boundary does not contain any
lines, as depicted in Fig. 2. Thus, all points in the boundary represent pure states which, by the
continuous reversibility axiom, are reversibly connected. This enforces some additional symmetry
in the state: it has to be an ellipsoid. This can be seen as follows.

Using the Haar measure on the compact group H , we can define a positive matrix W 2 B
H HTH dH and W as its unique positive square root. For any pair of pure states ω,ϕ, we have
ϕ = Hω for some H ∈ H , hence |Wϕ| = 

ϕ ·W 2ϕ =
√
ω · HTW 2Hω =

√
ω ·W 2ω = |Wω|. (Note

that W T = W and W 2H = HW 2.) This allows to define the constant c B |Wω| for any pure state ω.
The set of normalized states S1 is the intersection of the ellipsoid {x ∈ RK : |W x |2 ≤ c2} with the
normalization hyperplane {x ∈ RK : U · x = 1}, which is itself an ellipsoid of dimension d = K − 1.

In what follows, we reparametrize the state space to obtain the Bloch ball. Let M : RK → RK

be the linear map which takes the ellipsoid S1 to the unit ball {â : |a| ≤ 1}, where we use the hat
notation (3). This defines a new representation for the states, measurements, and transformations of
a binary system as

ω → Mω, E → EM−1, T → MT M−1, U → (1,0, . . . ,0)T,
which is the Bloch vector representation described in Sec. II. Note that in this representation, states
are no longer lists of probabilities, and all reversible transformations become orthogonal matrices
which preserve the normalization. This change of representation can be applied to the state space
of the bipartite system as ωAB → (M ⊗ M)ωAB. This gives the Bloch vector representation used in
Sec. II. Hence, the above axioms single out the family of theories defined in Sec. II B. For a more
detailed account, see Ref. 18.

FIG. 2. From roundness to the Bloch ball. The roundness axiom states that the set of normalized states of a binary system
does not contain any lines in its boundary. This is true for many convex sets, like the one depicted on the left. Additionally,
imposing the continuous reversibility axiom forces this set to be an ellipsoid. Reparametrizing the ellipsoid, we end up with
the Bloch ball.
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IV. PROOF OF THEOREM 1

A. Groups that are transitive on the sphere

Due to our axiom of continuous reversibility, the group H acting on a single binary system (a
d-dimensional Bloch ball) must have the following properties:

1. States are mapped to states: for any H ∈ H and any a ∈ Rd such that |a| ≤ 1, we have
|Ha| ≤ 1.

2. Continuity:H is connected.
3. Reversibility: for any a,b ∈ Rd such that |a| = |b| = 1, there is H ∈ H satisfying a = Hb.

Since the first property must hold for H and its inverse H−1, it implies that H is an orthogonal
matrix: H ≤ O(d). This together with connectedness implies H ≤ SO(d). The third property is
called transitivity on the sphere. Since all compact matrix groups are Lie groups,28 we can invoke
the classification in Refs. 30 and 31: all connected compact Lie groups that act continuously, tran-
sitively, and almost effectively on the sphere are the ones listed in the first column of Table I, up to
topological equivalence. However, we are interested in something more particular than continuous
action: linear action. In the Appendix, we describe one particular representation for each of these
groups, show its transitivity on the sphere, and prove its uniqueness up to linear equivalence. We
say that two matrix groups H ,H ′ are linearly equivalent if H ′ = {MGM−1| G ∈ H } for some
invertible matrix M . Write M in (real) polar form M = OP,33 where O is orthogonal and P positive.
Since H ,H ′ ≤ SO(d), we have (MGM−1)T(MGM−1) = 1, which implies GP2 = P2G; and since P
is positive GP = PG, which implies MGM−1 = OGOT. In summary: up to a change in the ortho-
normal coordinates of the sphere, all groups of reversible transformations for a binary systemH are
the ones listed in Table I and described in the Appendix.

Let us recapitulate the definition of some abstract groups

SO(n) = {Q ∈ Rn×n |QTQ = 1n and det Q = 1}, (12)

SU(n) = {Q ∈ Cn×n |Q†Q = 1n and det Q = 1}, (13)

U(n) = {Q ∈ Cn×n |Q†Q = 1n}, (14)

Sp(n) = {Q ∈ C2n×2n |Q†Q = 12n and QTJQ = J}, (15)

where J = (iσ2) ⊗ 1n and 1n is the n × n identity matrix. For the definition of G2, see Ref. 35 and
for the definition of Spin(n), see Ref. 29. The fundamental representation V is the defining one
((12)-(15)). According to Table I, the representationH for SO(d), denotedHSO(d), is the fundamental

TABLE I. The first column is the list of abstract groups (or families of
groups parametrized by d) that are transitive on the unit sphere within
Rd. The second column contains the values of d for which this holds. The
third column schematically specifies which representation of each abstract
group corresponds to the matrix group H , where V is the fundamental
representation and V∗ its dual (both irreducible). In cases where describing
the representation is complicated, we just mention whether it is irreducible.

Abstract groups d H

SO(d) 3, 4, 5 . . . V
SU(d/2) 4, 6, 8 . . . V ⊕ V∗

U(d/2) 2, 4, 6, 8 . . . V ⊕ V∗

Sp(d/4) 8, 12, 16 . . . V ⊕ V∗

Sp(d/4) × U(1) 8, 12, 16 . . . V ⊕ V∗

Sp(d/4) × SU(2) 4, 8, 12 . . . Irreducible
G2 7 V
Spin(7) 8 V
Spin(9) 16 V
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V , hence HSO(d) = SO(d). The representation V ⊕ V∗ makes use of a standard trick to generate a
real representation for a group of complex matrices. The particular map is

Cn×n −→ R2n×2n

Q −→ 12 ⊗ reQ + (iσ2) ⊗ imQ . (16)

To see that this is a homomorphism, note that the real matrix (iσ2) behaves as the imaginary unity
(iσ2)2 = −12. This specifies the representationH for the abstract groups SU(d/2),U(d/2),Sp(d/4),
denoted HSU(d/2),HU(d/2),HSp(d/4). The group SO(d) with d = 2 is not in Table I because SO(2) =
HU(1), and we choose to include it in the U(d/2) family because SO(2) is reducible, while SO(d) for
d ≥ 3 is not. Another coincidence is SU(2) = Sp(1).

The matrix group FSU(2) is the representation of SU(2) obtained through the following Lie
algebra homomorphism:

iσ1 −→ σ1 ⊗ (iσ2) ⊗ 1d/4 , (17)
iσ2 −→ (iσ2) ⊗ 12 ⊗ 1d/4 , (18)
iσ3 −→ σ3 ⊗ (iσ2) ⊗ 1d/4 . (19)

Note that FSU(2) and HSU(2) are different representations, HSU(2) has dimension 4 and FSU(2) has
dimension d. As shown in the Appendix, each element of FSU(2) commutes with all elements of
HSp(d/4). The H -representation of Sp(d/4) × SU(2), denoted HSp(d/4)×SU(2), is the product of all
matrices fromHSp(d/4) times all matrices from FSU(2); we write this asHSp(d/4)×SU(2) = HSp(d/4)FSU(2).
The H -representation of Sp(d/4) × U(1) is obtained in the same way, but instead of FSU(2) we
use its subgroup FU(1), with Lie algebra generated by the single element (18). Also note that
HU(d/2) = HSU(d/2)FU(1).

B. Lie algebras

Compact matrix groups are Lie groups.28 Hence, associated to each group G, there is a Lie
algebra g. If additionally, G is connected, then for each G ∈ G, there is X ∈ g such that G = eX. All
Lie algebras that appear in this work are real vector spaces, so for any x, y ∈ R and any X,Y ∈ g, we
have xX + yY ∈ g. Another property that we use is that GXG−1 ∈ g for any G ∈ G.

We denote by h,g the Lie algebras ofH ,G, respectively. SinceH ≤ SO(d), we have h ≤ so(d).
Recall that so(d) is the antisymmetric subspace of Rd×d. The group of local transformations

L =



1 0 0 0
0 B 0 0
0 0 A 0
0 0 0 A ⊗ B



| A,B ∈ H


(20)

has Lie algebra

l =



0 0 0 0
0 Y 0 0
0 0 X 0
0 0 0 X ⊗ 1 + 1 ⊗ Y



| X,Y ∈ h

,

where, from now on, 1 denotes the identity matrix of dimension specified by the context. The
condition Ĥ × Ĥ ≤ G can be written as L ≤ G or equivalently l ≤ g.

According to Lemma 1 from Ref. 6, the compactness ofG implies that there is M ∈ R(d+1)2×(d+1)2

symmetric MT = M and strictly positive M > 0 such that for any G ∈ G, the matrix M−1GM is
orthogonal. Equivalently, for any X ∈ g, the matrix M−1X M is antisymmetric. The Lie algebra g̃ =
{M−1X M | X ∈ g} is an equivalent representation of g where all elements are antisymmetric. Since
H ≤ SO(d), definition (20) implies that any G ∈ L is orthogonal; hence (M−1GM)T(M−1GM) = 1,
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which implies M−2G = GM−2, and since M > 0,

GM = MG, for all G ∈ l .

In cases whereH is irreducible (see Table I), L is the direct sum of four irreducible representations
ofH ×H , as in (20). Invoking Schur’s lemma32 and the positivity of M , we conclude that

M =



1 0 0 0
0 β1 0 0
0 0 α1 0
0 0 0 γ1



, with α, β,γ > 0 . (21)

It is shown in Appendix C that, in the cases where H is reducible, all symmetric matrices that
commute withH are proportional to the identity, hence Schur’s lemma implies

M =



1 0 0 0
0 β1 0 0
0 0 α1 0
0 0 0 N



, with α, β,N > 0 . (22)

The strictly positive matrix N must commute with all (A ⊗ B) with A,B ∈ H .

C. Block-diagonal transformations

In this subsection, we show that any block-diagonal reversible transformation



1 0 0 0
0 B 0 0
0 0 A 0
0 0 0 C



∈ G , (23)

satisfies C = A ⊗ B and A,B ∈ SO(d). This implies that block-diagonal transformations, although
perhaps not implementable locally (if A,B < H ), act independently on each subsystem. Therefore,
this kind of dynamics does not let the systems interact and does not create entanglement.

Any block-diagonal transformation (23) can be written as MeW M−1 where

W =



0 0 0 0
0 Y 0 0
0 0 X 0
0 0 0 Z



∈ g̃ (24)

and X,Y, Z are antisymmetric. Equality C = A ⊗ B is implied by N Z N−1 = X ⊗ 1 + 1 ⊗ Y ; so this is
what we show next. Substituting MeγW M−1 in Eq. (9) gives

1 + y · eγYb + x · eγXa + (x ⊗ y) · NeγZN−1(a ⊗ b) ≥ 0 . (25)

Setting b = −e−γYy gives x · eγXa − (x ⊗ y) · NeγZN−1(1 ⊗ e−γY)(a ⊗ y) ≥ 0, which together with
the same inequality after the transformation x → −x implies

(x ⊗ y) · �(eγX ⊗ 1) − NeγZN−1(1 ⊗ e−γY)� (a ⊗ y) = 0 . (26)

Differentiating with respect to γ at γ = 0 gives

(x ⊗ y) · �(X ⊗ 1) − N Z N−1� (a ⊗ y) = 0 , (27)

where we have used that y · Yy = 0. Analogously, a = −e−γXx in (25) yields

(x ⊗ y) · �(1 ⊗ Y ) − N Z N−1� (x ⊗ b) = 0 . (28)
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The space of real d × d matrices is denoted by M, the subspace of symmetric ones by M+,
and the subspace of antisymmetric ones by M− so that M =M+ ⊕M−. Equation (27) implies
that the projection onto M ⊗M+ of N Z N−1 is X ⊗ 1. Equation (28) implies that the projec-
tion onto M+ ⊗M of N Z N−1 is 1 ⊗ Y . The combination of the two implies that N Z N−1 =

X ⊗ 1 + 1 ⊗ Y + T where T ∈ M− ⊗M−. Differentiating (26) two times with respect to γ at γ = 0
and using the fact that (x ⊗ y) · [T(1 ⊗ Y ) − (1 ⊗ Y )T] (a ⊗ y) = 0 and (x ⊗ y) · T(X ⊗ 1)(a ⊗ y) =
(x ⊗ y) · (X ⊗ 1)T(a ⊗ y) = 0, we obtain (x ⊗ y) · T2(a ⊗ y) = 0, which implies trT2 = 0. Since T
is symmetric T2 is positive, hence T = 0. Therefore, N Z N−1 = X ⊗ 1 + 1 ⊗ Y , which, when ex-
ponentiated, gives C = A ⊗ B. Also, since N is symmetric and X,Y, Z antisymmetric, we have
N Z N−1 = N−1Z N , which together with the positivity of N implies N Z = Z N .

D. First- and second-order constraints

For any W ∈ g̃, the group element MeϵW M−1 ∈ G must satisfy Eq. (9). Expanding it to the
second order in ϵ , we obtain

0 ≤ 1
4



1
x


⊗


1
y


· M

(
1 + ϵW +

ϵ2

2
W 2 + O(ϵ3)

)
M−1



1
a


⊗


1
b


≤ 1 . (29)

Now consider the special case x = a and y = b. Then, for ϵ = 0, the expression (29) equals unity.
Since ϵ can be positive and negative, the first order of (29) gives



1
a


⊗


1
b


· MW M−1



1
a


⊗


1
b


= 0 ,

because otherwise, either small positive or small negative values of ϵ would yield probabilities
larger than 1. Since the first order is zero, the constraint moves to second order



1
a


⊗


1
b


· MW 2M−1



1
a


⊗


1
b


≤ 0 .

We can get several additional inequalities by considering the lower bound in (29). For example, the
special case

1
4



1
−a


⊗


1
y


· M

(
1 + ϵW +

ϵ2

2
W 2 + O(ϵ3)

)
M−1



1
a


⊗


1
b


≥ 0

equals zero for ϵ = 0 if |a| = 1, which implies



1
−a


⊗


1
y


· MW M−1



1
a


⊗


1
b


= 0 ,



1
−a


⊗


1
y


· MW 2M−1



1
a


⊗


1
b


≥ 0 .

By exchanging the two subsystems, we get analogous constraints. In summary, the first-order
equalities are



1
a


⊗


1
b


· MW M−1



1
a


⊗


1
b


= 0 , (30)



1
−a


⊗


1
y


· MW M−1



1
a


⊗


1
b


= 0 , (31)



1
x


⊗


1
−b


· MW M−1



1
a


⊗


1
b


= 0 (32)
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and the second-order inequalities are


1
a


⊗


1
b


· MW 2M−1



1
a


⊗


1
b


≤ 0 , (33)



1
−a


⊗


1
y


· MW 2M−1



1
a


⊗


1
b


≥ 0 , (34)



1
x


⊗


1
−b


· MW 2M−1



1
a


⊗


1
b


≥ 0 (35)

for all a,b,x,y with |a| = |b| = |x| = |y| = 1.

E. Imposing the first-order constraints

The goal of this section is to show that every W ∈ g̃ can be written in the block matrix form

W =



0 0 0 0
0 Y0 0


i
eT
i ⊗ Yi

0 0 X0


i
Xi ⊗ eT

i

0 −


i
ei ⊗ Y T

i −


i
XT
i ⊗ ei


j
(Uj ⊗ Sj + Rj ⊗ Vj)



. (36)

The antisymmetry of W implies that all diagonal blocks (like Y0 and X0) are antisymmetric. Hence,
the lower-right block belongs to the antisymmetric subspace of M ⊗M, that is, (M− ⊗M+) ⊕
(M+ ⊗M−) and can be written in the Schmidt decomposition with Rj,Sj ∈ M+ and Uj,Vj ∈ M−.
The two other sums (and their negative transposes) are also written in the Schmidt decomposition.
In what follows, we show how the zeros in (36) follow from the first-order constraints.

By adding equality (30) plus equality (31) with y = b, plus equality (32) with x = a, and plus
equality (32) with x = −a, we obtain



1
0


⊗


1
0


· MW M−1



1
a


⊗


1
b


= 0 . (37)

By adding equality (30), plus equality (31) with y = b, plus equality (32) with x = a and b → −b,
and plus equality (32) with x = −a and b → −b, we obtain



1
0


⊗


1
b


· MW M−1



1
a


⊗


1
0


= 0 . (38)

Adding equality (37) to equality (37) with b → −b yields


1
0


⊗


1
0


· MW M−1



1
a


⊗


1
0


= 0 . (39)

Analogous equations can be obtained by permuting the two systems and exchanging the role of states
and effects in Eqs. (37)–(38) and (39). Also, by adding Eq. (39), plus (39) with a → −a, we get



1
0


⊗


1
0


· MW M−1



1
0


⊗


1
0


= 0 .

These equations yield the claimed zeros in the block matrix W . We can get more information if
N ∝ 1: By adding Eq. (30), plus Eq. (31) with y = b, we obtain



1
0


⊗


1
b


· MW M−1



1
a


⊗


1
b


= 0 .

In the case where N ∝ 1, this implies that all Yi are antisymmetric. By exchanging the roles of the
two subsystem, we obtain analogously that all Xi are antisymmetric if N ∝ 1.
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F. SO(d ) for d ≥ 4

In this subsection, we show that, when H = SO(d) and d ≥ 4, the only group G satisfying our
axioms is the group of local transformations L. Since in this caseH is irreducible, the matrix M is
of the form (21). Define the orthonormal basis

e1 =



1
0
...

0



, e2 =



0
1
...

0



, . . . ed =



0
0
...

1



,

the corresponding projectors Pi = eieT
i , and their complements Qi = 1 − Pi. The stabilizer subgroup

ofH on the vector e1 isH1 = {G ∈ H : Ge1 = e1} � SO(d − 1). Since the fundamental representa-
tion of SO(d − 1) is irreducible for d ≥ 4, Schur’s lemma states that


H1

dG G = P1 and
H1

dG GZG−1 = zP1 + z′Q1

for any Z ∈ Rd×d and some z, z′ ∈ R that depend on Z . Note that this does not hold for d = 3, which
allows quantum theory to have non-trivial dynamics and entanglement!

If W ∈ g̃, then it is of the form (36) with Xi,Yi antisymmetric, and

W ′ =


H1

dG (1̂ ⊗ Ĝ)W (1̂ ⊗ Ĝ)−1 =



0 0 0 0
0 0 0 0
0 0 X0 X1 ⊗ eT

1

0 0 X1 ⊗ e1 U ′1 ⊗ P1 +U ′2 ⊗ (1 − P1)



(40)

is an element of g̃, where U ′1,U
′
2 are antisymmetric. The matrix H = 1 − 2(P1 + P2) ∈ H satisfies

He1 = −e1 and HP1H−1 = P1. Imposing constraint (35) on the element

1
2

(
W ′ − (1̂ ⊗ Ĥ)W ′(1̂ ⊗ Ĥ)−1

)
=



0 0 0 0
0 0 0 0
0 0 0 X1 ⊗ eT

1

0 0 X1 ⊗ e1 0



with b = e2 and x = a gives a · X2
1a ≥ 0 for all a. The simple fact X2

1 = −XT
1 X1 = −|X1|2 ≤ 0 implies

X1 = 0. A similar argument can be made by averaging over the stabilizer subgroup in the first
system (instead of the second one, as in (40)), obtaining Y1 = 0. Also, the same can be done with
the stabilizer subgroups on the rest of vectors e2, . . . ,ed, obtaining Xi = Yi = 0 for all i. In summary:
every W ∈ g̃ must be block-diagonal (24), which implies G ≤ L.

G. −1 ∈ H

As shown in the Appendices, the H -representations of U(d/2), Sp(d/4), Sp(d/4) × U(1),
Sp(d/4) × SU(2), Spin(7), and Spin(9) contain minus the identity matrix. The group HSU(d/2) for d
multiple of four also contains minus the identity. For the sake of clarity, in this subsection, we use
the notation H = −1. If W ∈ g̃, then it is of the form (36) and

1
2

(
W − (1̂ ⊗ Ĥ)W (1̂ ⊗ Ĥ)−1

)
=



0 0 0 0
0 0 0 0
0 0 0


i
Xi ⊗ eT

i

0 0 −


i
XT
i ⊗ ei 0



(41)

also belongs to g̃. Constraints (35) with x = a and (34) with y = −b give
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−a ·


i

XiXT
i


a + (a ⊗ b) · N


i j

(XT
i X j) ⊗ (eieT

j )N−1
(a ⊗ b) ≥ 0,

a ·


i

XiXT
i


a − (a ⊗ b) · N


i j

(XT
i X j) ⊗ (eieT

j )N−1
(a ⊗ b) ≥ 0,

which together imply the equation

a ·


i

XiXT
i


a = (a ⊗ b) · N


i j

(XT
i X j) ⊗ (eieT

j )N−1
(a ⊗ b).

Summing this equation over the special cases a,b ∈ {e1 . . . ed} gives

d

i

tr
�
XiXT

i

�
=


i j

tr

N(XT

i X j) ⊗ (eieT
j )N−1


=


i

tr
�
XT
i Xi

�
,

which is only possible if X1 = · · · = Xd = 0. An analogous argument shows Y1 = · · · = Yd = 0.
Therefore, all elements of G are block-diagonal and non-interacting as in (23).

H. SU(d/ 2) for d ≥ 6

In this subsection, we show that, when H = HSU(d/2) and d ≥ 6, all groups G are non-
interacting. (The case HSU(d/2) with d = 4 is analyzed in Sec. IV G.) The stabilizer of H on the
vector e1 isH1 = {G ∈ H : Ge1 = e1}, or more concretely,

H1 =






1 0 0 0
0 reU 0 imU
0 0 1 0
0 −imU 0 reU



�����������

U ∈ SU(d/2 − 1)



.

One can check that

H1

dG G = P1 + Pd/2 and, for any Z ∈ Rd×d,


H1

dG G



z1,1 · · · z1,d
...

...

zd,1 · · · zd,d



G−1 =



z1,1 z1,d/2

z z′

. . .
. . .

z z′

zd/2,1 zd/2,d/2

−z′ z
. . .

. . .

−z′ z



(42)

for some z, z′ ∈ R (all blank entries in the right-hand side are zeros). If W ∈ g̃, then

W ′ =


H1

dG (1̂ ⊗ Ĝ)W (1̂ ⊗ Ĝ)−1 =



0 0 0 0
0 Y0 0


i
eT
i ⊗ Yi

0 0 X0 X1 ⊗ eT
1 + Xd/2 ⊗ eT

d/2

0 � �


j
(Uj ⊗ Sj + Rj ⊗ Vj)


belongs to g̃ too, and Y0,Yi,Vj,Sj are of the same form as the right-hand side of (42). The antisymme-
try of W ′makes the �s unambiguous. Define

H =


U 0
0 U


where U =



−1
−1

1
. . .

1



,
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and the blanks are zeros. Note that the right-hand side of (42) commutes with H . The element

1
2

(
W ′ − (1̂ ⊗ Ĥ)W ′(1̂ ⊗ Ĥ)−1

)
=



0 0 0 0
0 0 0 0
0 0 0 X1 ⊗ eT

1 + Xd/2 ⊗ eT
d/2

0 0 � 0



∈ g̃

has the same structure as (41); therefore, arguing in the same way, one obtains X1 = Xd/2 = 0.
Repeating this argument with the stabilizer of the vectors e2, . . . ,ed/2−1 gives Xi = 0 for all i and
analogously for Yi. Therefore, all elements of G are block-diagonal and non-interacting as in (23).

I. G2

In this section, we consider the case H = G2 and show that all corresponding groups G are
non-interacting. Since H is irreducible, M has the form (21). Schur’s lemma32 together with
irreducibility imply that any W ∈ g̃, which a priori has the generic structure (36), satisfies


H

dA (Â ⊗ 1̂)W (Â ⊗ 1̂)−1 =



0 0 0 0
0 Y0 0 0
0 0 0 0
0 0 0 1 ⊗ V



∈ g̃ .

In addition, and according to Sec. IV C, the above element must satisfy V = Y0. This implies that for
any element W ∈ g̃, there is another one

W ′ =W −

H

dA (Â ⊗ 1̂)W (Â ⊗ 1̂)−1 −

H

dB (1̂ ⊗ B̂)W (1̂ ⊗ B̂)−1

=



0 0 0 0
0 0 0


i
eT
i ⊗ Yi

0 0 0


i
Xi ⊗ eT

i

0 −


i
ei ⊗ Y T

i −


i
XT
i ⊗ ei


j
(U ′j ⊗ S′j + R′j ⊗ V ′j )



∈ g̃ ,

with identical non-diagonal blocks, and null second and third diagonal blocks. (The fourth diagonal
block might get modified, but we do not care.)

The stabilizer subgroup of H on the vector e1 is H1 = {G ∈ H : Ge1 = e1}. It turns out that
H1 � HSU(3), which is transitive on the 6-sphere. Hence, all vectors left invariant byH1 are propor-
tional to e1, therefore


H1

dG G = P1. According to Appendix F, for any Z ∈ R7×7, we have
H1

dA AZ A−1 = z1P1 + z2Q1 + z3T ,

where T is defined in (F2) and z1, z2, z3 ∈ R. The matrix T commutes with H1 and satisfies:
TT = −T , Te1 = 0, and T2 = −Q1. All above implies that

W ′′ =


H1

dA

H1

dB (Â ⊗ B̂)W ′(Â ⊗ B̂)−1

=



0 0 0 0
0 0 0 y eT

1 ⊗ T
0 0 0 x T ⊗ eT

1

0 y e1 ⊗ T x T ⊗ e1 T ⊗ S + R ⊗ T



∈ g̃ ,

where x = 1
6 tr(T X1), y = 1

6 tr(TY1), and R,S are linear combinations of P1,Q1. The matrix H ∈ H
defined in (F3) satisfies: He1 = −e1, HT H−1 = −T , HP1H−1 = P1, and HQ1H−1 = Q1. This allows
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for the construction of the following element:

W ′′′ =
1
2
�
W ′′ + (Ĥ ⊗ Ĥ)W ′′(Ĥ ⊗ Ĥ)−1� =



0 0 0 0
0 0 0 y eT

1 ⊗ T
0 0 0 x T ⊗ eT

1

0 y e1 ⊗ T x T ⊗ e1 0



.

Imposing (34) with a = b = y = e2, we obtain x2 − y2 ≥ 0. Imposing (35) with a = b = x = e2, we
obtain −x2 + y2 ≥ 0. These two inequalities imply x = ±y .

In what follows, we show that for any W ∈ g̃, we have tr(T X1) = tr(TY1) = 0 or equivalently
x = y = 0. We do this by assuming the opposite

W± =



0 0 0 0
0 0 0 ±eT

1 ⊗ T
0 0 0 T ⊗ eT

1

0 ±e1 ⊗ T T ⊗ e1 0



∈ g̃

and obtaining a contradiction. For each A ∈ h, we have a local transformation

L =



0 0 0 0
0 0 0 0
0 0 A 0
0 0 0 A ⊗ 1



∈ l ≤ g̃ .

Since the Lie algebra g is closed under commutations, we have


[L,W±],W±


=



0 0 0 0
0 0 0 0
0 0 [[A,T],T] 0
0 0 0 (AP1 + P1A) ⊗ T2 + [[A,T],T] ⊗ P1



∈ g̃ .

According to Sec. IV C, the above implies (AP1 + P1A) ⊗ T2 + [[A,T],T] ⊗ P1 = [[A,T],T] ⊗ 1.
Since T2 = −Q1 = −(1 − P1), this is equivalent to [[A,T],T] = −(AP1 + P1A). We can see that
this equality is false by substituting A by a generic element from h of the form (F1); therefore
x = y = 0.

The above shows that any W ∈ g̃ satisfies

H1

dG GX1G−1 = 0, hence

W ′′′′ =


H1

dG (Ĝ ⊗ 1)W ′(Ĝ ⊗ 1)−1

=



0 0 0 0
0 0 0 eT

1 ⊗ Y1

0 0 0 0
0 e1 ⊗ Y1 0 P1 ⊗ V +Q1 ⊗ V ′ + T ⊗ S



∈ g̃ . (43)

If we use H ∈ H defined in (F3), we obtain

1
2
�
W ′′′′ − (Ĥ ⊗ 1)W ′′′′(Ĥ ⊗ 1)−1� =



0 0 0 0
0 0 0 eT

1 ⊗ Y1

0 0 0 0
0 e1 ⊗ Y1 0 T ⊗ S



∈ g̃ . (44)

Imposing constraint (32) on the above element, and using the fact that b · Y1b = 0 for any b, we
obtain S = 0. Constraint (34) with y = b and a = e2 on element (44) yields b · Y 2

1 b ≥ 0 for all b.
Since Y 2

1 = −Y T
1 Y1 ≤ 0, it follows that Y1 = 0.
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By integrating over the stabilizer subgroup on the vector e1 for the first system (43), we have
shown that any element W ∈ g̃ has Y1 = 0. By doing the same procedure for the second system, we
obtain X1 = 0. Analogously, by considering the stabilizers of all vectors ei, we obtain Xi = Yi = 0
for all i. Therefore, all elements in g̃ are block-diagonal (24), and the group G has non-interacting
dynamics.

V. CONCLUSIONS

In this work, we have explored the existence of entanglement beyond quantum theory. We
have classified all continuously reversible and locally tomographic theories for bipartite systems
where each subsystem has a Euclidean ball as its state space. We have shown that the only theory
within this family which has interacting dynamics is QT; and all others do not allow for entangle-
ment nor violation of Bell inequalities. These results illustrate how restrictive is the requirement of
interacting reversible dynamics.

It remains open the possibility that non-three-dimensional Euclidean balls display some type
of multipartite entanglement.25 Or the existence of interacting dynamics between Euclidean balls of
different dimensions. However, if this last thing happens, it must be in a way which does not allow
for engineering an interaction between two systems of the same type through a system of a different
type, since we have shown that this is not possible. We leave all these problems for future research.

More generally, we introduce a construction which is not specific to Euclidean ball subsystems
nor to continuous dynamics. It can be argued that, under the sole assumptions of tomographic
locality and (not necessarily continuous) reversibility, the requirement that two systems can interact
is very restrictive. Consider the composition of two systems with respective groups of reversible
transformations H1 and H2. The group of global transformation G contains the local transforma-
tions Ĥ1 ⊗ Ĥ2. But does it contain a transformation G not being of the form Â ⊗ B̂? If this is
the case, then G must also contain all chains of products of G with the elements of Ĥ1 ⊗ Ĥ2.
In the generic case, these chains of products do generate the whole group of orthogonal matrices
G � O(d1 + d2 + d1d2) (even when H1 and H2 are finite), which violate the consistency condi-
tion (9). Therefore, only for very particular choices of H1, H2, and G, the consistency condition is
going to be satisfied. Classifying these matrix groups would be an important goal. Since it would
lead to a reconstruction of QT with the certified logical minimality of its axioms.

Within generalized probability theories, entanglement is a generic feature of bipartite state
spaces. However, all above suggests that once we restrict to theories satisfying reversibility and
tomographic locality, entanglement, and violation of Bell inequalities are very singular phenomena.
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APPENDIX A: LINEAR ACTIONS TRANSITIVE ON THE SPHERE

We are interested in matrix groups H which are subgroups of SO(d) and map any unit vector
in Rd to any other. This implies that the action of H on Rd has no invariant subspaces or, in
other words, it is R-irreducible. However, this does not imply that H is C-irreducible. According
to Ref. 32, two possibilities can happen
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1. H is not C-irreducible. The fact that H is R-irreducible implies that it is the direct sum of a
C-irreducible representation V and its dual V∗, and the map which takes V to H is (16). As
shown below, examples of this sort areHSU(d),HSp(d).

2. H is C-irreducible. The fact that H is a real representation implies

H dG trG2 = 1. As shown

below, examples of this sort areHSO(d),HG2,HSpin(7),HSpin(9).

APPENDIX B: THE SPECIAL UNITARY GROUP

1. Description

According to definition (13), the Lie algebra of SU(n) is

su(n) = {X ∈ C2n×2n| X† = −X and trX = 0} . (B1)

According to the map (16), the Lie algebra ofHSU(d/2) with d = 2n is

hSU(d/2) = {12 ⊗ A + (iσ2) ⊗ S | A ∈ M−,S ∈ M+ and trS = 0} ,
whereM+ andM− are the sets of n × n symmetric and antisymmetric real matrices, respectively.
One can check that all matrices that commute with hSU(d/2) are of the form

z01n + z1(iσ2) ⊗ 1n (B2)

with z0, z1 ∈ R if we want them to be real. Hence, all symmetric matrices which commute with
HSU(d/2) are proportional to the identity.

2. Transitivity

The transitivity ofHSU(d/2) follows from the transitivity of SU(d/2) in the set of unit vectors in
Cd/2.

3. Uniqueness

In what follows, we show that HSU(d/2) is the unique d-dimensional real representation of
SU(d/2) which is R-irreducible. This is done by first showing that there are no d-dimensional
real representations which are C-irreducible, and second showing that the only d/2-dimensional
C-irreducible representations are the fundamental, defined in (13), and its dual (which coincide for
n = 2).

Lemma 1. All 2n-dimensional C-irreducible representations of su(n) are complex.

Proof. There is a one-to-one correspondence between C-irreducible representations of su(n)
and (n − 1)-dimensional vectors of natural numbers (a1, . . . ,an−1) which are the coefficients of the
dominant weight when it is expressed in the basis of the fundamental weights.32 The dimension of
the representation is given by

D(a1, . . . ,an−1) =
n
j=1

j−1
i=1

(
1 +

ai + · · · + a j−1

j − i

)
, (B3)

so the trivial representation corresponds to D(0, . . . ,0) = 1.32 Let us start with the case n ≥ 6. First
note that

D(2,0,0, . . .) =
n
j=2

(
1 +

a1 + · · · + a j−1

j − 1

)
=

n
j=2

(
1 +

2
j − 1

)
=

n(n + 1)
2

.

Similarly,

D(0, . . . ,0,2) =
n−1
i=1

(
1 +

ai + · · ·,+an−1

n − i

)
=

n−1
i=1

(
1 +

2
n − i

)
=

n(n + 1)
2

.
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Splitting off the j = n term and then the i = 1 term yields

D(1,0,0, . . . ,0,0,1)

=

n−1
j=2

j−1
i=1

(
1 +

ai + · · · + a j−1

j − i

)
·
n−1
i=1

(
1 +

ai + · · · + an−1

j − i

)

=

n−1
j=2

(
1 +

a1 + · · · + a j−1

j − i

)
·
(
1 +

a1 + · · · + an−1

n − 1

)
·
n−1
i=2

(
1 +

ai + · · · + an−1

n − i

)

=

n−1
j=2

(
1 +

1
j − 1

)
·
(
1 +

2
n − 1

)
·
n−1
i=2

(
1 +

1
n − i

)
= n2 − 1 .

Now suppose there were a1,an−1 such that D(a1,0,0, . . . ,0,0,an−1) = 2n. We know that a1 =

1,an−1 = 0 and a1 = 0,an−1 = 1 are impossible (they yield n instead of 2n). Now suppose that a1 ,
0 and an−1 , 0, then by strict monotonicity of D, we get D(a1,0, . . . ,0,an−1) ≥ D(1,0, . . . ,0,1) =
n2 − 1 > 2n.

Thus, one of a1 and an−1 must be zero if we want that D attains the value 2n. Suppose
that an−1 = 0, then we must have a1 ≥ 2, so D(a1,0, . . . ,0) ≥ D(2,0,0, . . .) = n(n + 1)/2 > 2n. The
same conclusion holds the other way round. In summary, D(a1,0,0, . . . ,0,0,an−1) = 2n has no solu-
tions. Therefore, for every representation of dimension 2n, there must be at least one j ∈ [2,n − 2]
such that a j ≥ 1. But then,

D(a1, . . . ,an−1) ≥ D(0, . . . ,0, 1
j

,0, . . . ,0) =
(

n
j

)
≥

( n
2

)
= n(n − 1)/2 > 2n

if n ≥ 6. Thus, no such representation exists.
Due to strict monotonicity of D, we can check by hand the cases n = 3,4,5, since only finitely

many values have to be checked numerically. It turns out that the only irreps of dimension 2n are

n = 3: (0,2) and (2,0).
n = 4: none.
n = 5: (0,1,0,0) and (0,0,1,0).

According to Proposition 26.24 of Ref. 32, these representations are all complex. This proves the
lemma. �

Lemma 2. The only n-dimensional C-irreducible representations of su(n) are the fundamental
(B1) and its dual (which coincide for n = 2).

Proof. The case n = 2 is very well known, so let us assume n ≥ 3. Since all factors in (B3) are
strictly positive, we observe that D(a1, . . . ,an−1) is strictly increasing in every ak. One can calculate
that

D(0, . . . ,0, 1
j

,0, . . . ,0) =
(

n
j

)
.

In particular,

D(1,0, . . . ,0) = n , D(0, . . . ,0,1) = n , D(0, . . . ,0, 1
j<{1,n−1}

,0, . . . ,0) > n .

Since D is strictly increasing in every entry, (1,0, . . . ,0) and (0, . . . ,0,1) are the only arguments
where D attains the value n. Since these two representations satisfy a1 , an−1, they must be com-
plex according to Proposition 26.24 of Ref. 32. �
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APPENDIX C: THE SYMPLECTIC GROUP

1. Description

According to definition (15), the Lie algebra of Sp(n) is

sp(n) = {X ∈ C2n×2n | X† + X = 0 and XTJ + JX = 0} . (C1)

Using a representation with n × n real matrix blocks

J =


0 1n

−1n 0


, X =



A + iB C + iD
A′ + iB′ C ′ + iD′


,

we have A = −AT = C ′, B = −D′ = BT, C = −A′ = CT, and D = B′ = DT. According to the map
(16), the Lie algebra ofHSp(d/4) with d = 4n is

hSp(d/4) =



A C B D
−C A D −B
−B −D A C
−D B −C A



| A ∈ M− and B,C,D ∈ M+

.

The elements of hSp(d/4) can also be written as

12 ⊗ 12 ⊗ A + (iσ2) ⊗ σ3 ⊗ B + 12 ⊗ (iσ2) ⊗ C + (iσ2) ⊗ σ1 ⊗ D. (C2)

In this form, it is easy to see that the matrices that commute with hSp(d/4) are

z0 14n + z1 σ1 ⊗ (iσ2) ⊗ 1n + z2 (iσ2) ⊗ 12 ⊗ 1n + z3 σ3 ⊗ (iσ2) ⊗ 1n (C3)

with z0, z1, z2, z3 ∈ R if we want them to be real. A fact used in (22) is that: all symmetric matrices
of the above form are proportional to the identity. If we restrict to the antisymmetric ones (z0 = 0),
we obtain the Lie algebra of the group FSU(2), defined in ((17)-(19)); hence HSp(d/4) commutes
with FSU(2). By setting A = C = D = 0 and B = 1n in (C2), one can see that X = (iσ2) ⊗ σ3 ⊗ 1n ∈
hSp(d/4). Since X2 = −1d, we have eπX = −1d ∈ HSp(d/4).

2. Transitivity

The transitivity of HSp(d/4) follows from the transitivity of Sp(d/4) in the set of unit vectors in
Hd/4, where H are the quaternions.32

3. Uniqueness

In what follows, we show that HSp(d/4) is the unique d-dimensional real representation of
Sp(d/4) which is R-irreducible.

Lemma 3. For n ≥ 3, the only non-trivial C-irreducible representation of sp(n) with dimension
smaller or equal than 4n is the fundamental one, defined in (C1).

Proof. There is a one-to-one correspondence between C-irreducible representations of sp(n)
and n-dimensional vectors of natural numbers (a1, . . . ,an) which are the coefficients of the domi-
nant weight when it is expressed in the basis of the fundamental weights.32 The dimension of the
representation is given by

D(a1, . . . ,an) =
n
j=1

j−1
i=1

(
1 +

ai, . . . + a j−1

j − i

) n
j=1

j
i=1

(
1 +

ai + · · · + a j−1 + 2(a j + · · · + an)
2n + 2 − i − j

)
, (C4)

where the trivial representation corresponds to D(0, . . . ,0) = 1.32
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Let us first consider the case n ≥ 3. According to Ref. 29, we have

f j B D(0, . . . ,0, 1
j

,0, . . . ,0) =
(

2n
j

)
−

(
2n

j − 2

)
interpreting

(
2n
−1

)
= 0. Thus, D(1,0, . . . ,0) = 2n, giving the fundamental representation mentioned

in the statement of the lemma. Now, let 2 ≤ j ≤ n − 1, then

f j =
2(n − j + 1)

2n + 2

(
2n + 2

j

)
≥ 4

2n + 2

(
2n + 2

j

)
≥ 4

2n + 2

(
2n + 2

2

)
= 4n + 2 > 4n.

Furthermore, if n ≥ 3, then

fn =
2(2n + 1)!
n!(n + 2)! > 4n.

It follows from strict monotonicity of D that any further irrep of Sp(n) of dimension ≤ 4n must have
coefficients a2 = · · · = an = 0. A quick calculation shows that D(2,0, . . . ,0) = n(2n + 1) > 4n for
n ≥ 3, so there are no further possibilities of this kind. �

The case n = 2 can be explored numerically, where strict monotonicity of D makes sure that
we do not overlook any possibilities. This exploration shows that the dimensions of the small-
est C-irreducible representations of sp(2) are 1,4,5,10, . . ., without repetitions, hence they are
self-dual. Since 1 + 1 < 4 · 2 and 5 + 5 > 4 · 2, the only possibility is 4 + 4 = 4 · 2.

APPENDIX D: PRODUCT GROUPS

1. Description

In Appendixes B and C, we have described the matrix groups HSU(d/2) and HSp(d/4), and ob-
tained the sets of matrices which commute with them: (B2) and (C3), respectively. By removing the
part proportional to the identity in (B2) and (C3), we obtain the Lie algebras of FSU(d/2) and FSp(d/4),
respectively. TheH -representation of the product groups is

HU(d/2) = HSU(d/2)×U(1) =HSU(d/2)FU(1) ,
HSp(d/4)×U(1) =HSp(d/4)FU(1) ,
HSp(d/4)×SU(2) =HSp(d/4)FSU(2) .

2. Transitivity

Transitivity follows from the fact that the first factors of the products,HSU(d/2) andHSp(d/4), are
transitive.

3. Uniqueness

According to Ref. 30, if a product group is transitive on the sphere then one of its factors is
either SU(2) or U(1), and the other factor is transitive on the sphere as well. We have seen above
thatHSU(d/2) andHSp(d/4) are the unique representations which are transitive on the sphere. We have
also seen that the Lie algebras of FU(1) and FSU(2) are the unique ones which commute with the pre-
vious matrix groups (up to linear equivalence). This implies that the above described representations
of the product groups from Table I are the unique ones which are transitive on the sphere.

APPENDIX E: THE SPIN GROUPS

The H -representations of Spin(9) and Spin(7) are linearly equivalent to their fundamental
representations, which are described in what follows.
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1. Description ofHSpin(9)

First, we describe a representation of the Clifford group associated to Spin(9) (more details can
be found on page 68 of Ref. 29). The generators

γ1 = σ1 ⊗ 1 ⊗ 1 ⊗ 1 , γ2 = σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

γ3 = σ2 ⊗ σ1 ⊗ 1 ⊗ 1 , γ4 = σ2 ⊗ σ3 ⊗ 1 ⊗ 1 ,

γ5 = σ2 ⊗ σ2 ⊗ σ1 ⊗ 1 , γ6 = σ2 ⊗ σ2 ⊗ σ3 ⊗ 1 ,

γ7 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ1 , γ8 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ3 ,

γ9 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2

satisfy the Clifford relations

γiγj + γjγi = 2δi, j1 .

The Clifford group CL(9) consists of all possible products of the generators γ1, . . . ,γ9. Some of
these elements are not real—for example, γ3 < R16×16. However, the fact that it is irreducible32

1
|CL(9)|


G∈CL(9)

tr(G∗)tr(G) = 1 and
1

|CL(9)|


G∈CL(9)
tr(G2) = 1

implies that there is a unitary matrix U ∈ C16×16 such that {UGU†| G ∈ CL(9)} ⊆ R16×16 is an
equivalent representation of CL(9) where all matrices are real. To obtain U, we use Schur’s lemma32

1
|CL(9)|


G∈CL(9)

(UGU†)T(UGU†) = 1

or equivalently

1
|CL(9)|


G∈CL(9)

GT(UTU)G = (UTU) .

This gives a homogenous linear system for the unknown (UTU). The set of solutions constitutes a
linear space of dimension one. Since we know that (UTU) is unitary, we choose the solution

(UTU) =



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0



.
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It is straightforward to check that the unitary

U =
1
√

2



1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 i 0 0 i 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 i 0 0 i 0 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 −i 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 i 0 0 0 0 −i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 i 0 0 i 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 i 0 0 i 0
0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 i 0 0 0 0 −i 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 i 0 0 0 0 −i



satisfies the above equation. The Lie algebra ofHSpin(9) is

hSpin(9) =


1≤i< j≤9
ci j UγiγjU† | ci j ∈ R


. (E1)

(Note that this is isomorphic to so(9).) Since (Uγ1γ2U†)2 = −1, we have eθUγ1γ2U
†
= 1 cos θ +

Uγ1γ2U† sin θ which is minus the identity for θ = π, hence −1 ∈ HSpin(9).

2. Description ofHSpin(7)

Let us start by describing a representation of the even part of the Clifford group associated to
Spin(7) (more details can be found in page 68 of Ref. 29). The generators

γ1 = σ1 ⊗ 1 ⊗ 1 , γ2 = σ3 ⊗ 1 ⊗ 1 ,

γ3 = σ2 ⊗ σ1 ⊗ 1 , γ4 = σ2 ⊗ σ3 ⊗ 1 ,

γ5 = σ2 ⊗ σ2 ⊗ σ1 , γ6 = σ2 ⊗ σ2 ⊗ σ3 ,

γ7 = σ2 ⊗ σ2 ⊗ σ2

satisfy the Clifford relations

γiγj + γjγi = 2δi, j1 .

The Clifford group CL(7) consists of all possible products of the generators γ1, . . . ,γ7. Contrary to
CL(9), this representation is not equivalent to a real one32 since

1
|CL(7)|


G∈CL(7)

tr(G∗)tr(G) = 1 and
1

|CL(7)|


G∈CL(7)
tr(G2) = 0 .

However, in order to construct the Lie algebra of Spin(7)—as in (E2)—we only need a real repre-
sentation for the even subgroup CL+(7) ≤ CL(7). The even subgroup CL+(7) consists of all possible
products of an even number of generators γ1, . . . ,γ7. This is irreducible

1
|CL+(7)|


G∈CL+(7)

tr(G∗)tr(G) = 1
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and equivalent to a real representation

1
|CL+(7)|


G∈CL+(7)

tr(G2) = 1 .

Therefore, there is a unitary matrix U ∈ C8×8 such that {UGU† : ∀G ∈ CL+(7)} ⊆ R8×8 is an equiv-
alent representation of CL+(7) where all matrices are real. To obtain U, we use Schur’s lemma32

1
|CL+(7)|


G∈CL+(7)

GT(UTU)G = (UTU) .

This gives a homogenous linear system for the unknown (UTU). The set of solutions constitutes a
linear space of dimension one. Since we know that (UTU) is unitary, we chose the solution

(UTU) =



0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0



.

It is straightforward to check that the unitary

U =
1
√

2



1 0 0 0 0 1 0 0
0 i 0 0 i 0 0 0
0 0 1 0 0 0 0 1
0 0 0 i 0 0 i 0
0 −1 0 0 1 0 0 0
i 0 0 0 0 −i 0 0
0 0 0 −1 0 0 1 0
0 0 i 0 0 0 0 −i


satisfies the above equation. The Lie algebra ofHSpin(7) is

hSpin(7) =


1≤i< j≤7
ci j UγiγjU† | ci j ∈ R


. (E2)

Since (Uγ1γ2U†)2 = −1, we have eθUγ1γ2U
†
= 1 cos θ +Uγ1γ2U† sin θ which is minus the identity for

θ = π, hence −1 ∈ HSpin(7).

3. Transitivity

In what follows, we show that HSpin(n) is transitive in the unit sphere of Rd where d = 2(n−1)/2

and n = 7,9. To do this, we just have to check that HSpin(n) maps any point u within the unit sphere
to any of its neighboring points u + ϵv within the unit sphere (so v · u = 0); by composing infinites-
imal transformations of this sort, we can map any point to any other. This is shown in Lemma 1.3
from Ref. 34.

In the Lie algebra language: for any pair of orthogonal vectors u,v, there is X ∈ hSpin(n) such
that v = Xu, therefore eϵXu = u + ϵv + O(ϵ2). In order to show this, we assume the opposite: the
vector space hSpin(n)u does not contain v. Since hSpin(n) is made out of antisymmetric matrices, the
vector space hSpin(n)u is orthogonal to u. This implies that there is w orthogonal to u such that

w ·UγiγjU†u = 0 for all 0 ≤ i < j ≤ n . (E3)
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Therefore, the vectors γ1U†u, . . . ,γnU†u,γ1U†w, . . . ,γnU†w are orthogonal, but there cannot be 2n
orthogonal vectors in a 2(n−1)/2-dimensional space when n = 7,9, hence the contradiction. Thus, the
group is transitive.

Note that this argumentation does not apply to n = 3,5 since the corresponding groups Spin(n)
do not have real, 2(n−1)/2-dimensional, C-irreducible representations.

4. Uniqueness

According to Ref. 32, there is only one nontrivial C-irreducible representation of Spin(n) of
dimension not larger than d = 2(n−1)/2, for odd n.

APPENDIX F: G2

1. Description

The H -representation of G2 is its fundamental one, hence hG2 = g2. In page 33 from Ref. 35,
one can find the following parametrization of g2:



0 r3 −r2 r5 −r4 −r7 −r6 + s6

−r3 0 r1 r6 −r7 + s7 r4 − s4 r5 + s5

r2 −r1 0 −s7 s6 s5 s4

−r5 −r6 s7 0 −r1 + s1 −r2 + s2 −r3 + s3

r4 r7 − s7 −s6 r1 − s1 0 s3 −s2

r7 −r4 + s4 −s5 r2 − s2 −s3 0 s1

r6 − s6 −r5 − s5 −s4 r3 − s3 s2 −s1 0



∈ g2 (F1)

for all r1, . . . ,r7, s1, . . . , s7 ∈ R. The stabilizer subgroup on e1 is H1 = {G ∈ HG2 | Ge1 = e1}, and
the corresponding Lie algebra is h1 = {X ∈ g2 | Xe1 = 0}. This is the set of matrices like (F1) with
r2 = r3 = r4 = r5 = r7 = 0 and r6 = s6. Solving a system of linear equations, one can see that any
antisymmetric 7 × 7 real matrix which commutes with h1 is proportional to

T =



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0



. (F2)

Note that T is not an element of g2 (this is relevant in Sec. IV I).
Setting r3 = 1 and all the rest of parameters equal to zero in (F1), we obtain

X =



0 1 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0



∈ g2 .
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By exponentiating this, we obtain an element of the group which plays a special role in Sec. IV I

H = eπX =



−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1



∈ HG2 . (F3)

2. Transitivity and uniqueness

Transitivity is shown in page 364 from Ref. 32. Uniqueness follows from the fact that the
fundamental representation of G2 is the unique non-trivial C-irreducible representation with dimen-
sion equal or less than 7.
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