

TUGAS AKHIR - TL 141584

ANALISIS HASIL SIMULASI SIFAT MEKANIK SINGLE-WALLED CARBON NANOTUBE DENGAN VARIASI STRUKTUR DIBAWAH PEMBEBANAN BENDING DAN BUCKLING MENGGUNAKAN FEM

AYU FUROIDAH NRP 02511440000009

Dosen Pembimbing 1. Mas Irfan P. Hidayat, S.T., M.Sc., PhD 2. Diah Susanti, S.T., M.T., PhD

DEPARTEMEN TEKNIK MATERIAL Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2018

TUGAS AKHIR - TL 141584

ANALISIS HASIL SIMULASI SIFAT MEKANIK SINGLE-WALLED CARBON NANOTUBE DENGAN VARIASI STRUKTUR DIBAWAH PEMBEBANAN BENDING DAN BUCKLING MENGGUNAKAN FEM

AYU FUROIDAH NRP 02511440000009

Dosen Pembimbing Mas Irfan P. Hidayat, S.T., M.Sc., Ph.D. Diah Susanti, S.T., M.T., Ph.D.

DEPARTEMEN TEKNIK MATERIAL Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2018

FINAL PROJECT - TL 141584

MECHANICAL PROPERTIES SIMULATION RESULT OF SINGLE-WALLED CARBON NANOTUBE ANALYSIS WITH STRUCTURE VARIATION ON BENDING AND BUCKLING LOAD USING FEM

AYU FUROIDAH NRP 02511440000009

Advisors Lecturer Mas Irfan P. Hidayat, S.T., M.Sc., Ph.D. Diah Susanti, S.T., M.T., Ph.D.

MATERIAL ENGINEERING DEPARTMENT Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Surabaya 2018

ANALISA HASIL SIMULASI SIFAT MEKANIK SINGLE-WALLED CARBON NANOTUBE DENGAN VARIASI STRUKTUR DIBAWAH PEMBEBANAN BENDING DAN BUCKLING MENGGUNAKAN FEM

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Jurusan Teknik Metalurgi dan Material Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

Oleh:

Ayu Furoidah

NRP 02511440000009

Disetujui oleh Tim Penguji Tugas Akhir:

1. Mas Irfan P. Hidayat, S.T., M.Sc., PhD

(Pembimbing I) (Pembimbing II)

2. Diah Susanti, S.T., M.T., PhD

ANALISA HASIL SIMULASI SIFAT MEKANIK SINGLE-WALLED CARBON NANOTUBE DENGAN VARIASI STRUKTUR DIBAWAH PEMBEBANAN BENDING DAN BUCKLING MENGGUNAKAN FEM

Nama Mahasiswa : Ayu FuroidahNRP: 02511440000009Jurusan: Teknik Material dan Metalurgi FTI-ITSDosen Pembimbing :

- 1. Mas Irfan P. Hidayat, S.T., M.Sc., PhD
- 2. Diah Susanti, S.T., M.T., PhD

Abstrak

Carbon nanotube merupakan material allotropi carbon vang memiliki sifat mekanik, thermal dan elektrik cukup baik. Saat ini para peneliti masih banyak menganalisa kebutuhan sifat mekanik yang tepat untuk dapat diterapkan lebih diberbagai bidang. Ukurannya yang nano membuat sulitnya pengujian untuk menganalisa sifat dan perilaku CNT. Sehingga diperlukan adanya simulasi komputasi untuk menyederhanakan penelitian. Hasil simulasi dibuat untuk menganalisa sifat mekanik berupa modulus elastisitas SWCNT dengan membandingkan variasi struktur tipe zigzag dan armchair menggunakan software ANSYS 17.1 Mechanical APDL. Hasil simulasi juga digunakan untuk menganalisa pengaruh diameter, ketebalan, dan aspek rasio terhadap nilai Young's modulus SWCNT. Diperoleh bahwa struktur yang sesuai untuk aplikasi yang membutuhkan tingkat kelenturan yang tinggi akibat pembebanan bending dan buckling adalah struktur armchair. Dimana semakin besar diameter single walled carbon nanotube maka nilai Young's modulusnya. Semakin meningkat. Dan semakin tinggi aspek rasio dan ketebalan struktur SWCNT maka semakin rendah nilai Young's modulusnya.

KataKunci: Carbon nanotube, Struktur, Young's Modulus, FEM

MECHANICAL PROPERTIES SIMULATION RESULT OF SINGLE-WALLED CARBON NANOTUBE ANALYSIS WITH STRUCTURE VARIATION ON BENDING AND BUCKLING LOAD USING FEM

Name	: Ayu Furoidah
NRP	: 02511440000009
Departement	: Teknik Material dan Metalurgi FTI-ITS
Advicor Lecturer	: Mas Irfan P. Hidayat, S.T., M.Sc., PhD
Co-Advicor Lectu	rer : Diah Susanti, S.T., M.T., PhD

Abstract

Carbon nanotube is a carbon allotropy which has good mechanical, thermal and electrical properties. Currently the researchers are still analyzing the right properties for their right properties in composites. Those Nano size make CNT rather hard to analyze the behavior of CNTs in form of experiment. A simulation is needed to simplify the research. Therefore, this study was made to analyze the simulation results of SWCNT's modulus elasticity by comparing structural variations of the zigzag and armchair types using finite element method software ANSYS 17.1 Mechanical APDL. Simulation result used for analyzing diameter and aspect ratio effect on the structure of SWCNT. The suitable structure which need high elasticity caused by bending and buckling loading is armchair type of SWCNT. The highest diameter of SWCNT, the higher Young's modulus value is. And the higher aspect ratio and the thickness structure of SWCNT, the lower Young's modulus had.

Keyword: Carbon nanotube, Structure, Young's Modulus, FEM

KATA PENGANTAR

Puji Syukur atas berkat dan kasih yang diberikan oleh Allah SWT kepada saya, sehingga saya dapat menyelesaikan Tugas Akhir serta menyusun Laporan Tugas Akhir yang berjudul: Analisa Hasil Simulasi Sifat Mekanik Single-Walled Carbon Nanotube dengan Variasi Struktur dibawah Pembebanan Bending dan Buckling Menggunakan FEM.

Pada kesempatan kali ini penyusun mengucapkan banyak terima kasih kepada :

- 1. Kedua orang tua penulis Bapak Drs. Moh. Rosyihuddin dan Ibu Maslahah atas semua dukungan moril dan materiil yang selalu dicurahkan.
- 2. Bapak Dr. Agung Purniawan, S.T., M.Eng selaku Ketua Jurusan Teknik Material dan Metalurgi FTI-ITS.
- 3. Bapak Mas Irfan P. Hidayat, S.T., M.Sc., PhD selaku dosen pembimbing pertama tugas akhir yang telah memberikan waktu, tenaga, dan pikirannya serta semangat yang tak hentihentinya dalam penyelesaian tugas akhir ini.
- 4. Ibu Diah Susanti, S.T., M.T., PhD selaku dosen pembimbing kedua tugas akhir yang telah memberikan bekal ilmu yang sangat bermanfaat.
- 5. Seluruh dosen dan karyawan Jurusan Teknik Material dan Metalurgi FTI-ITS.

Penyusun menyadari adanya keterbatasan di dalam penyusunan laporan ini. Besar harapan penyusun akan saran, dan kritik yang sifatnya membangun. Selanjutnya semoga tulisan ini dapat selalu bermanfaat. Amin.

Surabaya, 8 Januari 2018

Ayu Furoidah

DAFTAR ISI

HA	LAMAN JUDUL	
LE	MBAR PENGESAHAN	i
AB	STRAK	iii
AB	STRACT	v
KA	TA PENGANTAR	vii
DA	FTAR ISI	xi
DA	FTAR GAMBAR	xiv
DA	FTAR TABEL	xvii
BA	B I PENDAHULUAN	
1.1	Latar Belakang	1
1.2	Rumusan Masalah	1
1.3	Batasan Masalah	2
1.4	Tujuan Penelitian	3
1.5	Manfaat Penelitian	3
BA	B II TINJAUAN PUSTAKA	
2.1	Carbon Nanotube	5
	2.1.1 SWNT	6
	2.1.2 DWNT	9
	2.1.3 MWNT	10
2.2	Sifat-sifat CNT	10
2.3	Band Gap Struktur CNT	11
2.4	Proses Manufaktur/ Pembuatan CNT	14
	2.4.1 Arc Discharge dan Laser Ablation	14
	2.4.2 Chemical Vapor Deposition	16
	2.4.3 n-hexane Spray Pyrolysis	18
2.5	Aplikasi CNT	19
2.6	Penelitian Sebelumnya	21
2.7	Finite Element Methode	26
2.8	Young's Modulus	
BA	B III METODOLOGI	
3.1	Diagram Alir	25
3.2	Materi Penelitian	26
	3.2.1 Sifat SWCNT	26

3.2.2 Struktur CNT/ Bravais Lattice Graphene	
3.3 Peralatan Penelitian	
3.4 Prosedur Penelitian	
3.4.1 Permodelan Geometri MUC SWCNT	
3.4.2 Pemodelan Struktur Beam SWCNT	
3.5 Variabel Penelitian	
3.6 Rancangan Penelitian	
3.6.1 Desain Geometri Awal	
3.7 Pembebanan Bending dan Buckling	
BAB IV HASIL DAN PEMBAHASAN	
4.1 Buckling dan Bending	41
4.2 Pemodelan dengan Metode Elemen Hingga	
4.3 Young's modulus Elemen Beam	
4.3.1 Nilai Young's Modulus Pembebanan Bending	47
4.3.2 Nilai Young's Modulus Pembebanan Buckling	
4.4 Pengaruh Variabel	57
4.5 Hasil dan Diskusi	
BAB V KESIMPULAN DAN SARAN	
5.1 Kesimpulan	65
5.2 Saran	65
DAFTAR PUSTAKA	xix
LAMPIRAN	xxiv
BIODATA PENULIS	LV

DAFTAR GAMBAR

Gambar 2.1	Basic Structure single-walled (SWNT), double-
	walled (DWNT), dan multiwalled CNTs
	(MWNT)
Gambar 2.2	Lembaran graphene ditandai dengan bilangan
	bulat/integer (n,m). Diameter sudut chiral dan
	jenisnya diketahui dengan bilangan bulat tersebut7
Gambar 2.3	Contoh dari tiga jenis SWNT diidentifikasi dari
	bilangan integers (n,m)
Gambar 2.4	(a) Electronic density of states (DOSs) yang
	dihitung dengan ikatan kuat jenis CNT armchair (8,
	8), (9, 9), (10, 10), and (11, 11). (b) Energi Band gap
	antara lonjakan panah mirror-image dihitung untuk
	$\gamma {=}\; 2.75 \; eV \ldots {8}$
Gambar 2.5	Energi yang menyatakan konduktansi pada
	graphene sebagai fungsi wavevector elektron, k9
Gambar 2.6	(a) Plot permukaan dan (b) Plot kontur energy
	disperse pada graphene12
Gambar 2.7	(a) Sebuah zona pertama Brillouin graphene
	dengan energy dispersi konik pada 6 titik K. state
	k1 pada CNT ditunjukkan dengan garis putus-
	putus. Pita struktur CNT ditentukan oleh luas
	permukaan section. Energi dispersi dekat titik K
	secara sistematis dinyatakan oleh cross sections
	state k_{\perp} dan menghasilkan energi disperse 1D (b)
	metallic CNT (c) semiconduktor CNT13
Gambar 2.8	Sebelah kiri menggambarkan skema Arc Discharge
	dan sebelah kanan merupakan skema laser ablation
Gambar 2.9	Skema produksi carbon nanotube dengan proses
	CVD 17
Gambar 2.10	Pertumbuhan Stuktur Nano SWCNT17
Gambar 2.11	Skema reactor dalam proses <i>spray pyrolysis</i> 18

Gambar 4.8 Grafik perbandingan diameter dengan Young's	
modulus saat dikenai pembebanan buckling	
Gambar 4.9 Grafik perhandingan ketebalan dengan Young's	
modulus saat dikenai nembehanan huckling 54	
Cambard 10 Susunan elemen SWCNT saat dikenai beban	
buckling kog rah sumbu 7	
Gambar 4.11 Grafik perbandingan pengaruh diameter terhadap	
Young's modulus saat pembebanan bending56	
Gambar 4.12 Grafik perbandingan pengaruh ketebalan aspek	
rasio terhadap Young's modulus saat pembebanan	
buckling	
Gambar 4.13 Grafik perbandingan pengaruh diameter terhadap)
Young's modulus	
Gambar 4.14 Grafik perbandingan pengaruh ketebalan terhadap)
Young's modulus	
Gambar 4.15 Grafik perbandingan pengaruh aspek rasio terhadap)
Young's modulus	

DAFTAR TABEL

Tabel 2.1	Karakt	ersitik	SWNT	dengan	metode	Finite		
	elemer	ıt						
Tabel 2.2	Predik	si Nilai	Young's	Modulus	s CNT pac	la Teori		
	yang b	erbeda			·····			
Tabel 2.3	Besar	Young	's modu	lus CNT	ditentuk	an dari		
	kesetimbangan continuum27							
Tabel 3.1	Sifat S	WCNT						
Tabel 4.1	Hasil	Simul	asi Be	nding	SWCNT	variasi		
	diame	ter						
Tabel 4.2	Hasil	Simul	asi Be	nding	SWCNT	variasi		
	diame	ter						
Tabel 4.3	Hasil	Simul	asi Bu	ckling	SWCNT	variasi		
	keteba	lan				51		
Tabel 4.4	Hasil	Simul	asi Bu	ckling	SWCNT	variasi		
	keteba	lan						
Tabel 4.5	Hasil	simulas	i Young	's modu	lus CNT	dengan		
	variasi	Aspek	rasi (L/D)) pembeb	anan bendi	ng 55		
Tabel 4.6	Hasil	simulas	i Young	's modu	lus CNT	dengan		
	variasi	Aspek	rasi (L/D)) pembeb	anan bendi	ng56		

BAB I PENDAHULUAN

1.1 Latar Belakang

Teknologi material dari hari ke hari terus mengalami perkembangan. Penelitian dan penemuan disegala bidang pun tidak lepas dari pengamatan material yang digunakan, termasuk adanya teknologi material berskala nano. Rekayasa material dalam skala nanometer dapat menghasilkan perilaku yang berbeda dan beragam dari yang sebelumnya berukuran makro dan mikroskopik. Ukurannya yang kecil tentu membuatnya memiliki sifatsifat khusus yang tidak dimiliki oleh material berukuran besar. Sifat unggul tersebut antara lain memiliki luas permukaan yang besar, perbandingan volume-luas yang besar, dan sifat mekanik serta elektrik yang baik. (Bal & Samal, 2007).

Carbon nanotube merupakan struktur yang berukuran nano dan menjadi hal yang menarik dari allotropi karbon karena dikenal memiliki sifat mekanik dan elektronik yang sangat baik (Harris, 2004). Penemuan dari berbagai bentuk carbon nanotube (CNT) telah memotivasi researcher untuk mengaplikasikannya dalam berbagai bidang. Seperti bidang medis, nanoteknologi, manufaktur, konstruksi, elektronik, dan lain sebagainya. Penemuan Lee dkk. misalnya dalam bidang komposit yang menggunakan tambahan karbon nanotube sebagai serat karbon dapat meningkatkan kekuatan mekanik dan elektrik dari komposit yang terbentuk (Lee, Rhee, & Park, 2011). Karbon Nanotube baik single walled maupun multi walled juga dapat digunakan sebagai implant buatan tanpa respon penolakan dari host, rekayasa jaringan organ, identifikasi sel kanker, dan sebagainya (Eatemadi dkk., 2014)

Teknologi untuk penelitian dan pengembangan material seperti bahan allotropi dari carbon, salah satunya carbon nanotube, masih membutuhkan dana yang cukup tinggi. Sehingga dapat diambil terobosan lain yaitu dengan melakukan simulasi finite element method. Metode elemen hingga (finite element method) merupakan suatu metode diskrit dimana massa dapat direpresentasikan dalam nodal struktur, sehingga dapat memodelkan distribusi massa yang kontinyu pada struktur. Member struktur dibagi-bagi menjadi elemen-elemen yang lebih kecil dengan jumlah yang secara teoretis adalah tak berhingga. Salah satu software dengan prinsip tersebut adalah ANSYS. Penggunaan simulasi dengan ANSYS dilakukan karena lebih efisien waktu dan harga (Tayade, 2015). Penelitian berikut dilakukan untuk menganalisa struktur single walled carbon nanotube tipe zigzag dan armchair dengan orientasi tertentu menggunakan ANSYS/Mechanical ADPL 17.1 agar dapat menggambarkan sifat mekanik dan nilai maksimum pembebanan yang diberikan, sehingga dapat digunakan sebagai referensi penelitian selanjutnya dalam pengaplikasian carbon nanotube.

1.2 Rumusan Masalah

Rumusan masalah yang menjadi fokusan laporan tugas akhir ini adalah

- 1. Bagaimana struktur *single walled carbon nanotube* yang sesuai saat dikenai *bending stress* dan *buckling stress* berdasarkan nilai Young's modulusnya?
- 2. Bagaimana pengaruh diameter, ketebalan dan aspek ratio terhadap nilai Young's modulus?

1.3 Batasan Masalah

Agar diperoleh hasil akhir yang baik dan sesuai dengan yang diinginkan serta tidak menyimpang dari

permasalahan yang ditinjau, maka batasan masalah pada penelitian ini yaitu *bending* dan *buckling stress* yang diberikan dianggap konstan.

1.4 Tujuan Penelitian

Tujuan dari laporan tugas akhir ini adalah

- 1. Menganalisa struktur *single walled carbon nanotube* yang sesuai saat dikenai *bending stress* dan *buckling stress* berdasarkan nilai Young's modulusnya
- 2. Menganalisa pengaruh diameter, ketebalan dan aspek ratio terhadap nilai Young's modulus

1.5 Manfaat Penelitian

Manfaat dilakukannya penelitian ini diharapkan dapat mengetahui struktur optimal *carbon nanotube* untuk dapat menghasilkan sifat mekanik yang nantinya dapat digunakan sesuai dengan aplikasi yang diharapkan, serta dapat digunakan sebagai rujukan penelitian selanjutnya berupa aplikasi baru *carbon nanotube*, proses sintesa maupun pengamatan *defect* dan kegagalannya ketika digunakan dalam suatu material. 4

BAB II TINJAUAN PUSTAKA

2.1 Carbon Nanotube

Carbon nanotubes merupakan material yang pertama kali ditemukan oleh Sumio Iijima pada tahun 1991, tergolong kedalam *fullerene structural family*. Morfologi *Carbon Nanotube* (CNT) berbentuk lembaran *graphene* yang digulung secara konsentris dengan sejumlah heliks dan potensi kiralitas menyerupai tabung halus yang tertutup pada kedua sisinya. (O'Connell, 2006)

CNT merupakan bahan yang inert terkait dengan kuatnya ikatan antara atom karbon yang tersusun secara hexagonal. Susunan ini menyebabkan CNT mudah teraglomerisasi membentuk sesamanya, gumpalan sehingga meminimalisir potensi-potensi terkait struktur tabung nano yang dimilikinya seperti kemampuan menghantarkan listrik, selain itu dapat menyebabkan CNT tidak terdispersi secara merata dalam matriks komposit. Dalam material komposit, distribusi bahan pengisi yang tidak merata tidak hanya menyebabkan tidak berfungsi dengan baiknya bahan pengisi sebagai penguat, namun juga dapat menyebabkan inisiasi keretakan lokal karena distribusi beban tidak merata sepanjang matriks. Fungsionalisasi gugus hidroksil dan karbonil pada CNT dengan proses oksidasi permukaan diketahui dapat mengurangi tendensi CNT untuk beraglomerisasi (Datsyuk et al., 2008).

Berdasarkan jumlah konsentris lembar graphene yang tergulung, CNT dapat diklasifikasikan menjadi single-walled (SWNT), double-walled (DWNT), dan multiwalled CNTs (MWNT) seperti gambar 2.1.

Gambar 2.1 Basic Structure single-walled (SWNT), double-walled (DWNT), dan multiwalled CNTs (MWNT)

2.1.1 SWNT

6

Struktur SWNT menggambarkan *one-atom-thick layer* dari graphene yang digulung menjadi sebuah silinder. (Majumder et al. 2011c). SWNT banyak dimanfaatkan sebagai *hydrogen storage* untuk fuel cell.

Karakteristik dasar nanotube dapat digambarkan oleh dua vektor, Ch dan T. (Gambar 2.2) Ch dianggap sebagai vektor dalam lembar graphene vang menggambarkan keliling permukaan tube vang menghubungkan dua atom karbon yang sejenis. Persamaan panjang chiral berupa Ch= $n\hat{a}1 + m\hat{a}2$. Sedangkan T dinotasikan sebagai axis, dengan **â**1 dan **â**2 sebagai 2 basis vektor grafit dan n serta m merupakan bilangan bulat n dan m juga disebut dengan index untuk menentukan sudut chiral

$$\pi = \tan^{-1}\left[\frac{\sqrt{3n}}{(2m+n)}\right]$$
(2.1)

Sudut chiral digunakan untuk memisahkan carbon nanotube menjadi tiga kelas berbeda berdasarkan sifat elektroniknya: (Gambar 2.3)

- armchair $(n = m, \pi = 30^{\circ})$, contoh (8,8)

- zig-zag
$$(m = 0, n > 0, \pi = 0^{\circ})$$
, contoh (10,0)

- chiral $(0 < |m| < n, 0 < \pi < 30^{\circ})$, contoh (7,9)

(O'Connell, 2006)

Gambar 2.2 Lembaran graphene ditandai dengan bilangan bulat/integer (n,m).Diameter sudut chiral dan jenisnya diketahui dengan bilangan bulat tersebut.

Saat n=m (Armchair) carbon nanotubes bersifat metallic (penurunan semimetal dengan zero band gap). Sedangkan zig-zag dan chiral nanotubes dapat bersifat semimetal dengan adanya finite band gap, yaitu jika $\frac{n-m}{3} = i$ (i sebagai bilangan bulat, m≠n) yang berarti juga sebagai semikonduktor. Gambar 2.4a menunjukkan perkiraan band gap untuk semimetal dan semi konduktor nanotube yang nilainya berkebalikan dengan diameter tube pada gambar 2.4b dengan masing-masing sifat unik elektroniknya.

Armchair

Gambar 2.3 Contoh dari tiga jenis SWNT diidentifikasi dari bilangan integers (n,m)

Gambar 2.4 (a) *Electronic density of states* (DOSs) yang dihitung dengan ikatan kuat jenis CNT armchair (8, 8), (9, 9), (10, 10), and (11, 11). Fermi energy terletak pada 0 eV. Gelombang vector-conserving transisi optic dapat terjadi antara lonjakan panah mirror-image, v1 c1 dan v2 c2. (Rao, 1997) (b) Energi Band gap antara lonjakan panah mirror-image dihitung untuk γ = 2.75 eV. Semiconduktor SWNTs digambarkan dalam lingkaran terbuka; metallic SWNTs

digambarkan dalam lingkaran solid, dimana SWNTs armchair sebagai lingkaran rangkap (Kataura, 1999)

* Fermi: satuan panjang 10-15 m digunakan dalam fisika nuklir yang sama dengan diameter proton

Gambar 2.5 Energi yang menyatakan konduktansi pada graphene sebagai fungsi *wavevector* elektron, k

Diameter nanotube dapat ditunjukkan dengan persamaan berikut,

$$dt = \sqrt{\frac{3x \, a_{c-c}(m2 + mn + n2)0,5}{\pi}} = \frac{Ch}{\pi}$$
(2.2)

Ch adalah panjang Ch, dan a_{c-c} adalah panjang ikatan C-C (1.42 Å). Mengkombinasikan diameter berbeda dan hasil kiralitas dalam beberapa ratus buah nanotube, yang memiliki sifat mekanik, elektrik, piezoelektrik dan optik masing-masing.

2.1.2 DWNT

DWNT tergolong sebagai tipe khusus MWNT dimana hanya terdapat dua buah gulungan lembaran *graphene*. DWNT merupakan sub-segmen penting dari MWCNT. Material ini menggabungkan morfologi yang mirip dan sifat yang lain dari SWCNT dan secara signifikan meningkatkan ketahanan terhadap bahan kimia.

Sifat ini sangat penting dimiliki ketika kegunaannya diperlukan untuk menambah sifat baru pada *nanotube*. Material ini menunjukkan stabilitas listrik dan termal yang sangat baik. Dikembangkan untuk aplikasi yang sangat spesifik seperti *gas sensor, dielectrics, field-emission displays, nanocomposite materials,* dan *nanosensor*.

2.1.3 MWNT

MWNT terdiri dari dua atau lebih gulungan lapisan konsentris dari *graphene*. MWNT memiliki dua macam model. Russian Doll model, dimana lembaran graphene disusun dalam silinder konsentris. Sedangkan Parchment model (Du et al. 2005), menyusun melingkar per lembar graphene seperti koran.

2.2 Sifat-sifat CNT

Carbon nanotube dapat dikatakan memiliki sifat yang luar biasa, namun tetap mempunyai limit dari beberapa sifatnya. Sifat-sifat yang dimiliki carbon nanotube antara lain:

- a. Tensile strength yang sangat tinggi Ikatan antar atom nanotube sp2 membuatnya memiliki kekuatan tensile lebih besar dari baja dan Kevlar. Ikatan tersebut lebih kuat daripada ikatan sp3 yang biasa ditemukan dalam berlian. Secara teoritis, SWCNT memiliki kekuatan tensile ratusan kali lebih besar dari baja.
- b. Sangat Elastis dan Fleksibel Elastisitas nanotube memiliki limit mencapai ~18% kegagalan mulur. saat dikenakan gaya tekan axial yang cukup tinggi akan membuat material nanotube mengalami *bending*, *buckling*, dan *twisting* yang tidak sampai merusak material nanotube itu sendiri. Dan ketika dilepas gayanya maka akan kembali ke bentuk semula.

c. Memiliki konduktivitas panas dan elektrik yang tinggi

Ketika nanotube bersifat sebagai konduktor, nanotube memiliki konduktivitas yang sangat tinggi. Diperkirakan pada saat nanotube bersifat konduktor sebagai maka ia mempunyai konduktivitas listrik sebesar 1 milyar Ampere per 1 cm². Hal ini tidak mungkin terjadi pada bahan tembaga karena akan terjadi panas yang dapat melelehkan tembaga. Pada nanotube tidak akan terjadi panas yang tinggi karena hambatan yang rendah. Nanotube juga memiliki konduktivitas panas yang baik. Hal ini yang kemudian nanotube diberi sebutan ballistic conduction. Nanotube memiliki kemampuan untuk mentransmisikan 6000 W/m/K di temprature ruang (pada tembaga hanya 385 W/m/K).

d. Carbon nanotube cukup baik sebagai Good Electron Field Emitters

2.3 Band Gap Struktur CNT

Dalam menjelaskan pita struktur CNT, penting untuk memahami pula pita struktur pada graphene. Secara umum, transport elektrik sifat graphene ditentukan oleh electron dan hole terdekat pada level energiFermi. Hal ini dikarenakan electron dekat level energi Fermi lebih mudah melompat ke pita konduksi, meninggalkan hole pada pita valensi. Pada graphene, orbital π bertanggung jawab untuk transport sifat elektrik sebagaimana mereka berada pada level energi Fermi. Pita struktur graphene dapat ditentukan oleh metode "tight binding approximations" (Wallace 1947; Minto 2004; Satio et al. 1992).

Gambar 2.6 (a) Plot permukaan dan (b) Plot kontur energy disperse pada graphene sebagaimana persamaan 2.1. Tercatat bahwa terdapat 6 titik K yang nilai bandgap sama dengan nol. Diantara 6 titik K tersebut, hanya dua yang tidak ekuivalen, dinyatakan dalam K1 dan K2 (Dinyatakan dengan izin Javey dan Kong 2009)

Persamaan energi dispersi graphene adalah sebagai berikut

$$E = E_0 \mp \gamma_0 \left(1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right) \right)^{1/2}$$
(2.1)

Lembar Graphene digulung menjadi bentuk CNT dengan dua atom karbon bertemu secara bersama. CNT dapat didefinisikan dan di deskripsikan secara unik dengan *wrap* indeks n1 dan n2. Karena CNT memiliki struktur yang digulung dari lembar graphene, maka perkiraan *boundary condition* diperlukan untuk mengeksplore struktur *band*-nya. Jika dapat dipertimbangkan sebagai silinder panjang yang tidak terbatas, maka terdapat dua gelombang vector yang sesuai dengan hal tersebut: (1) Gelombang vector parallel dengan sumbu CNT k|| yang berkelanjutan di alam karena panjang tak terbatas CNT (2) Gelombang vector yang tegak lurus dengan sepanjang keliling CNT.

Kedua gelombang vector tersebut diharuskan sesuai dengan kondisi batas periodik (missal fungsi gelombang itu sendiri dimana rotasinya sebesar 2π dalam sebuah CNT) (Javey and Kong 2009)

 $k\perp C = \pi D k\perp = 2\pi m$ (2.2)

Dimana D mewakili diameter CNT dan m adalah bilangan bulat. Besar nilai yang diizinkan $k\perp$ untuk CNTs ditentukan dari kondisi batas. Luas permukaan *cutting* energi dispersi mengizinkan hasil state $k\perp$ dalam 1D pita struktur graphene seperti gambar 2.7

Gambar 2.7 (a) Sebuah zona pertama Brillouin graphene dengan energy dispersi konik pada 6 titik K. state $k\perp$ pada CNT ditunjukkan dengan garis putus-putus. Pita struktur CNT ditentukan oleh luas permukaan section. Energi dispersi dekat titik K secara sistematis dinyatakan oleh *cross sections* state $k\perp$ dan menghasilkan energi disperse 1D (**b**) metallic CNT (**c**) semiconduktor CNT (Javey and Kong 2009)

Ini disebut zona skema lipat untuk mendapatkan struktur pita CNT. Setiap potongan cross-sectional memunculkan subband 1D. Jarak antara state bagian yang diizinkan dan sudut yang memperhatikan permukaan Zona 14

Brillouin menentukan pita struktur 1D dari CNT. Pita struktur di dekat levelFermi diberikan oleh state $k\perp$ yang paling dekat dengan titik K. Jika state $k\perp$ melalui langsung titik K seperti ditunjukkan pada Gambar 2.7b, energi dispersi memiliki dua pita linier di tingkat Fermi tanpa bandgap. Namun, jika state $k\perp$ kehilangan titik K seperti yang ditunjukkan pada Gambar 2.7c, ada dua band 1D parabola dengan energi bandgap. Oleh karena itu, dua jenis CNT yang berbeda dapat bergantung pada wrapping indeks, frstly, CNT metalik tanpa bandgap seperti pada Gambar 2.7b, dan kedua, CNT semikonduktor dengan bandgap seperti pada Gambar 2.7c.

2.4 Proses Manufaktur/ Pembuatan CNT

Tahun 1993 merupakan kurun waktu SWCNT diproduksi dengan metode *arc discharge* menggunakan batang elektroda grafit. Namun, perlu diketahui bahwa *arc dischage* pada saat itu hanya dapat memproduksi *low yield* SWCNT dengan banyak pengotor *carbonaceous*. Setelah penemuan tersebut, mulai muncul beragam penelitian mengenai proses produksi, antara lain *laser vaporization* (A. Thess, 1996) dan *chemical vapour deposition* (CVD) (Dai H, 1996), yang mana hasilnya jauh lebih meningkatkan produktivitas SWCNT.

2.4.1. Arc Discharge dan Laser Ablation

Pada metode *Arc Discharge* dua batang grafit ditempatkan di wadah yang dipenuhi beberapa gas inert (seperti helium atau argon) pada tekanan rendah (antara 50 dan 700 mbar). Batang karbon bertindak sebagai elektroda yang disimpan pada tegangan yang berbeda. Anoda dipindahkan ke katoda sampai muncul arus dan elektroda disimpan pada jarak 1 mm untuk seluruh durasi proses yang memakan waktu sekitar satu menit. Setelah de-pressurisasi dan pendinginan ruang nanotube bersama dengan produk sampingan maka nanotube dapat dihasilkan. Sebagian besar deposit nanotube di katoda.

Gambar 2.8 Sebelah kiri menggambarkan skema Arc Discharge dan sebelah kanan merupakan skema laser ablation

Sedangkan pada metode laser ablation, laser pulse secara intens mengikis karbon yang diletakkan pada tungku tabung yang dipanaskan sampai 1200°C (Dai H, 1996). Selama proses tersebut, beberapa gas inert seperti He dan Ar mengalir melalui ruang dalam tungku tabung untuk membawa nanotube yang terus tumbuh ke kolektor tembaga. Kemudian dilakukan pendinginan sehingga menjadi produk nanotube dan produk sampingan, seperti fullerenes dan lapisan karbon amorf yang menempel pada dinding samping nanotube. Hasil tersebut kemudian dikumpulkan.

Keuntungan dari metode *arc discharge* ini adalah dapat memproduksi nanotube dalam skala besar. Tetapi terdapat kontrol kecil dalam *alignment*-nya, sebagai contoh kiralitas dalam memproduksi nanotube yang cukup berpengaruh pada karakterisasi dan peranannya. Terlebih karena katalis logam ikut serta dalam reaksi, produknya masih butuh di lakukan pemurnian, dengan metode seperti oksidasi, proses centrifugal, penyaringan/*filtration*, atau *acid treatment*. Sedangkan keuntungan metode *laser ablation* relatif memiliki tingkat *yield*/luluh yang tinggi dan pengotor akan bahan logamnya lebih rendah, karena atom logam cenderung untuk menguap saat hanya salah satu ujung tube ditutup. Sedangkan

kelemahannya yaitu produksi nanotube tidak akan seragam lurus, namun akan bercabang.

2.4.2. Chemical Vapor Deposition

16

Reaktor CVD terdiri dari tabung yang ditempatkan dalam tungku yang memiliki kapasitas pemanasan hingga sekitar 1200°C. Silinder gas untuk sumber karbon (asetilena) dan gas pembawa (Argon) dihubungkan ke saluran masuk reaktor dimana *flow meters* tersedia untuk mengendalikan aliran gas. Sistem kontrol CVD memungkinkan untuk program suhu yang sesuai dalam menjaga laju pemanasan reaksi yang konsisten dan tepat suhu, dan laju pendinginan. Gas buang melalui *exhaust pump* dalam *exhause outlet* dikumpulkan dengan *bubbling* dalam air.

Kelebihan dari metode CVD ini adalah *yield* yang dihasilkan cukup tinggi, *alignment* nanotube cukup konsisten (penting untuk membuat tipe partikular nanotube seperti metallic dan semikonduktor). Sedangkan kelemahannya yaitu ukuran daerah tumbuh secara teoritis akan berubah-ubah, sized area yang besar akan cenderung crack, menyusut, dan mudah bengkok. (Gambar 2.10) Substrat perlu dikeringkan sangat kering untuk mencegah terjadinya hal tersebut.

Gambar 2.9 Skema produksi carbon nanotube dengan proses CVD

Gambar 2.10 Pertumbuhan Stuktur Nano SWCNT

2.4.3. n-hexane Spray Pyrolysis

Spray pyrolysis adalah jenis metode CCVD, yang sumber karbonnya berupa hidrokarbon cair, bertindak sebagai pelarut untuk katalis dan disemprotkan ke dalam tungku. Ferrocene memiliki kemurnian fraksi massa 98% dan digunakan sebagai sumber katalis. Hexane, pelarut yang baik untuk ferrocene, digunakan sebagai sumber karbon. Semua reagen tersebut digunakan tanpa pemurnian lebih lanjut. Spray pirolisis adalah metode menghasilkan grafitisasi MWCNT untuk dengan kemurnian tinggi dan biaya rendah dalam jumlah banyak, sehingga cukup menjanjikan dalam skala industri (Darabont, 2005). Proses pirolisis melarutkan ferrocene dalam heksana, kemudian larutan yang dihasilkan disemprotkan ke dalam zona reaksi.

Gambar 2.11 Skema reactor dalam proses spray pyrolysis (Sadeghian Z, Volume 24, Issue 1, March 2009)

Keuntungan utama menggunakan metode ini adalah dapat menghasilkan ikatan macroscopic nanotube: diameternya lebih besar dari helai rambut manusia, dan memiliki panjang beberapa sentimeter. Kekurangannya *alignment* tidak dapat dihasilkan dengan metode lain, membuatnya dapat membuat *microcable*, namun tidak cocok untuk sifat elektrik. Selain itu dari pengukuran para ahli, elastisitas ikatan nanotube tidak sekuat yang diharapkan (lebih getas).

(Carbon nanotube journal)

2.5 Aplikasi CNT

Sejak ditemukannya karbon nanotube (CNT), beberapa ide pengaplikasian dari berbagai bidang mulai bermunculan, meliputi bidang elektronik seperti wires, switches/saklar. interconnect. transistor. memori opto-elektronik penyimpanan; seperti *light-emitting* diodes, laser); sensor; emission devices (displays, alat scan dan probe elektron/mikroskop); batterai/fuel cells; serat, bahan komposit; obat-obatan/biologi reinforce (fluorescent markers untuk penanganan penderita kanker, biological labels, drug delivery carriers); katalis; dan gas storage.

Field emitters

Kemampuan Buckytubes/Nanotube untuk dapat membawa densitas arus yang cukup tinggi sekitar 1013 A/cm serta sangat stabil membuat nanotube mampu menangkap *field emitters* dan diaplikasikan dalam *flat panel display*, sumber *cold-cathode lighting*, *lightning arrestor*, dan sumber electron mikroskop. (Wei, B.Q., 2001). Selain itu juga karena nanotube sendiri tidak membutuhkan daya operasi dan turn-on yang tinggi, juga life time yang cukup lama.

Penyimpan Energi

menunjukkan Penelitian bahwa nanotube memiliki kapasitas bolak balik tertinggi dari beberapa material karbon yang digunakan sebagai baterai ion lithium (Gao, B., 2000) Dan lebih dari itu, nanotube kini menjadi material yang sangat terkenal sebagai elektroda superkapacitor yang sekarang telah dipasarkan. (Ma, R.Z., 2000). Kini penerapannya juga sebagai baterai kertas. Baterai kertas adalah baterai hasil rekayasa yang menggunakan kertas-lembaran tipis selulosa (merupakan unsur utama dari kertas biasa) yang disisipi dengan blok CNT (Odom, 2000). Nanotube bertindak sebagai elektroda sehingga memungkinkan perangkat penyimpanan

menghantarkan listrik. Baterai dapat berfungsi sebagai baterai lithium-ion dan superkapacitor karena mampu memberikan output daya yang lebih stabil dibandingkan dengan baterai konvensional, serta semburan energi yang lebih tinggi, selain itu baterai konvensional secara umum berisi sejumlah komponen, berbeda halnya dengan baterai kertas CNT yang mampu mengintegrasikan seluruh komponen baterai dalam struktur tunggal hal ini membuatnya lebih hemat energi.

Struktural Komposit

Tidak hanya terbatas pada penerapan dari sifat konduktifitas termal dan elektrik, tetapi juga dari segi penerapan sifat mekanik. Seperti ketangguhan, kekakuan, dan kekuatan. Sifat-sifat mekanik tersebut dapat ditingkatkan dari penggunaan nanotube pada struktur komposit. Misal sebagai super strong fiber dalam aplikasi body kendaraan, transmisi kabel, teksile dan sebagainya.

CNT dengan doping nitrogen untuk sel bahan bakar yang murah

CNT yang didoping dengan nitrogen memiliki potensi untuk menggantikan katalis platina yang mahal yang biasa digunakan untuk mereduksi oksigen didalam sel bahan bakar, menurut para peneliti di Ohio (Science 2009, 323, 760). Penemuan ini dapat menurunkan harga dari sel bahan bakar, yang merupakan teknologi menjanjikan namun memiliki masalah dalam pengaplikasiannya terutama dalam skala besar seperti pada kendaraan bermotor karena harga katalis yang mahal disamping segi ketahanannya.

Memori *Nonvolatile* Berbasis CNT dengan Lapisan Oksida–Nitrida–Oksida sebagai Charge Trap

CNT-field-effect transistor (CNTFET) dapat digunakan untuk membuatmemori nonvolatile dengan kerapatan sangat tinggi (Choi, 2003). CNT digunakan sebagai channel berukuran nano, sedangkan lapisan SiO₂–

 Si_3N_4 - SiO_2 (ONO) digunakan sebagai node penyimpan muatan (charge node).

2.6 Penelitian Sebelumnya

Massoud (2017) melakukan prediksi analitik dengan menggunakan teori continuum dan memasukkan fungsi potensial Morse dengan energi regangan sel untuk menentukan kekakuan dan Young's modulus karbon *nanotube*. Penelitian ini menggambarkan model struktur *truss* yang terdiri dari unit sel untuk menggambarkan respon mekanis tipe zigzag dan armchair *single walled carbon nanotube* (SWCNT) terhadap pembebanan. Hasilnya menunjukkan bahwa nilai Young's modulus pada zigzag sebesar 1,42 TPa dan armchair sebesar 1,30 TPa. Penelitian ini menyatakan bahwa perbedaan tersebut dikarenakan kecenderungan kiralitasnya

Sedangkan untuk kekakuan zigzag dan armchair dijelaskan pada grafik pada gambar 2.12 dan 2.13 yang mana kekakuan akan menurun seiring dengan aspek rasio yang naik. Namun zigzag nanotube memiliki kekakuan sepuluh persen lebih tinggi daripada armchair untuk aspek rasio yang sama. Perbedaan tersebut dilihat dari orientasi MUC (Molecular Unit Cell) yang berbeda diantara keduanya. Namun penelitian Massound (2017) menunjukkan bahwa nilai kekakuan dan Young's modulus berhubungan dengan kiralitas dan tidak bergantung pada diameter.

Jurnal lain yang serupa, Rafiee (2012), juga mengupas penelitian mengenai besar Young's modulus CNT akibat efek diameter dan kiralitas menggunakan *finite element method* dengan elemen spring yang mensimulasikan interaksi non linier molecular dalam struktur atom *carbon nanotube*. Hasilnya menunjukkan nilai Young's modulusnya sebesar 1.325 TPa. 22

Gambar 2.12 Perbandingan aspek rasio dan tingkat kekakuan CNT

Gambar 2.13 Perbandingan Diameter dan Nilai Young's modulus CNT

Pada Giannopoulos (2008) yang melakukan penelitian untuk menganalisa nilai Young's modulus dan shear modulus SWCNT dengan menggunakan metode

elemen hingga linier element spring. Melalui pendekatan yang diimplementasikan melalui tiga dimensi spring seperti elemen dengan node yang mengikuti tiga translasi dan tiga rotasi. Penelitian tersebut menghasilkan nilai Young's modulus dan shear modulus yang bergantung pada *radius* dan ketebalan.

(Lu dan Hu, 2012) Penelitian dalam jurnal ini juga turut mengevaluasi sifat mekanik dari single walled carbon nanotube dengan menggunakan simulasi elemen hingga. Pengujian yang dilakukan menggunakan uji bending, dengan mengamati energi regangan dari elemen beam. Ikatan kovalen adalah ikatan yang sangat kuat dan berperan penting dalam memberikan sifat mekanik luar biasa pada material graphene dan CNT. Penelitian ini menggunakan variabel diameter, kiralitas, dan juga ketebalan CNT untuk dibandingkan dengan penelitian lainnya. Diameter yang digunakan adalah berkisar antara 0.375-1.8 nm yang menghasilkan E atau nilai Young's modulus sebesar 0.989-1.058 TPa. Kemudian diameter 0.391-2.07 nm menghasilkan G atau shear modulus sebesar 0.237-0.469 TPa. Jika diameter tube kecil maka shear modulus akan meningkat karena adanya efek kelengkungan yang merupakan fungsi dari diameter tube. Semakin tinggi kelengkungannya, semakin besar terjadi distorsi atau perpindahan ikatan C-C nanotube. Dan sebaliknya, jika diameter tube besar, maka shear modulusnya kecil karena menjadi kurang sensitive terhadap variasi jari-jari tabung namun meningkatkan nilai Young's modulusnya. Penelitian Lu dan Hu (2012), SWNT adalah simulasi FE dari space frame-structure yang t nya harus spesifik, menggunakan ketebalan 0.0892 nm yang dekat dengan Kudin et al (0.089 nm). Normalnya memiliki ketebalan 0.064 hingga 0.69 nm. Pada penelitian yang ada, telah diasumsikan bahwa ketebalan SWNT sama dengan interlayer spacing grafit sebesar 0.34 nm. Namun 24

dengan pemodelan finite element dan molecular dynamic serta ECM (Equivalent Continuum Modelling) (Odegard et al) menyatakan bahwa t lebih besar nilainya dari itu, yaitu 0.57 dan 0.69 nm. Disisi lain (Pantano et al, menunjukkan ketebalan efektif SWNT adalah 0.075 nm menggunakan pemodelan continuum shell.

	(<i>n</i> , <i>m</i>)	Diameter (nm)	Chirality 0°	Cross section area A (nm ²)	Layers	Nodes	Length (nm)
Armchair CNTs	3,3	0.406	30	0.4346	52	624	12.669
	5,5	0.678	30	0.7243	52	1040	12.669
	8,8	1.084	30	1.1590	52	1664	12.669
	10,10	1.356	30	1.4487	52	2080	12.669
	12,12	1.628	30	1.7384	52	2496	12.669
	15,15	2.034	30	2.1730	52	3120	12.669
Zigzag CNTs	5,0	0.392	0	0.4182	30	600	12.638
	8,0	0.626	0	0.6691	30	960	12.638
	10,0	0.784	0	0.8364	30	1200	12.638
	15,0	1.174	0	1.2546	30	1800	12.638
	20,0	1.566	0	1.6728	30	2400	12.638
	25,0	1.958	0	2.0910	30	3000	12.638
Chiral CNTs	4,2	0.414	19.1	0.4426	34	680	13.230
	8,4	0.829	19.1	0.8852	38	1520	14.437
	12,6	1.243	19.1	1.3277	42	2520	15.644
	16,8	1.657	19.1	1.7703	46	3680	16.852
	20,10	2.072	19.1	2.2129	50	5000	18.060

Tabel 2.1 Karaktersitik SWNT dengan metode Finite element

Tabel 2.2 Prediksi nilai Young modulus dari beberapa peneliti

Peneliti	Tahun	Ringkasan	Young's Modulus	Keterangan
Shokrieh dan Rafiee [84]	2010	Menghubungkan antara energi potensial inter- atomic dari struktur molekular lattice lattice dengan energi ekuivalen	1.033- 1.042 TPa	Prediksi nilai Young's modulus dari sebuah lembaran graphene dan CNT menggunakan finite element

Laporan Tugas Akhir Departemen Teknik Material FTI-ITS 25

		strain dari struktur discrete frame		modeling elemen beam
Lu dan Hu [86]	2012	Menggunakan potensial nonlinear untuk mensimulasikan ikatan C-C dengan mempertimbangkan bentuk ellips luas permukaan ikatan C-C	Untuk diameter antara 0.375– 1.8, didapatkan nilai young's modulus sebesar 0.989– 1.058 TPa	Prediksi sifat mekanik CNT menggunakan FEM, juga menganalisa <i>rolling energy</i> per atom lembaran roll graphene SWNT
Rafiee dan Heidarhaei [87]	2012	Nonlinear FEM menggunakan nonlinear springs untuk <i>bond</i> <i>stretching</i> dan variasi <i>bond angle</i>	1.325 TPa	Young's modulus SWCNT dan menganalisa pengaruh kiralitas dan diameter
Giannopoulos et al. [80]	2008	FEM, elemen spring	1.2478 TPa	Young's dan Shear modulus SWCNT menggunakan 3D elemen spring
Papanikos et al. [81]	2008	3-D elemen beam	0.4-2.08 TPa	Analisis FE 3D, dengan mengasumsikan linear behavior ikatan C–C

2.7 Finite Element Methode

26

Metode elemen hingga (*finite element method*) merupakan metode numerik dengan basis komputasi untuk memecahkan persoalan pada bidang *engineering*. Geometri akan dibagi menjadi elemen-elemen yang lebih kecil dimana masing-masing elemen *node* yang digunakan untuk mewakili nilai variable (contohnya tempratur, tegangan, dan perpindahan panas) yang membawahi elemen fungsi interpolasi.

Gambar 2.14 Konsep metode elemen hingga

(Infometrik.com) Salah satu contoh *software* yang menggunakan konsep metode elemen hingga adalah ANSYS. ANSYS berisikan 100.000 garis kode, yang membuatnya mampu menganalisa persoalan statis, dinamis, *heat transfer*, aliran

fluida, dan electromagnetism. ANSYS telah menjadi salah satu program yang terus unggul dalam *finite element analysis* selama 20 tahun.

Tipe analisis dalam ANSYS terjadi dalam tiga tahap berbeda:

- a. *Preprocessing*, menggunakan processor PREP7, menyediakan data berupa geometri, material, dan tipe elemen program.
- b. *Solution*, menggunakan processor SOLUTION, mendefinisikan tipe analisis, mengatur kondisi boundary, menerapkan pembebanan, dan menginisiasi solusi elemen hingga.
- c. *Postprocessing*, menggunakan POST1(untuk persoalan statis atau *steady state*) atau POST26 (untuk persoalan data temporer/transient), disini akan melihat hasil dari analisis melalui bentuk grafik dan list tabel.

(Moaveni,1999)

Kesetimbangan continuum						
Equivalent continuum elements	CNT Young's modulus (TPa)	Reference				
Truss elements	2.52	Selmi et al. [103]				
Beam elements	1.05	Li et al. [13]				
FEM, Beam elements	0.95	Wernik et al. [104]				
Vibrational frequencies method	0.96	Gupta et al. [105]				
Nonlinear and rotational springs	0.91-0.92	Meo et al. [106]				
FEM, Nonlinear springs	1.3	Rafiee et al. [107]				
Plate elements	0.6-0.8	Wang et al. [108]				
Thin cylinder	1-1.2	Wu et al. [109]				

Tabel 2.3 Besar Young's modulus CNT ditentukan dari kesetimbangan continuum

(Pal G., 2016)

ANSYS menggunakan teori mekanisme continuum. Material dianggap sebagai substansi yang continuum (tidak terputus) setidaknya dalam level makro,

sehingga operasi-operasi differensial dapat dilakukan. Padahal kenyataannya, material adalah diskrit dalam level atomic. Tidak terputus hanya berupa asumsi agar dapat menerapkan formula differensial. Jadi asumsi material sambung menyambung didalamnya menunjukkan semua ruang terisi penuh. Padahal sebenarnya dalam material terdapat *grain boundary*, *vacancy*, garis-garis, slip, dan sebagainya.

2.8 Young's Modulus

28

Modulus Young, disebut juga dengan modulus tarik (bahasa Inggris: tensile modulus atau elastic modulus), adalah ukuran kekakuan suatu bahan elastis yang merupakan ciri dari suatu bahan. Modulus Young didefinisikan sebagai rasio tegangan dalam sistem koordinat Kartesius terhadap regangan sepanjang aksis pada jangkauan tegangan di mana hukum Hooke berlaku. (ASTM E111)

Hooke's Law
$$\sigma = E.\epsilon$$
 (2.3)

Dalam carbon nanotube, masing-masing atom carbon dalam satu lembar grafit dihubungkan oleh ikatan kimia yang kuat ke tiga atom tetangga. Sehingga dapat menjadi dasar fundamental CNT yang kuat untuk modulus elastisitasnya dan membuat CNT menjadi fiber yang memiliki kekuatan super. Modulus elastisitas SWCNT lebih besar daripada baja membuatnya memiliki daya tahan yang tinggi. Walaupun tekanan pada ujungnya akan membuat bengkok, nanotube akan kembali ke bentuk semula secepat gayanya dihilangkan. Sifat ini membuat CNT sangat berguna sebagai ujung probe untuk resolusi tinggi *scanning probe microscopy*. (Kaushik, 2015)

BAB III METODOLOGI PENELITIAN

3.1 Diagram Alir

3.2 Materi Penelitian

3.2.1 Properties SWCNT

Tabel 3.1 Properties SWCNT (Fukuda, T. 2003)

Property	Item	Data
	Layers	Single/Multiple
	Aspect Ratio	10-1000
Geometrical	Discustor	~0.4nm to >3nm (SWNTs)
	Diameter	~1.4 to >100nm (MWNTs)
	Length	Several µm (Rope up to cm)
	Young's Modulus	~1 TPa (steel: 0.2TPa)
Mechanical	Tensile Strength	45GPa (steel: 2GPa)
	Density	1.33~1.4g/cm ³ (Al: 2.7 g/cm ³)
	Conductivity	Metallic/Semi-conductivity
Electronic	Current Carrying	1TA (
Electionic	Capacity	~11A/cm ⁻ (Cu: 1GA/cm ⁻)
	Field Emission	Activate Phosphorus at 1~3V
Thermal	Heat Transmission	>3kW/mK (Diamond: 2kW/mK)

Penelitian ini menggunakan material allotropi carbon berupa CNT (Carbon nanotube) 1D yang memiliki hibridasi sp², ikatan tersebut menjadikannya memiliki kekuatan tarik hingga dan modulus elastisitas yang tinggi. Rangkaian karbon berukuran nano ini mempunyai rasio

antara panjang dan diameter hingga 28.000.000:1 (L. X. Zheng et al. 2004).

3.2.2 Struktur CNT / Bravais Lattice Graphene

Gambar 3.2 (a) Lattice persegi bravais (b) Lattice honeycomb dengan basis 2 atom yang bukan merupakan bravais lattice (c) Konversi honeycomb menjadi bravais lattice

Gambar 3.3 Unit cell Bravais Lattice dari lembaran graphene

Berdasarkan pertimbangan geometri, CNT dapat dibentuk oleh lembar graphene yang digulung menjadi silindris. Graphene merupakan lembar tipis atom carbon dalam susunan hexagonal lattice (monolayer grafit) yang *basically* adalah sebuah bidang atom grafit yang terisolasi. Struktur CNT merupakan struktur yang dikonversi dari honeycomb menjadi bravais lattice (seperti gambar 3.2 (c))

3.3 Peralatan Penelitian

Peralatan yang digunakan dalam penelitian berupa ANSYS 17.1 yang merupakan *software* yang mampu menyelesaikan persoalan elemen hingga dari pemodelan hingga analisis yang membutuhkan tingkat keakuratan yang tinggi.

3.4 Prosedur Penelitian

Berikut adalah diagram alir pemodelan structural dengan menggunakan ANSYS Mechanical ADPL Release 17.1. (Gambar 3.3)

Gambar 3.4 Proses Pemodelan ANSYS Struktur SWCNT

3.4.1 Pemodelan Geometri MUC SWCNT

Dalam studi simulasi numerik, Geometri SWCNT dibangun menggunakan penulisan makro dalam software *Parametric Design Language* (APDL). Element BEAM 188 dipilih untuk analisis non linier beam element. SWCNT dimodelkan menggunakan *keypoint* dan *line*. Dengan menggunakan 6 titik koordinat sesuai dengan ukuran primitive vector.

$$a_1 = (\frac{1}{2}, \frac{\sqrt{2}}{2}) a\sqrt{3}$$
 (3.1)

$$a_2 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) a\sqrt{3}$$
(3.2)

3.4.2. Pemodelan Struktur Beam SWCNT

Boundary condition diterapkan. Semua derajat kebebasan setiap *keypoint* ditangkap di salah satu ujung struktur sementara gaya kompresi (buckling) mengarah pada komponen Z dan bending yang mengarah pada komponen X diterapkan pada setiap ujung *keypoint*. POST PROCESSING, solution nodal diperoleh dan perpindahan pada arah komponen X dan Z diperoleh. Terakhir Modulus Young dihitung.

3.5 Variabel Penelitian

Penelitian ini memiliki dua jenis variabel, yaitu variabel independen yang merupakan variabel yang tidak bergantung atau mempengaruhi variabel lain. Sedangkan untuk varibel dependen merupakan merupakan variabel yang dijelaskan dan bergantung pada variabel independen. Variabel independen antara lain diameter, dan ketebalan single walled carbon nanotube. Sedangkan variabel dependen penelitian ini adalah struktur SWCNT (single walled carbon nanotube).

3.6 Rancangan Penelitian

Pada penelitian ini dilakukan analisis sifat mekanik pada dua jenis SWCNT yaitu tipe zigzag dan armchair dengan pembebanan bending (pemberian gaya secara axial pada titik tekuk) dan buckling (pemberian gaya kompresi sampai pada titik tekuk material), sehingga dapat terlihat kelenturan dan nilai Young's modulus lembar CNT tersebut.

Gambar 3.5 Struktur 3D Space-frame CNT(Prabhu, 2012)

Gambar 3.5 menunjukkan atom karbon yang diwakilkan dengan *node*. Posisinya pada ruang 3 dimensi dinyatakan dalam

$$(x,y,z) = (\operatorname{Rcos}(\frac{x'}{R}), \operatorname{r} \sin(\frac{x'}{R}), y')$$
 (3.3)

Nodes menghubungkan elemen beam, menunjukkan gaya interatomic.

3.6.1 Desain Geometri Awal Geometri Armchair

Inti dari parameter geometri ini terletak pada hubungan vektor roll up "Ch", yang dapat dinyatakan sebagai kombinasi linier lattice dasar. Jarak ikatan bernilai 1.42 Å dan skala unit bravais lattice (Gambar 3.3) digunakan sebagai dasar ukuran hexagonal setiap struktur *carbon nanotube*.

Dalam Ansys Mechanical APDL 17.1 secara sederhana dapat digambarkan dengan proses berikut:

36

Gambar 3.6 Lingkaran dasar dengan garis penghubung hexagonal

Proses penyusunan geometri armchair berdasarkan variasi diameter ditentukan dari jumlah hexagonal dalam satu lingkaran. Gambar 3.6 menggambarkan geometri armchair (5,5) yang diwakilkan dengan 4 buah lingkaran dasar berjarak 1Å dan berdiameter 6.9Å seperti gambar 3.5 Menggunakan command DIVIDE pada Modelling-Operate-Boolean membagi masing-masing lingkaran menjadi 60 bagian. Dengan dibagi skala 4:8 untuk garis tertutup dan terbuka dihubungkan garis antar lingkaran dan dihapus garis semu lingkaran yang tidak terpakai guna menyempurnakan bentuk hexagonal. (Gambar 3.7) Selanjutnya dilakukan penambahan sejumlah pasang dengan command COPY hingga mencapai panjang simulasi (17Å) yang menggambarkan komponen structural space frame *carbon nanotube*. (Gambar 3.8)

Laporan Tugas Akhir Departemen Teknik Material FTI-ITS

Gambar 3.7 Penyempurnaan bentuk hexagonal

Gambar 3.8 Penggandaan geometri dasar

Geometri Zigzag

38

Geometri Zigzag juga dibuat dengan proses yang sama dengan armchair, namun skala perbandingannya berbeda meski berdiameter sama dengan armchair (5,5) untuk zigzag (9,0).

Gambar 3.9 Lingkaran dasar pembuatan geometri zigzag

Lingkaran dasar digambarkan dengan diameter sesuai tipe (9,0) dicopy sebanyak dua kali lipat dari penggandaan lingkaran dasar untuk armchair. Kemudian dengan command sama yaitu Modelling-Operate-Boolean membagi masing-masing lingkaran menjadi 9 bagian. Lalu dihubungkan garis antar potongan membentuk hexagonal-hexagonal berjajar. Dan disempurnakan dengan penghapusan garis dasar lingkaran. Setelah terbentuk sempurna dua baris hexagonal melingkar, lalu digandakan kea rah z=h.

39

Gambar 3.10 Penghubung garis hexagonal geometri zigzag

Gambar 3.11 Menghapus garis lingkaran dasar geometri

Gambar 3.12 Penggandaan geometri dasar

3.7 Pembebanan

40

Pada penelitian ini dilakukan dua jenis pembebanan pada simulasi SWCNT menggunakan ANSYS 17.1 Mechanical APDL. Yaitu pembebanan *bending* kea rah sumbu X dan pembebanan *buckling* kearah sumbu Z.

BAB IV HASIL DAN PEMBAHASAN

4.1 Buckling dan Bending

Terdapat 2 jenis pembebanan yang dilakukan pada simulasi ini, yaitu pembebanan *buckling* dan *bending* (Gambar 4.1) *Buckling* adalah kondisi dimana carbon nanotube mengalami ketidakstabilan saat dikenai pembebanan yang mengarah pada kegagalan akibat ketidamampuannya mempertahankan struktur awal. Sehingga akan terjadi deformasi yang biasa dikenal sebagai kondisi tekuk. Sedangkan *bending* adalah proses penekukan pada carbon nanotube setelah diberikan pembebanan.

Pada penelitian ini pembebanan *buckling* tipe armchair dilakukan ke arah sumbu z pada semua *node* z=h dengan nilai Fz sebesar 1.25E+11 Pa, sedangkan sisi lainnya di *constraint* tepatnya pada z=0. Pembebanan *bending* dilakukan di setiap *node* dalam satu garis lurus yang searah sumbu x dengan besar nilai Fx yang sama untuk tipe armchair sebesar 1.25E+11Pa.

Sedangkan pada SWCNT tipe zigzag pembebanan *buckling* dilakukan di setiap *node* yang melingkar pada z=h (Gambar 4.2) dan diberi pembebanan Fx sebesar 9.40E+10 Pa. dan untuk pembebanan *bending* dilakukan dengan cara yang sama seperti *bending* pada tipe armchair dilakukan di setiap *node* dalam satu garis lurus yang searah sumbu x dengan besar nilai Fx sebesar 9.40E+10 Pa.

Karena jarak antar atom bernilai cukup kecil pula yaitu sekitar 1.42Å. Maka digunakan persamaan Euler sebagai berikut untuk nilai beban *buckle* kritis

$$P_{cr} = \frac{\pi^2 EI}{L^2} \tag{4.1}$$

E adalah modulus elastisitas, I momen inersia minimum, dan L merupakan panjang carbon nanotube. Terlepas dari kondisi

akhir, beban kritis tidak bergantung pada kekuatan materi, melainkan kekakuan lentur. Ketahanan *buckle* dapat ditingkatkan dengan meningkatkan momen inersia. Rasio kekakuan merupakan parameter penting dalam klasifikasi anggota kompresi. Jika kekakuan lebih besar dari rasio kekakuan kritis, maka rumus Euler *buckling* dapat berlaku.

$$S_{cr} = \sqrt{\frac{2\pi^2 E}{\sigma_y}} \tag{4.2}$$

Dan nilai kekakuan digambarkan oleh persamaan, $S = \frac{L}{r}$

,dimana $r = \sqrt{\frac{I}{A}}$ (4.3)

dan

Dalam kolom pendek, kegagalan dapat terjadi dengan kompresi tanpa signifikan tekuk dan pada tegangan melebihi batas proporsional. Untuk kondisi ini, rumus Johnson adalah berlaku:

$$P_{cr} = \sigma_{y} A \left[I - \left(\frac{\sigma_{y}}{4\pi^{2}E} \right) \left(\frac{L}{r} \right)^{2} \right]$$
(4.4)

Untuk kolom yang gagal setelah timbulnya perilaku inelastis, konstanta proporsionalitas harus digunakan daripada modulus elastisitas (Engesser formula). Konstanta proporsionalitas, Et, adalah kemiringan dari diagram tegangan-regangan yang melampaui batas proporsional, modulus tangen disebut. Perhatikan dalam kisaran linear elastis, E = Et.

Data yang diperoleh menunjukkan nilai tekuk maksimum pada setiap tipe yang dilakukan pembebanan. Pembebanan *buckling* didapatkan nilai ε pada tipe armchair sebesar 1.19E+09 nm dan pada tipe zigzag sebesar 2.68E+08 nm. Hal ini bernilai

sama pada pembebanan *bending*. Nilai tersebut didapatkan dari simulasi yang hanya pada ketebalan spesifik 0.34 nm.

Gambar 4.1 Pembebanan (a) *Buckling* SWCNT tipe Armchair (b) *Bending* SWCNT tipe Armchair

Gambar 4.2 Pembebanan (a) *Buckling* SWCNT tipe Zigzag (b) *Bending* SWCNT tipe Zigzag

Jika melihat hasil simulasi dari tiap perbedaan diameter dari lima jenis tipe kiral armchair dan zigzag, dapat digambarkan oleh kurva pada gambar 4.3 dan 4.4. Dari grafik terlihat nilai Young's modulus dimana berarti perbandingan stress strain akan meningkat seiring denganpeningkatan diameter dari kedua tipe SWCNT tersebut.

Gambar 4.3 Kurva Stress-strain tipe zigzag dan armchair dibawah pembebanan buckling

Dengan perbandingan ukuran yang sama antara tipe armchair dan tipe zigzag, grafik pada pembebanan *buckling* menunjukkan nilai *stress* dan *strain* dari tipe zigzag lebih rendah dibandingkan tipe armchair. Sedangkan pada kurva pembebanan *bending* terlihat sejajar untuk nilai *strain* namun lebih dibawah nilai *stress* nya untuk tipe zigzag dibandingkan armchair. (Gambar 4.4)

Laporan Tugas Akhir Departemen Teknik Material FTI-ITS

Gambar 4.4 Kurva Stress-strain tipe zigzag dan armchair dibawah pembebanan buckling

4.2 Pemodelan dengan Metode Elemen Hingga

Atom karbon pada *carbon nanotube* memiliki ikatan kovalen dan membentuk hexagonal lattice. Ikatan-ikatan tersebut didefinisikan dengan panjang ikatan terbentuk dan sudut ikatan. Perpindahan atom dibawah gaya eksternal di *fixed* atau di *constraint*. Sehingga, total deformasi nanotube adalah hasil dari interaksi antar ikatan. Dengan mempertimbangkan ikatan sebagai penghubung beban yang dibawa elemen dan atom sebagai penyambung antar elemen, carbon nanotube disimulasikan berupastruktur space-frame

Sifat mekanik dari struktur space-frame CNT dianalisa menggunakan metode mekanika classic structural dengan *software* ANSYS Mechanical APDL 17.1. Untuk memodelkan ikatan, digunakan jenis elemen elastis3D BEAM188 yang memiliki kemampuan untuk menganalisa masalah kelenturan, lateral, dan

torsional. Elemen BEAM188 sesuai untuk menganalisa struktur beam yang tipis juga tebal. BEAM188 adalah elemen circular linier (2-node) dalam 3-D dengan enam DOF pada masing-masing simpul. DOF pada setiap simpul meliputi arah x, y, dan z, dan rotasi arah x, y, dan z. Elemen beam sangat sesuai untuk rotasi linier, rotasi besar, dan regangan besar nonlinier. BEAM188 didefinisikan oleh node I dan J dalam sistem koordinat global. Sedangkan node K dibutuhkan untuk menentukan orientasi elemen. BEAM188 memiliki pilihan output pada titik integrasi bagian dan node bagian

4.3 Young's Modulus Elemen Beam

Luas permukaan melintang dari ikatan diasumsikan sebagai circular. Dan modulus elastis didefinisikan sebagai energi karena interaksi interatomik dan energi akibat deformasi struktur elemen *space frame*.

Dalam perhitungan mekanika molecular, penting untuk mendeskripsikan gaya pada struktur material nano antaratom. Hal tersebut dikarakteristikan ke dalam *force field*. *Force field* ini dinyatakan dalam bentuk energi potensial *steric*. Energy potensial yang menghilangkan interaksi elektrostatik, didefinisikan sebagai total energi interaksi interatomik.

$$U = \Sigma Ur + \Sigma U\theta + \Sigma U\phi + \Sigma U_{\omega} + \Sigma uvdw$$
(4.5)

Ur merupakan energy yang dikarenakan *bond stretching*, sedangkan U θ merupakan energy *bond angle bending*, U ϕ merupakan energy yang dikarenakan dihedral *angle torsion*, U_{ω} adalah energy yang diakibatkan oleh *plane torsion* dan U_{vdw} adalah energy yang dikarenakan interaksi van der Waals yang tidak berikatan. (Gambar 4.5)

Gambar 4.5 Interaksi interatomic dalam mekanika molekular

Dengan asumsi deformasi yang kecil, perkiraaan harmonik cukup digunakan untuk mendefinisikan energi potensial dan selanjutnya disebut dengan *force field*. Dengan mengambil bentuk harmonik sederhana dan mengkombinasikan dengan sudut dihedral, torsi dengan *out of plane* torsion menjadi fungsi single ekuivalen dan dilanjutkan dengan fungsi deskripsi total.

$$U_r = \frac{1}{2} k_r (\Delta r)^2 \tag{4.6}$$

$$U_r = \frac{1}{2} k \theta \left(\Delta \theta \right)^2 \tag{4.7}$$

$$U_{\tau} = U\phi + U_{\omega} = \frac{1}{2} k_{\tau} (\Delta \phi)^2$$
(4.8)

 k_r , $k\theta$, k_τ adalah *bond stretching*, ikatan sudut *bending* dan resistansi gaya torsi tetap. Sedangkan Δr , $\Delta \theta$, $\Delta \phi$ adalah panjang ikatan, sudut ikatan dan variasi ikatan sudut *twisting*.

Pada penelitian ini model *finite element* digunakan untuk mengetahui efek ketebalan, diameter dan aspek rasio terhadap

Young's modulus SWCNT. Young's modulus material merupakan perbandingan *stress* dengan normal *strain* yang diketahui dari uji uni-axial kompresi (*buckling*) dan *bending*. Didefinisikan sebagai berikut:

$$Y = \frac{\sigma}{\varepsilon} = \frac{\frac{F}{A}}{\frac{\Delta h}{h}}$$
(4.9)

F merupakan besar total gaya yang diberikan, A_0 luas permukaan, h panjang CNT, dan Δh merupakan *elongation* yang didapat dari simulasi ANSYS 17.1 Mechanical APDL plot hasil DOF displacement dalam koordinat x untuk nilai *bending* dan koordinat z untuk nilai *buckling*. $A_0 = \pi$. *d. t* dan D merupakann diameter rata-rata tube. Dalam simulasi SWCNT Armchair dan zigzag ini, panjang awal telah ditentukan sebesar 1.7 nm untuk armchair dan 4.5 nm untuk zigzag. Sehingga semua *node* submarginal di posisikan dalam plane yang sama.

Dari hasil pembebanan *bending* dan *buckling*, Hasilnya menunjukkan countur warna yang menggambarkan tingkat kelenturan hasil dari displacement setiap titik atau dalam hal ini disebut atom carbon dalam SWCNT. Semakin mendekati titik constraint, maka tingkat kelenturan semakin rendah. Kelenturan maksimum berada ditengah.

4.3.1 Nilai Young's Modulus Pembebanan Bending

• Variasi Diameter

Penelitian ini menghasilkan data simulasi pembebanan *bending* pada tipe armchair dan zigzag seperti tabel berikut:

Chiral Indeks	D (nm)	t (nm)	h (nm)	Δh (nm)	Young's Modulus (TPa)
		A	Armchair		
(5,5)	0.69	0.34	1.7E-08	4.58E-02	0.6296
(6,6)	0.83	0.34	1.7E-08	2.65E-02	0.9047
(7,7)	0.96	0.34	1.7E-08	2.00E-02	1.036
(10,10)	1.38	0.34	1.7E-08	9.23E-03	1.563
(11,11)	1.51	0.34	1.7E-08	6.45E-03	2.044
			Zigzag		
(9,0)	0.72	0.34	4.5	0.231E-01	0.239
(10,0)	0.79	0.34	4.5	1.59E-01	0.315
(12,0)	0.95	0.34	4.1	6.67E-02	0.556
(18,0)	1.35	0.34	4.0	1.77E-02	1.51
(19,0)	1.51	0.34	4.5	1.66E-02	1.58

Tabel 4.1 Hasil Simulasi Bending SWCNT

Nilai Young's modulus didapatkan dari nilai displacement maksimum pada arah X (karena gaya *bending* ke sumbu X), dibagi dengan panjang *carbon nanotube* untuk menjadi nilai strain, kemudian dimasukkan dalam persamaan (4.9) dengan nilai pembebanan sesuai tipe SWCNT. Tipe armchair (11,11) dengan diameter 1.51 nm memiliki nilai Young's modulus tertinggi saat dikenai pembebanan *bending*, yaitu mencapai 2 TPa. Sedangkan untuk nilai Young's modulus terendah saat dikenakan pembebanan *bending* adalah tipe zigzag (9,0) dengan diameter 0.72 nm. Seperti yang terlihat pada Grafik berikut. (Gambar 4.6) Terlihat dari grafik, tingkat kelenturan SWCNT saat dikenai pembebanan *bending* yang paling baik ada pada tipe armchair.

Gambar 4.6 Grafik perbandingan diameter dengan Young's modulus saat dikenai pembebanan *bending*

• Variasi Ketebalan

50

Selain dengan variasi diameter, penelitian ini juga meninjau dari segi pengaruh ketebalan terhadap tingkat kelenturan dari hasil simulasi untuk mendapatkan nilai Young's modulus SWCNT. Tabel berikut menjabarkan hasil simulasi pada tipe armchair (6,6) dan tipe zigzag (10,0) yang memiliki diameter yang hampir sama, namun divariasikan dengan ketebalan yang berbeda.

Chiral Indeks	D (nm)	t (nm)	h (nm)	Δh (nm)	Young's Modulus (TPa)		
	Armchair						
(6 <i>,</i> 6)	0.83	0.34	1.7	2.65E-02	0.905		
(6,6)	0.83	0.6	1.7	2.64E-02	0.514		

Tabel 4.2 Hasil Simulasi Bending SWCNT

BAB IV HASIL DAN PEMBAHASAN

	Depart	51				
(6,6)	0.83	1.06	1.7	2.64E-02	0.291	
(6,6)	0.83	1.4	1.7	2.64E-02	0.220	
(6,6)	0.83	3.4	1.7	2.64E-02	0.090	
Zigzag						
(9,0)	0.72	0.34	4.5	1.59E-01	0.346	
(9,0)	0.72	0.6	4.5	1.59E-01	0.196	
(9,0)	0.72	1.06	4.1	1.59E-01	0.101	
(9,0)	0.72	1.4	4.0	1.59E-01	0.075	
(9,0)	0.72	3.4	4.5	1.59E-01	0.035	

Dari tabel 4.2 tersebut, dapat terlihat bahwa tingkat kelenturan SWCNT akan menurun saat ketebalannya meningkat. Dan ketebalan 0.34 nm merupakan ketebalan yang tepat untuk menjadikan *carbon nanotube* memiliki kekuatan Young's modulus hingga 1 TPa. Dibandingkan zigzag, armchair masih menjadi tipe SWCNT yang lebih tinggi nilai Young's modulusnya. Dapat terlihat jelas dalam grafik pada gambar 4.7.

Gambar 4.7 Grafik perbandingan ketebalan dengan Young's modulus saat dikenai pembebanan *bending*

4.3.2 Nilai Young's Modulus Pembebanan Buckling

Pembebanan yang terjadi pada simulasi *buckling* merupakan pembebanan dari titik z=h dengan gaya kea rah sumbu Z pada koordinat z=0. Gaya ini akan menyebabkan CNT terkompresi hingga titik maksimum gaya yang dapat diberikan, hal ini ditunjukkan dengan simulasi yang sudah tidak dapat convergen lagi. Hasil simulasi menunjukkan beban maksimum yang dapat diberikan mencapai 125 GPa untuk tipe armchair dan 94.0 GPa untuk tipe zigzag.

• Variasi Diameter

Chiral Indeks	D (nm)	t (nm)	h (nm)	Δh (nm)	Young's Modulus (TPa)					
Armchair										
(5,5)	0.69	0.34	1.7	3.27E-01	0.0881					
(6,6)	0.83	0.34	1.7	2.03E-01	0.118					
(7,7)	0.96	0.34	1.7	1.65E-01	0.126					
(10,10)	1.38	0.34	1.7	7.97E-02	0.181					
(11,11)	1.51	0.34	1.7	7.02E-02	0.188					
			Zigzag							
(9,0)	0.72	0.34	4.5	1.46E+00	0.0376					
(10,0)	0.79	0.34	4.5	1.21E+00	0.0416					
(12,0)	0.95	0.34	4.1	7.71E-01	0.0481					
(18,0)	1.35	0.34	4.0	3.57E-01	0.0748					
(19,0)	1.51	0.34	4.5	3.08E-01	0.0852					

 Tabel 4.3 Hasil Simulasi Buckling SWCNT

Seperti pada pembebanan *bending*, saat dikenai beban *buckling* atau kompresi kearah sumbu z SWCNT akan mengalami

kenaikan nilai Young's modulus saat diameternya semakin besar. Hal ini disebabkan oleh perbedaan kelengkungan SWCNT, yang akan dibahas lebih lanjut pada sub bab berikutnya yaitu sub bab pengaruh variasi diameter. Kenaikan nilai tersebut digambarkan oleh grafik pada gambar 4.8 dengan tingkat Young's modulus armchair yang lebih tinggi dibandingkan zigzag.

Gambar 4.8 Grafik perbandingan diameter dengan Young's modulus saat dikenai pembebanan *buckling*

Variasi Ketebalan

Chiral Indeks	D (nm)	t (nm)	h (nm)	Δh (nm)	Young's Modulus (TPa)							
	Armchair											
(6 <i>,</i> 6)	0.83	0.34	1.7	2.65E-01	9.05							
(6 <i>,</i> 6)	0.83	0.6	1.7	2.64E-01	5.14							

Tabel 4.4 Hasil Simulasi Buckling SWCNT

54	Depart				
(6,6)	0.83	1.06	1.7	2.64E-01	2.91
(6,6)	0.83	1.4	1.7	2.64E-01	2.20
(6,6)	0.83	3.4	1.7	2.64E-01	0.90
			Zigzag		
(9,0)	0.72	0.34	4.5	1.21E-01	0.456
(9,0)	0.72	0.6	4.5	1.21E-01	0.259
(9,0)	0.72	1.06	4.1	1.20E-01	0.134
(9,0)	0.72	1.4	4.0	1.20E-01	0.099
(9,0)	0.72	3.4	4.5	1.21E-01	0.046

Dari kedua jenis pembebanan, dapat terlihat dari hasil simulasi terdapat hasil defleksi yang berbeda. Tipe Armchair akan memiliki defleksi lebih tinggi saat *buckling* dibandingkan dengan zigzag, hal ini juga sama seperti *bending* yang bergantung pada pola struktur keduanya yang akan juga berakibat pada besar nilai Young's modulus.

Gambar 4.9 Grafik perbandingan ketebalan dengan Young's modulus saat dikenai pembebanan *buckling*

Gambar 4.10 Susunan elemen SWCNT saat dikenai beban buckling kea rah sumbu Z

Hal ini seperti yang telah dijelaskan pada jurnal Prabhu, 2012 dimana tipe zigzag gaya bereaksi hanya pada satu node hexagon saja, sedangkan tipe armchair terdapat dua gaya yang besarnya sama bereaksi pada dua node sebuah hexagon. (Gambar 4.10) Hal ini menunjukkan perbedaan pola struktur pembebanan meski gaya yang diberikan tetap. Sehingga besar Young's modulus dari kedua tipe CNT akan berbeda.

• Variasi Aspek Rasio

Dalam pembahasan aspek rasio (L/D), penelitian ini mengambil data dari diameter yang berbeda-beda, dan panjang carbon nanotube yang sama yaitu sepanjang komponen space-frame 1.7 nm untuk tipe armchair dan 4.5 nm untuk tipe zigzag. Hal ini akan menghasilkan nilai aspek rasio yang berbeda pula yaitu rentang 1.126-2.464 untuk tipe armchair dan rentang 2.98-6.25 untuk tipe zigzag. Hal ini akan berpengaruh pula tehadap nilai Young's modulus carbon nanotube.

Chiral Indeks	Chiral D L/D ndeks (nm) (nm)		h (nm)	Δh (nm)	Young's Modulus (TPa)	
		A	Armchair			
(5,5)	0.69	2.464	1.7E-08	4.58E-02	0.6296	
(6,6)	0.83	2.048	1.7E-08	2.65E-02	0.9047	
(7,7)	0.96	1.771	1.7E-08	2.00E-02	1.036	
(10,10)	1.38	1.232	1.7E-08	9.23E-03	1.563	
(11,11)	1.51	1.126	1.7E-08	6.45E-03	2.044	
			Zigzag			
(9,0)	0.72	6.250	4.5	0.231E-01	0.239	
(10,0)	0.79	5.696	4.5	1.59E-01	0.315	
(12,0)	0.95	4.211	4.1	6.67E-02	0.556	
(18,0)	1.35	3.037	4.0	1.77E-02	1.51	
(19,0)	1.51	2.980	4.5	1.66E-02	1.58	

Tabel 4.5 Hasil simulasi Young's modulus CNT dengan variasi Aspek rasi (L/D) pembebanan bending

Gambar 4.11 Grafik perbandingan aspek rasio dengan Young's modulus saat dikenai pembebanan *bending*

Data pada tabel 4.5 menunjukkan variasi aspek rasio yang mana semakin kecil nilai aspek rasio, maka nilai Young's modulus yang diperoleh akan semakin tinggi. Hal ini akan berbanding terbalik dengan variasi diameter. Digambarkan pula oleh grafik pada gambar 4.11 yang terus menunjukkan penurunan, baik untuk tipe zigzag maupun tipe armchair. Perbedaan garis yang ditunjukkan adalah akibat dari perbedaan panjang yang digunakan pada simulasi carbon nanotube antara tipe armchair dengan tipe zigzag. Pada pembebanan bending tipe armchair, diperoleh rentang nilai Young's modulus sama dengan variasi diameter, yaitu sebesar 0.63-2.044 TPa untuk tipe armchair, sedangkan 0.239-1.58 TPa untuk tipe zigzag.

Chiral Indeks	Chiral D L/D ndeks (nm) (nm)		h (nm)	Δh (nm)	Young's Modulus (TPa)
		А	rmchair		
(5,5)	0.69	2.464	1.7	3.27E-01	0.0881
(6,6)	0.83	2.048	1.7	2.03E-01	0.118
(7,7)	0.96	1.771	1.7	1.65E-01	0.126
(10,10)	1.38	1.232	1.7	7.97E-02	0.181
(11,11)	1.51	1.126	1.7	7.02E-02	0.188
			Zigzag		
(9,0)	0.72	6.250	4.5	1.46E+00	0.0376
(10,0)	0.79	5.696	4.5	1.21E+00	0.0416
(12,0)	0.95	4.211	4.1	7.71E-01	0.0481
(18,0)	1.35	3.037	4.0	3.57E-01	0.0748
(19,0)	1.51	2.980	4.5	3.08E-01	0.0852

Tabel 4.6 Hasil simulasi Young's modulus CNT dengan variasi Aspek rasi (L/D) pembebanan buckling

Gambar 4.12 Grafik perbandingan aspek rasio dengan Young's modulus saat dikenai pembebanan *buckling*

Data pada tabel 4.6 juga menunjukkan variasi aspek rasio dan pengaruhnya terhadap nilai Young's modulus namun diperoleh saat pembebanan *buckling*. Digambarkan pula oleh grafik pada gambar 4.12 yang menunjukkan penurunan, baik untuk tipe zigzag maupun tipe armchair. Pada pembebanan bending tipe armchair, diperoleh rentang nilai Young's modulus yaitu sebesar 0.63-2.044 TPa untuk tipe armchair dan 0.239-1.58 TPa untuk tipe zigzag dengan adanya variasi aspek rasio.

4.4 Pengaruh Variabel

Variasi Diameter

Modulus elastisitas secara fungsi dan variabel convergen dengan Young's modulus pada lembar graphene pada diameter yang besar pada CNT. Alasan utamanya adalah karena murni dari kelengkungan tertinggi pada diameter yang kecil. Hal ini akan mengakibatkan distorsi atau perpindahan yang besar pada atom C-

C pada diameter kecil CNT dibandingkan dengan diameter besar. Semakin besar diameter CNT, pengaruh kelengkungan akan semakin berkurang. (Rafiee, 2012) Hal ini juga ditunjukkan pada penelitian Giannopulous et al, Meo dan Rossi, serta Lu dan Hu yang menyatakan pengaruh diameter atau jari-jari pada hasil Young's modulus akibat kesensitivannya pada tingkat kelengkungan. Semakin besar diameter tube, maka shear modulus kecil karena menjadi kurang sensitive terhadap variasi jari-jari tabung namun meningkatkan nilai Young's modulusnya.

Hal serupa ditunjukkan oleh hasil simulasi penelitian ini, Peningkatan diameter akan meningkatkan pula nilai Young's modulusnya. Sebagaimana ditunjukkan oleh tabel 4.1 dan tabel 4.2. Nilai Young's modulus lebih besar diperoleh saat pembebanan *bending*. Digambarkan pula pengaruh diameter terhadap nilai Young's modulus oleh grafik hasil dimulasi pembebanan pada masing-masing tipe SWCNT. (Gambar 4.13)

<u>Variasi Ketebalan</u>

Penelitian ini juga membahas mengenai efek ketebalan terhadap nilai Young's modulus. Penelitian ini mengambil variabel ketebalan berdasarkan perbedaan ketebalan pada mekanikal elemen yang digunakan, yaitu beam188, yang terletak pada section. Hal ini dilakukan dengan dasar penelitian Tserpes dan Papanikos (2005) yang menggunakan model finite elemen 3D untuk armchair, zigzag dan chiral pada SWCNT yang berdasarkan asumsi SWCNT berperilaku seperti struktur beam dibawah kondisi pembebanan. Mereka menyatakan nilai Youngs' modulus yang bervariasi antara 0.952 hinngga 1.066 TPa dan modulus geser dari 0.242 hingga 0.504 TPa dengan ketebalan yang digunakan adalah sebesar 0.34 nm. Kemudian penelitian Pantato et al (2004) yang memodelkan tube individu menggunakan elemen shell dengan ketebalan spesifik 0.075 nm dan menghasilkan nilai Young's Modulus sebesar 4.84 TPa.

Dijelaskan dalam penelitian Vodenitcharova and Zhang (12) yang mengenalkan konsep efektifitas ketebalan dinding dalam lingkup mekanika kontinum. Berdasarkan pertimbangannya akan gaya ekuilibrium, mereka mengusulkan mengenai kondisi yang diperlukan bahwa efektifitas ketebalan dinding SWCNT harus lebih kecil dari teori diameter atom karbon, yaitu sekitar 0.142 nm. Argumennya mengenai cross-section nanotube berisi hanya jumlah atom dan gaya pada tube ditransmisikan melalui atom-atom tersebut. Namun model mekanika kontinum, gaya yang sama ditransmisikan melalui luas area dinding. Oleh karenanya, efektivitas ketebalan dinding harus lebih kecil dari diameter atom karbon secara teoritis. Dengan kata lain, tube ekuilibrium tidak dapat dirubah. Berdasarkan kondisi tersebut, model continuum menggunakan ketebalan dinding lebih dari atau sama dengan diameter karbon adalah suatu hal yang tidak beralasan. Namun tentunya masih diperlukan validasi kembali mengenai hal tersebut.

Penelitian Prabhu et al (2012) menggunakan model finit elemen 3D SWCNT zigzag untuk menghitung respond mekanik.

Interaksi interatomiknya digambarkan menggunakan elemen spring ANSYS 11. Hasil penelitiannya menunjukkan ketebalan 0.066-0.34 nm dengan panjang 40 nm dan diameter 2 nm menghasilkan Young's modulus sebesar ± 3.256 TPa untuk tipe zigzag dan ± 2.86 TPa untuk tipe armchair, yang masing-masing akan memiliki perbedaan kecil nilai yang terus menurun dengan ketebalan yang meningkat. Sehingga dapat dikatakan bahwa nilai Young's modulus akan berubah akibat perbedaan ketebalan elemen yang digunakan pada literature.

Dari penelitian-penelitian tersebut dapat diketahui bahwa validitas dari ketebalan SWCNT sendiri masih dalam tahap penelitian, namun yang pasti ukurannya sendiri akan lebih kecil dari ukuran diameter atom karbon sebesar 3.4nm dan merupakan hasil perubahan dari ikatan antar dua karbon yang diberikan gaya. Hal ini mendasari peneliti untuk menvariasikan ketebalan antara 0.34 hingga 3.4 nm. Variasi tersebut diambil dari 10, 20, 30, 40 dan 100 persen dari besar atom karbon.

Tabel 4.3 dan tabel 4.4 menunjukkan data hasil simulasi variasi ketebalan pada SWCNT tipe armchair dan zigzag diperjelas dengan gambar 4.11 yang menggambarkan grafik hasil pembebanan *bending* dan *buckling* pada tipe armchair (6,6) dan tipe zigzag (9,0) yang masing-masing divariasikan dengan ketebalan 0.34, 0.6, 1.06, 1.4, dan 3.4 nm. Simulasi tersebut menunjukkan nilai Young's modulus yang terus menurun ketika ketebalan CNT meningkat. Di perjelas lagi dengan tipe CNT yang berpengaruh yaitu ketebalan armchair pada saat *bending* lebih rendah tingkat kekakuannya dibanding saat diberikan pembebanan *buckling*. Berbeda dengan tipe zigzag yang lebih rendah kekakuannya saat diberikan pembebanan *buckling* disbanding pembebanan *bending*. Hal ini tentunya menggambarkan bahwa ketebalan berpengaruh pada tingkat kekakuan CNT yang akan berpengaruh pula pada nilai Young's modulusnya.

Hal ini diperkuat oleh penelitian Gao et al dan Odegard et al. yang melakukan penelitian dengan finite model deformasi

continuum menyatakan nilai Young's modulus inverse atau berkebalikan dengan luas permukaan A_0 dan ketebalan t.

Gambar 4.14 merupakan grafik gabungan dari tipe SWCNT armchair dan zigzag yang masing-masing diberikan pembebanan *bending* dan *buckling* dengan variasi ketebalan. Terlihat bahwa pada variasi ketebalan, nilai Young's modulus SWCNT akan turun, hal ini didukung dengan tipe SWCNT yang digunakan dan pembebanannya pula. Nilai Young's modulus terbesar didapat apabila menggunakan tipe armchair dengan pembebanan bending dan ketebalan yang paling tipis. Kemudian disusul dengan tipe zigzag yang apabila diberikan pembebanan *bending*, tipe armchair yang diberikan pembebanan *buckling* dan yang memiliki tingkat kelenturan terendah apabila menggunakan tipe zigzag namun dengan pembebanan buckling, terlebih jika ketebalan yang digunakan cukup besar.

Gambar 4.14 Grafik perbandingan pengaruh ketebalan terhadap Young's modulus

Variasi Aspek Rasio

Gambar 4.15 menunjukkan garis-garis keseluruhan perbandingan aspek rasio dengan Young's modulus untuk tipe armchair dan zigzag saat pembebanan bending dan buckling. Terlihat bahwa nilai pembebanan bending pada tipe armchair yang juga memiliki nilai Young's modulus paling besar diantara yang lain.

Gambar 4.15 Grafik perbandingan pengaruh aspek rasio terhadap Young's modulus

4.5 Hasil dan Diskusi

Pembebanan bending diameter antara 0.69–1.51 nm, didapatkan nilai Young's modulus sebesar 0.63–2.04 TPa untuk tipe armchair dan 0.24-1.58 Tpa untuk tipe zigzag. Sedangkan saat pembebanan buckling, didapatkan nilai Young's sebesar 0.09-0.19 Tpa untuk tipe armchair dan 0.04-0.09 Tpa untuk tipe zigzag.

Pembebanan bending ketebalan antara 0.34-3.4 nm, didapatkan nilai Young's modulus sebesar 0.91-0.09 TPa untuk tipe armchair dan 0.35-0.035 Tpa untuk tipe zigzag. Sedangkan saat pembebanan buckling, didapatkan nilai Young's modulus sebesar 9.5-0.9 Tpa untuk tipe armchair dan 0.46-0.046 Tpa untuk tipe zigzag.

Pembebanan bending dengan aspek rasio rentang 1.126-2.464 didapatkan nilai Young's modulus sebesar 0.63–2.04 TPa untuk tipe armchair dan rentang 2.98-6.25 didapatkan nilai Young's sebesar 0.24-1.58 Tpa untuk tipe zigzag. Sedangkan saat pembebanan buckling, dengan aspek rasio rentang 1.126-2.464 didapatkan nilai Young's modulus sebesar 0.09-0.19 Tpa untuk tipe armchair. Rentang 2.98-6.25 didapatkan nilai Young's sebesar 0.04-0.09 Tpa untuk tipe zigzag.

Tipe Armchair mampu menahan beban bending dan buckling mencapai 125 Gpa, sedangkan tipe Zigzag mampu menahan beban maksimum 94 GPa.

Dari keseluruhan simulasi pada tiga variabel berbeda menunjukkan bahwa tipe armchair memiliki nilai Young's modulus lebih besar dibandingkan tipe zigzag. Hal ini tentunya dipengaruhi oleh orientasi dari masing-masing tipe saat dikenai pembebanan. Jika dibandingkan dengan literature yang ada, maka pengaruh diameter dan ketebalan pada penelitian ini sesuai dengan penelitian Massound yang menyatakan bahwa aspek rasio berpengaruh pada nilai Young's modulus namun sedikit berbeda pada diameter. Massound menyatakan bahwa diameter tidak berpengaruh terhadap nilai Young's modulus nampenelitian ini menyatakan sebaliknya.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Kesimpulan dari penelitian ini antara lain:

- 1. Pada penelitian ini, didapatkan hasil perbandingan antara tipe armchair dan zigzag SWCNT dalam hal besar nilai Young's modulus. Didapatkan bahwa tipe armchair memiliki nilai Young's modulus lebih tinggi dibandingkan tipe zigzag, tepatnya pada tipe (11,11) dengan diameter terbesar 1.51 nm yaitu mencapai 1.58 Tpa saat pembebanan *bending* dan 0.19 TPa saat pembebanan *buckling*. Tipe armchair juga dapat menerima pembebanan bending dan buckling yang lebih besar yaitu 125GPa dibanding zigzag yang hanya 94 GPa.
- 2. Semakin besar diameter *single walled carbon nanotube* maka nilai Young's modulusnya. Semakin meningkat. Semakin tebal carbon nanotube maka semakin kecil nilai Young's modulusnya. Begitupun dengan aspek rasio, semakin tinggi aspek rasio *single walled carbon nanotube* maka semakin rendah nilai Young's modulusnya.

5.2 Saran

Dari penelitian ini terdapat beberapa saran yang dapat digunakan untuk penelitian selanjutnya, yaitu:

1. Diperlukan adanya pemindaian ulang proses untuk hasil simulasi *stress* dan *strain* yang tidak dapat keluar.

66

2. Diperlukan penelitian lebih lanjut untuk aplikasi dari masing-masing tipe struktur *single walled carbon nanotube* berdasarkan nilai Young's Modulus dari penelitian-penelitian yang sudah ada.

DAFTAR PUSTAKA

- A.M. Rao, etc. Diameter-selective raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187, 1997. Copyright AAAS.
- Bal, S., dan Samal, S. S. 2007. Carbon Nanotube Reinforced Polymer Composites A State of the Art. 8
- Bian Z, Wang RJ, Wang WH, Zhang T, Inoue A: Carbonnanotube-reinforced Zr-based bulk metallic glass composites and their properties. Adv Funct Mater 2004, 14(1):55–63
- Carbon Nanotube Journal (Akses September 2017)
- Carbon Nanotube, <u>http://en.wikipedia.org/wiki/Carbon_nanotube</u> (Akses September 2017)
- Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 1996;260: 471–5.
- Darabont A l, Nemes–Incze P, Kertésza K, et al. Synthesis of carbon nanotubes by spray pyrolysis and their investigation by electron microscopy[J]. J Optoelectron Adv Mater, 2005, 7: 631-636
- Fukuda, F. Arai, Lixin Dong. 2003. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, T. Proceedings of the IEEE, Vol 91, p. 1803.

Gao, B. 2000. Chem. Phys. Lett. 327, 69.

Giannopoulos. 2008. Evaluation of the effective mechanical properties of single walled carbon nanotubes using a

spring based finite element approach. Computational Materials Science 41 (2008) 561–569. doi: 10.1016/j.commatsci.2007.05.016

- H. Kataura, etc. Optical properties of single-wall carbon nanotubes, Synthetic Metals, 103, 2555–2558, 1999. With permission from Elsevier.
- Harris, P.J.F. (2004). Carbon Nanotube Composites.
- Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363: 603.
- Infometrik- Situs Informasi Mekanika, Material, dan Manufaktur. 2009. 30 July.
- Kaushik, B.K, Majumder, M.K. Carbon Nanotube Based VLSI interconnects Analysis and Design. Chp 2. 2015.Xl. 86p. 57 illus., Softcover
- Lee, J.-H, Rhee, K.Y., &Park, S.J. (2011) Silane modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites. *Composites Part A: Applied Science and Manufacturing*, 42(5), 478-483. doi: 10.1016/j. compositesa. 2011.01.004
- Lu dan Hu. 2012. Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Composites: Part B 43 (2012) 1902–1913. doi: 10.1016/j.compositesb.2012.02.002
- Massoud. 2017. Analytical prediction of Young's modulus of carbon nanotubes using a variational method. Applied Mathematical Modelling 45 (2017) 1031–1043.
- Ma R.Z., et.al. 2000. Science in China Series E-Technological Sciences 43 178.

- Marquis FD: Fully integrated hybrid polymeric carbon nanotube composites. Trans Tech Publ 2003, 100:85–88.
- Meo M, Rossi M. Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modeling. Compos Sci Technol 2006;66:1597– 605.
- Moaveni, S. 1999. Finite Element Analysis: Theory and Application with ANSYS. New Jersey: Prentice-Hall, Inc.
- O'Connel. 2006. Carbon Nanotubes Properties and Application. California: Senior Research cientist, Theranos, Inc.
- Odegard G M, Gates T S, Nicholson L M and Wise K E 2002 Equivalent-continuum modelling of nanostructured materials. Composites Sci. Technol. 62: 1869–80
- Pal, G., Kumar, S. 2016. "Modelling of Carbon Nanotubes and Carbon Nanotube-Polymer Composite". Progress in Aerospace Sciences 80 (2016) 33–58.
- Rafiee R. 2012. Investigation of chirality and diameter effects on the Young's modulus of carbon nanotubes using nonlinear potentials. Composite Structures 94 (2012) 2460– 2464.
- Rangel, J. H., et al. Mechanical Modeling of Single Walled Carbon Nanotube using the Finite Element Approach. Polimery. 2013, 58, nr 4
- Prabhu, R.T., 2010, Finite Element Modelling of Multiwalled Carbon Nanotube.India: Orissa-769008. Thesis of Bachelor of Technology in Mechanical Engineering. National Institute of Technology Rourkela.

- Prabhu, S. Shubrajit, and Vinayagam. Finite Element Modeling and Ansys of Zigzag and Armchair Type Single Wall Carbon Nanotube. Vol 4(8), pp.260-266. December 2012.
- Stylianos, et al., 2017. Thermomechanical Buckling of Single Walled Carbon Nanotubes by a Structural Mechanics Method.
- Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, et al. 1996. "Crystalline ropes of metallic carbon nanotubes". Science; 273: 483–7.
- Tserpes KI, Papanikos P. Finite element modeling of single-walled carbon nanotubes. Compos Part B: Eng 2005;36:468–77
- Wei, B.Q., et al. 2001. Appl. Phys. Lett. 79 1172.
- Zhang and Wang. 2009.Effective Wall Thickness of Single-Walled Carbon Nanotube for Multi-Scale Analysis: The Problem and a Possible Solution. IUTAM symphosium, 53-61.

http://www.nabond.com (Akses September 2017)

(Halaman ini sengaja dikosongkan)

LAMPIRAN

I. Tabel Data Hasil Simulasi

Variasi Diameter

Bending Armchair

No	.Index	D(Å)	t(Å)	L(Å)	Force	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Ux (Bending)
1	(5,5)	6.9E-10	0.034	1.7E-09	1.25E+11	7.36644E-10	1.26E+11	2.70E+08	1.70E+20	6.29601E+11	4.58E-01
2	(6,6)	8.3E-10	0.034	1.7E-09	1.25E+11	8.86108E-10	1.26E+11	1.56E+08	1.41E+20	9.04681E+11	2.65E-01
3	(7,7)	9.6E-10	0.034	1.7E-09	1.25E+11	1.0249E-09	1.26E+11	1.18E+08	1.22E+20	1.03602E+12	2.00E-01
4	(10,10)	1.38E-09	0.034	1.7E-09	1.25E+11	1.47329E-09	1.26E+11	5.43E+07	8.48E+19	1.56332E+12	9.23E-02
5	(11,11)	1.51E-09	0.034	1.7E-09	1.25E+11	1.61208E-09	1.26E+11	3.79E+07	7.75E+19	2.04422E+12	6.45E-02

Bending Zigzag

No	. Index	D (Å)	t(Å)	L(Å)	Force	A(phi.d.t)	UTS	Strain	Stress Y	Young's Modulus	Ux (Bending)
1	[9,0]	7.2E-10	0.034	4.5E-09	9.4E+10	7.687E-10	9.450E+10	5.127E+08	1.223E+20) 2.385E+11	2.307E+00
2	[10,0]	7.9E-10	0.034	4.5E-09	9.4E+10	8.434E-10	9.450E+10	3.533E+08	1.115E+20) 3.155E+11	1.590E+00
3	[12,0]	9.5E-10	0.034	4.0E-09	9.4E+10	1.014E-09	9.450E+10	1.668E+08	9.268E+19	9 5.555E+11	6.673E-01
4	[18,0]	1.35E-09	0.034	4.1E-09	9.4E+10	1.441E-09	9.450E+10	4.316E+07	6.522E+19) 1.511E+12	1.770E-01
5	[19,0]	1.51E-09	0.034	4.5E-09	9.4E+10	1.612E-09	9.450E+10	3.692E+07	5.831E+19	0 1.579E+12	1.661E-01

Buckling Armchair

No	.Index	D(Å)	t(Å)	L(Å)	Force	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Uz (Buckling)
1	(5,5)	6.9E-10	0.034	1.7E-09	1.25E+11	7.36644E-10	1.26E+11	1.93E+09	1.70E+20	8.81E+10	3.27E+00
2	(6,6)	8.3E-10	0.034	1.7E-09	1.25E+11	8.86108E-10	1.26E+11	1.19E+09	1.41E+20	1.18105E+11	2.03E+00
3	(7,7)	9.6E-10	0.034	1.7E-09	1.25E+11	1.0249E-09	1.26E+11	9.71E+08	1.22E+20	1.25621E+11	1.65E+00
4	(10,10)	1.38E-09	0.034	1.7E-09	1.25E+11	1.47329E-09	1.26E+11	4.69E+08	8.48E+19	1.80989E+11	7.97E-01
5	(11,11)	1.51E-09	0.034	1.7E-09	1.25E+11	1.61208E-09	1.26E+11	4.13E+08	7.75E+19	1.87817E+11	7.02E-01

Buckling Zigzag

No	. Index	D(Å)	t(Å)	L(Å)	Force	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Uz (Buckling)
1	[9,0]	7.2E-10	0.034	4.5E-09	9.4E+10	7.69E-10	9.45E+10	3.25E+08	1.22E+19) 3.76E+10	1.46E+00
2	[10,0]	7.9E-10	0.034	4.5E-09	9.4E+10	8.43E-10	9.45E+10	2.68E+08	1.11E+19	4.16E+10	1.21E+00
3	[12,0]	9.5E-10	0.034	4.0E-09	9.4E+10	1.01E-09	9.45E+10	1.93E+08	9.27E+18	3 4.81E+10	7.71E-01
4	[18,0]	1.35E-09	0.034	4.1E-09	9.4E+10	1.44E-09	9.45E+10	8.72E+07	6.52E+18	3 7.48E+10	3.57E-01
5	[19,0]	1.51E-09	0.034	4.5E-09	9.4E+10	1.61E-09	9.45E+10	6.85E+07	5.83E+18	8 8.52E+10	3.08E-01

• Variabel Ketebalan

Bending Armchair

No.	Index	D(Å)	t(Å)	L	Force	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Ux (Bending)
1	(6,6)	8.3E-10	0.034	1.7E-09	1.25E+11	8.86108E-10	1.26E+11	1.56E+08	1.41E+20	9.05E+11	2.6508E-01

2	(6,6)	8.3E-10	0.06	1.7E-09	1.25E+11	1.56372E-09	1.26E+11	1.55E+08	7.99E+19	5.14E+11	2.6421E-01
3	(6,6)	8.3E-10	0.106	1.7E-09	1.25E+11	2.76257E-09	1.26E+11	1.55E+08	4.52E+19	2.91E+11	2.6421E-01
4	(6,6)	8.3E-10	0.14	1.7E-09	1.25E+11	3.64868E-09	1.26E+11	1.55E+08	3.43E+19	2.20E+11	2.6421E-01
5	(6,6)	8.3E-10	0.34	1.7E-09	1.25E+11	8.86108E-09	1.26E+11	1.56E+08	1.41E+19	9.04E+10	2.6518E-01

Bending Zigzag

No	. Index	D(Å)	t(Å)	L	Force	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Ux (Bending)
1	[9,0]	7.2E-10	0.034	4.5E-09	9.4E+10	7.687E-10	9.450E+10	3.533E+08	1.223E+2	0 3.462E+11	1.590E+00
2	[9,0]	7.2E-10	0.06	4.5E-09	9.4E+10	1.356E-09	9.450E+10	3.533E+08	6.930E+1	9 1.962E+11	1.590E+00
3	[9,0]	7.2E-10	0.106	4.1E-09	9.4E+10	2.396E-09	9.450E+10	3.869E+08	3.922E+1	9 1.014E+11	1.586E+00
4	[9,0]	7.2E-10	0.14	4.0E-09	9.4E+10	3.165E-09	9.450E+10	3.966E+08	2.970E+1	9 7.489E+10	1.586E+00
5	[9,0]	7.2E-10	0.34	4.5E-09	9.4E+10	7.687E-09	9.450E+10	3.534E+08	1.223E+1	9 3.461E+10	1.590E+00

Buckling Armchair

No	.Index	D(Å)	t(Å)	L	Force	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Uz(Buckling)
1	(6,6)	8.3E-10	0.034	1.7E-09	1.25E+11	8.86108E-10	1.26E+11	1.1944E+09	1.41E+20	6.69E+10	2.031E+00
2	(6,6)	8.3E-10	0.06	1.7E-09	1.25E+11	1.56372E-09	1.26E+11	1.1944E+09	7.99E+19	3.80E+10	2.031E+00
3	(6,6)	8.3E-10	0.106	1.7E-09	1.25E+11	2.76257E-09	1.26E+11	1.1909E+09	4.52E+19	3.80E+10	2.025E+00
4	(6,6)	8.3E-10	0.14	1.7E-09	1.25E+11	3.64868E-09	1.26E+11	1.1909E+09	3.43E+19	2.88E+10	2.025E+00
5	(6,6)	8.3E-10	0.34	1.7E-09	1.25E+11	8.86108E-09	1.26E+11	1.1948E+09	1.41E+19	1.18E+10	2.031E+00

Buckling Zigzag

No	. Index	D(Å)	t(Å)	L	Force	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Uz(Buckling)
1	[9,0]	7.2E-10	0.34	4.50E-09	9.40E+10	7.687E-10	9.450E+10	2.679E+08	1.223E+20) 4.565E+11	1.206E+00
2	[9,0]	7.2E-10	0.6	4.50E-09	9.40E+10	1.356E-09	9.450E+10	2.679E+08	6.930E+19	9 2.587E+11	1.206E+00
3	[9,0]	7.2E-10	1.06	4.10E-09	9.40E+10	2.396E-09	9.450E+10	2.934E+08	3.922E+19	9 1.337E+11	1.203E+00
4	[9,0]	7.2E-10	1.4	4.00E-09	9.40E+10	3.165E-09	9.450E+10	3.008E+08	2.970E+19	9.875E+10	1.203E+00
5	[9,0]	7.2E-10	3.4	4.50E-09	9.40E+10	7.687E-09	9.450E+10	2.679E+08	1.223E+19	9 4.564E+10	1.206E+00

Variabel Aspek Rasio

Bending Armchair

No	. Index	Diameter	(Å)t(Å)	L(Å)	L/D	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Ux (Bending)
1	(5,5)	6.9E-10	0.034	1.7E-09	2.463768116	7.36644E-10	1.26E+11	2.70E+08	1.70E+20	6.29601E+11	4.58E-01
2	(6,6)	8.3E-10	0.034	1.7E-09	2.048192771	8.86108E-10	1.26E+11	1.56E+08	1.41E+20	9.04681E+11	2.65E-01
3	(7,7)	9.6E-10	0.034	1.7E-09	1.770833333	1.0249E-09	1.26E+11	1.18E+08	1.22E+20	1.03602E+12	2.00E-01
4	(10,10)	1.38E-09	0.034	1.7E-09	1.231884058	1.47329E-09	1.26E+11	5.43E+07	8.48E+19	1.56332E+12	9.23E-02
5	(11,11)	1.51E-09	0.034	1.7E-09	1.125827815	1.61208E-09	1.26E+11	3.79E+07	7.75E+19	2.04422E+12	6.45E-02

Bending Zigzag

No	. Index	Diameter	(Å)t(Å)	L	L/D	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Ux (Bending)
1	[9,0]	7.2E-10	0.034	4.5E-09	6.25	7.687E-10	9.450E+10	5.127E+08	1.223E+2	20 2.39E+11	2.307E+00
2	[10,0]	7.9E-10	0.034	4.5E-09	5.696202532	8.434E-10	9.450E+10	3.533E+08	1.115E+2	20 3.15E+11	1.590E+00
3	[12,0]	9.5E-10	0.034	4.0E-09	4.210526316	1.014E-09	9.450E+10	1.668E+08	9.268E+1	9 5.56E+11	6.673E-01
4	[18,0]	1.35E-09	0.034	4.1E-09	3.037037037	1.441E-09	9.450E+10	4.316E+07	6.522E+1	9 1.51E+12	1.770E-01
5	[19,0]	1.51E-09	0.034	4.5E-09	2.98013245	1.612E-09	9.450E+10	3.692E+07	5.831E+1	9 1.58E+12	1.661E-01

Buckling Armchair

No	. Index	Diameter	(Å)t(Å)	L(Å)	L/D	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Uz (Bending)
1	(5,5)	6.9E-10	0.034	1.7E-09	2.463768116	57.36644E-10	1.26E+11	1.93E+09	1.70E+20) 8.81E+10	3.27E+00
2	(6,6)	8.3E-10	0.034	1.7E-09	2.048192771	8.86108E-10	1.26E+11	1.19E+09	1.41E+20) 1.18E+11	2.03E+00
3	(7,7)	9.6E-10	0.034	1.7E-09	1.770833333	3 1.0249E-09	1.26E+11	9.71E+08	1.22E+20) 1.26E+11	1.65E+00
4	(10,10)	1.38E-09	0.034	1.7E-09	1.231884058	3 1.47329E-09	1.26E+11	4.69E+08	8.48E+19	9 1.81E+11	7.97E-01
5	(11,11)	1.51E-09	0.034	1.7E-09	1.125827815	5 1.61208E-09	1.26E+11	4.13E+08	7.75E+19	9 1.88E+11	7.02E-01

Buckling Zigzag

No	.Index	Diameter	(Å)t(Å)	L	L/D	A(phi.d.t)	UTS	Strain	Stress	Young's Modulus	Uz (Bending)
1	[9,0]	7.2E-10	0.034	4.5E-09	6.25	7.69E-10	9.45E+10	3.25E+08	1.22E+19	3.76E+10	1.46E+00
2	[10,0]	7.9E-10	0.034	4.5E-09	5.696202532	8.43E-10	9.45E+10	2.68E+08	1.11E+19	4.16E+10	1.21E+00
3	[12,0]	9.5E-10	0.034	4.0E-09	4.210526316	1.01E-09	9.45E+10	1.93E+08	9.27E+18	4.81E+10	7.71E-01
4	[18,0]	1.35E-09	0.034	4.1E-09	3.037037037	1.44E-09	9.45E+10	8.72E+07	6.52E+18	7.48E+10	3.57E-01
5	[19,0]	1.51E-09	0.034	4.5E-09	2.98013245	1.61E-09	9.45E+10	6.85E+07	5.83E+18	8.52E+10	3.08E-01

- II. Gambar Hasil Simulasi
 - Variasi Diameter (Skala 100)

Gambar 4.12 Hasil simulasi bending SWCNT armchair (5,5), (6,6), (7,7), (10,10), (11,11)

XXXII

Gambar 4.13 Hasil simulasi bending SWCNT Zigzag (9,0), (10,0), (12,0), (18,0), (19,0)

XXXIII

XXXIV

Gambar 4.16 Hasil simulasi Buckling SWCNT Armchair (5,5), (6,6), (7,7), (10,10), (11,11)

XXXVI

Gambar 4.17 Hasil simulasi buckling SWCNT Zigzag (9,0), (10,0), (12,0), (18,0), (19,0)

Gambar 1 Pembebanan bending SWCNT (6,6) Ketebalan 3.4 nm

XXXVIII

Gambar 2 Pembebanan bending SWCNT (10,0) Ketebalan 3.4 nm

Gambar 3 Pembebanan buckling SWCNT (6,6) Ketebalan 3.4 nm

Gambar 4 Pembebanan buckling SWCNT (10,0) Ketebalan 3.4 nm

III. Tabel Hasil Displacement Tiap Titik Pembebanan

Pembebanan Bending dengan Variasi Diameter

			Ar	mchair (0.12500E	E+12 N)		
Chiral	Jumlah	Jumlah	Posisi		Displaceme	ent Value	
Index	Total	Total	Node	UX	ŪY	UZ	USUM
	Keypoint	Node	Bending				
			134	0.28399E-01-	0.88782E-04-	0.27863E-02	0.28535E-01
			Titik Koordinat	-3.43110053903	0.360623198227	-3.00000	
			267	0.13172E-01-	0.62427E-03-	0.12820E-02	0.13249E-01
			Titik Koordinat	-3.43110053903	0.360623198227	-1.00000	
			269	0.38805E-01	0.38445E-03	-0.26886E-02	0.38900E-01
			Titik Koordinat	-3.43110053903	0.360623198227	-5.00000	
			409	0.44676E-01	0.67918E-03	-0.13902E-02	0.44703E-01
(5,5)	940	980	Titik Koordinat	-3.43110053903	0.360623198227	-7.00000	
			519	0.45818E-01	0.74509E-03	0.45213E-03	0.45827E-01
			Titik Koordinat	-3.43110053903	0.360623198227	-9.00000	

			629	0.42163E-01	0.57621E-03	0.21018E-02	0.42219E-01
			Titik	-3.43110053903	0.360623198227	-11.00000	
			Koordinat				
			739	0.33807E-01	0.21253E-03	0.28470E-02	0.33928E-01
			Titik	-3.43110053903	0.360623198227	-13.00000	
			Koordinat				
			849	0.20632E-01	-0.20547E-03	0.21366E-02	0.20743E-01
			Titik	-3.43110053903	0.360623198227	-15.00000	
			Koordinat				
MAX			NODE 51	9 510 143	519		
ABSOLUT			VALUE 0.45	5818E-01 0.41307E-02	-0.30133E-02 0.45827E	E-01	
E VALUES						-	
			216	0.76271E-02	0.35212E-03	0.92351E-03	0.76909E-02
			Titik	3.29241636195	2.52635993073	-4.000000	
			Koordinat				
			380	0.41342E-02	-0.17362E-03	0.77297E-03	0.42094E-02
(6,6)	1121	2000					
			Titik	4.13420799708	0.975425018535E-	-2.500000	
			Koordinat		010		
			499	-	-	-	-

		Titik				
		Koordinat				
		618	-	-	-	-
		Titik				
		Koordinat				
		737	0.15251E-01	0.22666E-02	0.14037E-03	0.15419E-01
		Titik	3.29241636195	2.52635993073	-4.00000000	
		Koordinat				
		856	-	-	-	-
		Titik				
		Koordinat				
		975	0.14466E-01	-0.21979E-02	-0.19892E-03	0.14633E-01
		Titik	3.29241636195	2.52635993073	-4.00000000	
		Koordinat				
		1094	-	-	-	-
		Titik				
		Koordinat				
MAX		NODE 91	4 899 1658	914		
ABSOLUT		VALUE 0.26	5508E-01 0.27780E-02	0.12893E-02 0.26509E	-01	
E VALUES						
		92	0.97741E-02	-0.37500E-03	-0.41490E-03	0.97901E-02
		Titik	-4.67965397847	1.06810048298	-2.000000	
		Koordinat				
		285	0.15339E-01	-0.31749E-03	-0.57359E-03	0.15353E-01

			Titik	-4.67965397847	1.06810048298	-4.000000	
			Koordinat				
			510	0.18623E-01	-0.20418E-03	-0.43023E-03	0.18630E-01
			Titik	-4.67965397847	1.06810048298	-6.000000	
			Koordinat				
	1216	1070	664	0.20013E-01	-0.14335E-03	-0.92199E-04	0.20013E-01
(7,7)	1316	1372	Titik	-4.67965397847	1.06810048298	-8.000000	
			Koordinat				
			818	0.19592E-01	-0.16876E-03	0.28762E-03	0.19595E-01
			Titik	-4.67965397847	1.06810048298	-10.000000	
			Koordinat				
			972	0.17354E-01	-0.27425E-03	0.54753E-03	0.17364E-01
			Titik	-4.67965397847	1.06810048298	-12.000000	
			Koordinat				
			1126	0.13164E-01	-0.41304E-03	0.54073E-03	0.13182E-01
			Titik	-4.67965397847	1.06810048298	-14.000000	
			Koordinat				
			1280	0.64254E-02	-0.46687E-03	0.15041E-03	0.64441E-02
			Titik	-4.67965397847	1.06810048298	-16.000000	
			Koordinat				
MAX			NODE 66	648 258	664		
ABSOLUT			VALUE 0.20	013E-01 0.22731E-02	0.76658E-03 0.20013E-	01	
E VALUES				1	1		1
			125	0.47300E-02	-0.78131E-04	-0.87461E-04	0.47315E-02

			Titik	-6.89054379	0.361118098089	-2.00000	
			Koordinat				
			404	0.72355E-02	-0.91332E-04	-0.11631E-03	0.72370E-02
			Titik	-6.89054379	0.361118098089	-4.000000	
			Koordinat				
(10,10)	1880	1960	729	0.86440E-02	-0.91407E-04	-0.84306E-04	0.86449E-02
			Titik	-6.89054379	0.361118098089	-6.000000	
			Koordinat				
			949	0.92262E-02	-0.90331E-04	-0.13793E-04	0.92267E-02
			Titik	-6.89054379	0.361118098089	-8.000000	
			Koordinat				
			1169	0.90553E-02	-0.91782E-04	0.65162E-04	0.90560E-02
			Titik	-6.89054379	0.361118098089	-10.000000	
			Koordinat				
			1389	0.81172E-02	-0.95261E-04	0.12115E-03	0.81186E-02
			Titik	-6.89054379	0.361118098089	-12.000000	
			Koordinat				
			1609	0.62943E-02	-0.96527E-04	0.12721E-03	0.62964E-02
			Titik	-6.89054379	0.361118098089	-14.000000	
			Koordinat				
			1829	0.31772E-02	-0.84892E-04	0.68375E-04	0.31791E-02
			Titik	-6.89054379	0.361118098089	-16.000000	
			Koordinat				

MAXIMU M ABSOLUT E VALUES			NODE 949 VALUE 0.92	9 930 242 262E-02 0.93587E-03 (949 0.23658E-03 0.92267E-	02	
			316	0.18132E-02	0.13195E-03	-0.10063E-03	0.18207E-02
			Titik Koordinat	-7.33717734069	-1.77997996372	-1.000000	
		814	0.56027E-02	0.30484E-03	0.12148E-04	0.56110E-02	
			Titik Koordinat	-7.33717734069	-1.77997996372	-7.000000	
		1056	0.64483E-02	0.37025E-03	0.44912E-04	0.64591E-02	
	20.68	2155	Titik Koordinat	-7.33717734069	-1.77997996372	-9.000000	
(11,11)	2008	2155	1298	0.63930E-02	0.38359E-03	0.75664E-04	0.64049E-02
			Titik Koordinat	-7.33717734069	-1.77997996372	-11.000000	
			1540	0.55404E-02	0.35552E-03	0.89381E-04	0.55525E-02
			Titik Koordinat	-7.33717734069	-1.77997996372	-13.000000	
			1782	0.37163E-02	0.25873E-03	0.69158E-04	0.37260E-02
			Titik Koordinat	-7.33717734069	-1.77997996372	-15.000000	
MAXIMU M			NODE 105 VALUE 0.64	6 1074 484 483E-02-0.56535E-03	1056 0.21307E-03 0.64591E	-02	

ABSOLUT E VALUES							
LITLOLD				Zigzag (0.9400E+1	2 N)		
Chiral	Jumlah	Jumlah	Posisi Node		Displacem	ent Value	
Index	Total	Total	Bending	UX	UY	UZ	USUM
	Keypoint	Node					
			12	0.84124E-01	0.60760E-12	-0.22467E-01	0.87072E-01
			Titik Koordinat	-3.600000	0.0000000	-6.3400000	
			105	0.11034	0.23862E-12	-0.24014E-01	0.11293
			Titik Koordinat	-3.600000	0.0000000	-8.160000	
			132	0.15845	0.30221E-12	-0.24304E-01	0.16030
(0,0)	504		Titik Koordinat	-3.600000	0.0000000	-11.78000	
(9,0)	594	/50	198	0.17953	0.19680E-13	-0.22291E-01	0.18091
			Titik Koordinat	-3.600000	0.0000000	-13.60000	
			233	0.21122	0.48723E-13	-0.14113E-01	0.21169
			Titik Koordinat	-3.600000	0.0000000	-17.2200	
			299	0.22136	-0.75652E-13	-0.10044E-01	0.22159
			Titik Koordinat	-3.600000	0.0000000	-19.040000	

	376	0.32991E-01	0.37182E-12	-0.10971E-01	0.34767E-01
	Titik	-3.600000	0.0000000	-2.7200	
	Koordinat				
	394	0.22818	-0.67578E-13	0.18997E-02	0.22819
	Titik	-3.600000	0.0000000	-22.66000	
	Koordinat				
	460	0.22477	-0.24419E-13	0.63840E-02	0.22486
	Titik	-3.600000	0.0000000	-24.48000	
	Koordinat				
	484	0.20498	-0.39933E-13	0.17077E-01	0.20569
	Titik	-3.600000	0.0000000	-28.1000	
	Koordinat				
	550	0.18889	0.16732E-12	0.20328E-01	0.18998
	Titik	-3.600000	0.0000000	-29.92000	
	Koordinat				
	574	0.14767	0.12637E-12	0.24833E-01	0.14975
	Titik	-3.600000	0.0000000	-33.54000	
	Koordinat				
	640	0.12320	0.46769E-12	0.25238E-01	0.12576
	Titik	-3.600000	0.0000000	-35.36000	
	Koordinat				
	664	0.72137E-01	0.34324E-12	0.19417E-01	0.74705E-01
	Titik	-3.600000	0.0000000	-38.980000	
	Koordinat				

		730	0.46525E-01	0.64008E-12	0.15761E-01	0.49122E-01
		Titik	-3.600000	0.0000000	-40.80000	
		Koordinat				
MAX		NODE 39	4 413 60	394		
ABSOLUT		VALUE 0.22	.0.45538E-02 0.	25566E-01 0.22819		
E VALUES						
		52	0.62223E-01	0.72663E-03	-0.14409E-01	0.63874E-01
		Titik	-3.901368945	0.6179161368	-6.3400	
		Koordinat				
		54	0.80423E-01	0.18625E-02	-0.15348E-01	0.81896E-01
		Titik	-3.901368945	0.6179161368	-8.16000	
		Koordinat				
(10.0)		64	0.11297	0.24836E-02	-0.15460E-01	0.11405
(10,0)		Titik	-3.901368945	0.6179161368	-11.78000	
		Koordinat				
		177	0.12716	0.33300E-02	-0.14077E-01	0.12798
		Titik	-3.901368945	0.6179161368	-13.60000	
		Koordinat				
		187	0.14807	0.37729E-02	-0.87516E-02	0.14838
		Titik	-3.901368945	0.6179161368	-17.2200	
		Koordinat				
		291	0.15472	0.41821E-02	-0.60208E-02	0.15489

	Titik	-3.901368945	0.6179161368	-19.04000	
	Koordinat				
	301	0.15897	0.43294E-02	0.16968E-02	0.15904
	Titik	-3.901368945	0.6179161368	-22.66000	
	Koordinat				
	379	0.10264E-01	-0.75455E-03	-0.36638E-02	0.10925E-01
	Titik	-3.901368945	0.6179161368	-0.900000	
	Koordinat				
	381	0.26966E-01	0.22295E-03	-0.71681E-02	0.27904E-01
	Titik	-3.901368945	0.6179161368	-2.720000	
	Koordinat				
	477	0.15657	0.42439E-02	0.46800E-02	0.15669
	Titik	-3.901368945	0.6179161368	-24.4800	
	Koordinat				
	487	0.14322	0.40440E-02	0.11500E-01	0.14373
	Titik	-3.901368945	0.6179161368	-28.1000	
	Koordinat				
	577	0.13233	0.34548E-02	0.13629E-01	0.13308
	Titik	-3.901368945	0.6179161368	-33.540000	
	Koordinat				
	587	0.10459	0.29174E-02	0.16347E-01	0.10590
	Titik	-3.901368945	0.6179161368		
	Koordinat				
	677	0.87848E-01	0.18849E-02	0.16571E-01	0.89418E-01

			Titik	-3.901368945	0.6179161368	-35.36000	
			Koordinat				
			687	0.52722E-01	0.11825E-02	0.12627E-01	0.54226E-01
			Titik	-3.901368945	0.6179161368	-38.980000	
			Koordinat				
			777	0.34479E-01	-0.58436E-05	0.10212E-01	0.35960E-01
			Titik	-3.9013689454	0.61791613681	-40.800000	
			Koordinat				
MAX			NODE 30	1 318 120	301		
ABSOLUT			VALUE 0.15	5897 0.55978E-02 0.	17421E-01 0.15904		
E VALUES						1	•
			920	0.31305E-01	0.20034E-02	-0.43777E-02	0.31673E-01
			Titik	-4.1136206681	2.37499999973	-7.5000	
			Koordinat				
			923	0.45671E-01	0.25881E-02	-0.46687E-02	0.45982E-01
			Titik	-4.1136206681	2.37499999973	-11.0000	
(12,0)	938	1778	Koordinat				
			1048	0.61502E-01	0.36829E-02	-0.28906E-02	0.61680E-01
			Titik	-4.1136206681	2.37499999973	-16.0000	
			Koordinat				
			1055	0.48232E-01	0.44978E-02	-0.51357E-02	0.48713E-01
			Titik	-4.750000000	0.000000000	-12.5000	
			Koordinat				

1174	0.64378E-01	0.41087E-02	-0.20537E-02	0.64542E-01
Titik Koordinat	-4.1136206681	2.37499999973	-17.5000	
1177	0.66734E-01	0.42368E-02	0.31357E-03	0.66869E-01
Titik Koordinat	-4.1136206681	2.37499999973	-21.0000	
1294	0.66078E-01	0.41558E-02	0.12422E-02	0.66220E-01
Titik Koordinat	-4.1136206681	2.37499999973	-22.50000	
1297	0.60280E-01	0.42140E-02	0.33017E-02	0.60517E-01
Titik Koordinat	-4.1136206681	2.37499999973	-26.00000	
1525	0.46795E-01	0.25654E-02	0.47174E-02	0.47102E-01
Titik Koordinat	-4.1136206681	2.37499999973	-31.00000	
1532	0.53038E-01	0.47686E-02	0.45607E-02	0.53447E-01
Titik Koordinat	-4.750000000	0.000000000	-27.50000	
1642	0.40639E-01	0.13259E-02	0.48808E-02	0.40952E-01
Titik Koordinat	-4.1136206681	2.37499999973	-32.50000	
1645	0.25893E-01	0.67125E-03	0.37048E-02	0.26165E-01
Titik Koordinat	-4.1136206681	2.37499999973	-36.00000	

		1762	0.18001E-01	-0.62680E-03	0.31198E-02	0.18280E-01
		Titik	-4.1136206681	2.37499999973	-37.50000	
		Koordinat				
MAX		NODE 117	7 1187 855	1177		
ABSOLUT		VALUE 0.66734E-01 0.55912E-02 0.58461E-02 0.66869E-01				
E VALUES						

Section Editor

/GO |* /COM, /COM,Preferences for GUI filtering have been set to display: /COM, Structural |* /PREP7 * ET,1,BEAM188 * DOF,UX,UY,UZ,ROTX,ROTY,ROTZ !* MPTEMP,,,,,, MPTEMP,1,0 MPDATA, EX, 1, ,0.94E12 MPDATA, PRXY, 1,, 0.3 SECTYPE, 1, BEAM, CSOLID, , 0 SECOFFSET, CENT SECDATA,4.8,1,0.34,0,0,0,0,0,0,0,0,0 SECTYPE, 1, BEAM, CSOLID, , 0 SECOFFSET, CENT SECDATA, 4.8, 1, 0.34, 0, 0, 0, 0, 0, 0, 0, 0, 0 PCIRC, 4.8, ,0,360, ADELE, 1 LPLOT !* LDIV,3,,,21,0 |* LDIV,4,,,21,0 |* LDIV,1,,,21,0 |* LDIV,2,,,21,0 /USER, 1 /VIEW, 1, -0.281753267323 , -0.931704305671 , 0.229220817439 /ANG, 1, 50.5086714656 /REPLO /FOC, 1, 0.210733450423E-01, -0.352551185141 , -1.40709721285 /REPLO

FLST.3.84.4.ORDE.2 FITEM,3,1 FITEM.3.-84 LGEN,4,P51X, , , , ,-1, ,0 LSTR, 21, 106 LSTR, 4, 308 LSTR, 112, 4 LSTR, 106, 192 LSTR, 112, 175 LSTR, 192, 274 LSTR, 270, 184 LSTR. 184. 102 /VIEW, 1, -0.636737326726 , -0.731680814088 , 0.243328508502 /ANG, 1, 67.2532678378 /REPLO /VIEW, 1, -0.692275619536 , -0.655319168991 , 0.302177519595 /ANG, 1, 65.3999405230 /REPLO /VIEW, 1, -0.733648158452 , -0.559280912502 , 0.385960154047 /ANG, 1, 62.9490675867 /REPLO LDELE. 338 /VIEW, 1, -0.693705059612 , -0.704979672243 , 0.147570159561 /ANG, 1, 73.0502011489 /REPLO /VIEW, 1, -0.793287114580 , -0.562139060837 , 0.233870113787 /ANG. 1. 69.9495486692 /REPLO /FOC, 1, 0.689053458732E-01, -0.368090940163 , -1.28220307329 /REPLO LPLOT /VIEW, 1, 0.565488184775E-01, -0.965941974230 , 0.252504125806 /ANG. 1. -9.34572137611 /REPLO /VIEW, 1, -0.112079944701 , -0.845887536355 , 0.521452166393 /ANG, 1, 13.1429396696 /REPLO SAVE LPLOT LSEL,ALL /FOC, 1, -0.926902216776E-03, -0.517683102195 , -1.53987759948

/REPLO /VIEW, 1, -0.622965223233E-01, -0.976398483157 , 0.206797353454 /ANG. 1. 17.9272123530 /REPLO /VIEW, 1, 0.200074165635 , -0.885582368342 , 0.419182772938 /ANG, 1, -19.4198265487 /REPLO /AUTO,1 /REP.FAST FINISH !/EXIT,ALL /BATCH /COM,ANSYS RELEASE Release 17.1 BUILD 17.1 UP20160404 13:16:00 /input.menust.tmp," /COM.ANSYS RELEASE Release 17.1 BUILD 17.1 UP20160404 13:16:00 /GRA.POWER /GST.ON /PLO,INFO,3 /GRO.CURL.ON /CPLANE.1 /REPLOT,RESIZE WPSTYLE,.....0 RESUME /COM,ANSYS RELEASE Release 17.1 BUILD 17.1 UP20160404 13:16:55 /PREP7 LSTR, 116, 32 LSTR, 116, 202 LSTR, 175, 280 LSTR, 284, 202 /USER. 1 /VIEW, 1, 0.638324163405 , -0.751080963320 , 0.168581282923 /ANG, 1, -61.3879195541 /REPLO /VIEW, 1, 0.772668904090 , -0.548627929345 , 0.319358982642 /ANG, 1, -56.6474353924 /REPLO LSTR, 36, 124 LSTR, 124, 206

LSTR. 206. 292 LSTR, 128, 214 LSTR. 214. 296 /VIEW, 1, 0.979383961512 , 0.737482690615E-01, 0.188064480283 /ANG, 1, -59.9601667905 /REPLO /VIEW, 1, 0.906873868559 , 0.114097666928 , 0.405661815958 /ANG, 1, -60.7659276035 /REPLO LSTR, 128, 44 LSTR, 47, 134 LSTR, 134, 216 LSTR, 216, 302 LSTR, 138, 225 LSTR, 225, 307 /VIEW, 1, 0.413241855506 , -0.906641752496 , -0.850405873072E-01 /ANG, 1, -92.4451020765 /REPLO /VIEW, 1, -0.769116866368E-01, -0.892517030011 , -0.444407407228 /ANG, 1, -175.753468582 /REPLO /VIEW, 1, 0.753119565669 , 0.561193393877 , -0.343326221654 /ANG, 1, -105.716609378 /REPLO LSTR, 102, 13 LSTR, 180, 94 LSTR, 94, 9 LSTR, 180, 262 LSTR, 168, 250 LSTR. 250. 335 /VIEW, 1, 0.960690355332 , -0.183613669051 , -0.208230789534 /ANG, 1, -100.193622749 /REPLO /VIEW, 1, 0.843566473728 , -0.402483827154 , -0.355531114365 /ANG, 1, -104.393689875 /REPLO LSTR, 250, 336 LSTR, 168, 82 LSTR, 78, 160 LSTR, 160, 246 LSTR, 246, 328

LSTR. 156. 70 LSTR, 156, 237 LSTR. 237. 323 /VIEW, 1, 0.846419235232 , 0.183915003283 , -0.499749687140 /ANG, 1, -104.958030182 /REPLO /VIEW. 1. 0.663309853159 . -0.657739603588 . -0.356929478433 /ANG, 1, -102.093463127 /REPLO LSTR, 156, 238 LSTR. 238. 324 /VIEW, 1, 0.718638019854 , -0.383317801862 , -0.580195535311 /ANG. 1. -107.484901582 /REPLO /VIEW. 1, -0.216676596907 , -0.870999767721 , -0.440920238799 /ANG, 1, -176.119417226 /REPLO /REPLO LSTR, 66, 87 LSTR, 87, 234 LSTR, 234, 255 LSTR, 146, 228 LSTR, 228, 314 LSTR, 146, 59 LSTR. 138. 55 /VIEW, 1, -0.686172244743 , -0.504951741843 , -0.523632876120 /ANG. 1. 163.156902433 /REPLO /VIEW, 1, -0.856240451115 , -0.433548065412 , -0.280870726228 /ANG, 1, 155.311251986 /REPLO /VIEW, 1, -0.805889527541 , -0.401561006561 , -0.435075657111 /ANG. 1. 159.748881387 /REPLO LSTR, 138, 224 LSTR. 224. 306 /VIEW, 1, -0.930331759163 , -0.360981184200E-01, -0.364937999857 /ANG, 1, 158.157370656 /REPLO /VIEW, 1, -0.149404703756 , -0.896128583575 , -0.417889693814 /ANG, 1, 172.454919527

/REPLO FLST,2,4,4,ORDE,4 FITEM.2.357 FITEM,2,-358 FITEM,2,371 FITEM,2,-372 LDELE.P51X /VIEW, 1, -0.720323766025 , -0.636736588545 , -0.275136673140 /ANG. 1. 130.521473081 /REPLO /VIEW, 1, 0.510989294927 , -0.738638128556 , -0.439663115936 /ANG, 1, -138.155066262 /REPLO LDELE, 364 SAVE FLST,2,63,4,ORDE,21 **FITEM,2,70** FITEM,2,-77 FITEM,2,86 FITEM,2,149 FITEM.2.-155 FITEM,2,160 FITEM.2,-167 FITEM,2,170 FITEM,2,173 FITEM,2,-176 FITEM.2.227 FITEM, 2, -233 FITEM,2,238 FITEM,2,-245 FITEM,2,250 FITEM,2,-252 FITEM.2.254 FITEM,2,317 FITEM,2,-323 FITEM,2,328 FITEM.2,-335 LDELE, P51X FLST,2,8,4,ORDE,3 FITEM,2,2 **FITEM,2,59**

FITEM.2.-65 LDELE, P51X /VIEW, 1, 0.810832428603 , 0.592373118578E-01, -0.582272885861 /ANG, 1, -135.277447269 /REPLO FLST,2,40,4,ORDE,14 FITEM.2.3 FITEM,2,5 FITEM.2.-8 **FITEM**,2,13 FITEM,2,-19 FITEM,2,82 FITEM.2.-84 FITEM,2,91 FITEM.2.-98 FITEM,2,171 FITEM,2,181 FITEM.2.-188 FITEM,2,259 FITEM,2,-266 LDELE.P51X /VIEW, 1, 0.581129519273 , -0.811568450708 , -0.603749256283E-01 /ANG, 1, -117.946349861 /REPLO /VIEW, 1, 0.181611163165 , -0.842111162560 , 0.507805253326 /ANG, 1, -51.2965432211 /REPLO FLST,2,57,4,ORDE,19 FITEM,2,4 FITEM,2,20 **FITEM,2,25** FITEM,2,-31 **FITEM.2.88** FITEM,2,103 FITEM,2,-109 FITEM,2,114 FITEM,2,-121 FITEM,2,172 FITEM,2,193 FITEM,2,-199 FITEM,2,204

FITEM.2.-211 FITEM,2,256 FITEM.2.271 FITEM,2,-277 FITEM,2,282 FITEM, 2, -289 LDELE.P51X /VIEW, 1, 0.865520386450 , -0.373431982063 , 0.333800861908 /ANG. 1. -81.2345013218 /REPLO /VIEW, 1, 0.901212602656 , -0.189845361865 , 0.389582575832 /ANG, 1, -80.5785476663 /REPLO /VIEW, 1, 0.870004318934 , 0.140913876899 , 0.472478321549 /ANG. 1. -81.2806964840 /REPLO FLST,2,56,4,ORDE,16 **FITEM.2.36** FITEM.2.-43 FITEM,2,47 FITEM,2,-54 FITEM,2,85 FITEM,2,126 FITEM, 2, -132 FITEM,2,137 FITEM,2,-144 FITEM.2.215 FITEM,2,-222 FITEM,2,253 FITEM,2,294 FITEM,2,-300 FITEM,2,305 FITEM.2.-312 LDELE, P51X /VIEW, 1, 0.845530978966 , 0.439830835189 , 0.302698199576 /ANG, 1, -77.8855756555 /REPLO /VIEW, 1, 0.618837596128 , 0.694038955601 , 0.367899385330 /ANG, 1, -84.2116734418 /REPLO /VIEW, 1, 0.898365076300 , -0.360696906396 , 0.250674951683 /ANG, 1, -86.2182199543 /REPLO FLST,3,154,4,ORDE,69 FITEM,3,1 FITEM,3,9 FITEM, 3, -12 FITEM, 3, 21 FITEM, 3, -24 **FITEM.3.32** FITEM, 3, -35 FITEM,3,44 FITEM, 3, -46 FITEM, 3, 55 FITEM, 3, -58 **FITEM.3.66** FITEM, 3, -69 **FITEM**,3,78 FITEM, 3, -81 FITEM, 3, 87 **FITEM, 3, 89** FITEM.3.-90 FITEM, 3, 99 FITEM, 3, -102 FITEM,3,110 FITEM, 3, -113 FITEM, 3, 122 FITEM, 3, -125 FITEM, 3, 133 FITEM,3,-136 FITEM,3,145 FITEM, 3, -148 FITEM,3,156 FITEM, 3, -159 FITEM, 3, 168 FITEM, 3, -169 FITEM, 3, 177 FITEM, 3, -180 FITEM, 3, 189 FITEM, 3, -192 FITEM,3,200 FITEM, 3, -203

FITEM.3.212 FITEM, 3, -214 FITEM.3.223 FITEM, 3, -226 FITEM, 3, 234 FITEM, 3, -237 FITEM, 3, 246 FITEM, 3, -249 FITEM.3.255 FITEM, 3, 257 FITEM, 3, -258 FITEM, 3, 267 FITEM, 3, -270 FITEM, 3, 278 FITEM.3.-281 FITEM, 3, 290 FITEM, 3, -293 FITEM,3,301 FITEM, 3, -304 FITEM.3.313 FITEM.3.-316 FITEM, 3, 324 FITEM, 3, -327 FITEM,3,336 FITEM, 3, -356 FITEM.3.359 FITEM.3.-363 FITEM, 3, 365 FITEM, 3, -370 FITEM, 3, 373 FITEM, 3, -383 LGEN,17,P51X, , , , ,-2, ,0 /AUTO.1 /REP,FAST /USER, 1 /VIEW, 1, -0.292889101018E-01, 0.927891916488 , 0.371697122752 /ANG, 1, -130.899741140 /REPLO /VIEW, 1, 0.840226590276E-02, 0.997315685714 , -0.727380571455E-01 /ANG, 1, 45.5973688702

/REPLO /UI,MESH,OFF NUMMRG,ALL, , , ,LOW FLST,5,1498,4,ORDE,325 FITEM,5,1 FITEM, 5, -168 FITEM, 5, 170 FITEM.5,-176 FITEM.5.181 FITEM, 5, -188 FITEM, 5, 193 FITEM, 5, -199 FITEM, 5, 204 FITEM,5,-211 FITEM.5.215 FITEM, 5, -222 FITEM, 5, 227 FITEM, 5, -230 FITEM, 5, 318 FITEM, 5, -323 FITEM.5.328 FITEM, 5, -335 FITEM,5,337 FITEM, 5, -341 FITEM, 5, 344 FITEM,5,-345 FITEM.5.348 FITEM, 5, -349 FITEM,5,351 FITEM, 5, 353 FITEM, 5, -355 FITEM,5,357 FITEM.5.-361 FITEM, 5, 363 FITEM,5,-364 FITEM,5,366 FITEM, 5, -368 FITEM,5,370 FITEM, 5, -373 FITEM.5.375 FITEM.5.-376

FITEM,5,378
FITEM,5,380
FITEM,5,-382
FITEM,5,384
FITEM,5,-420
FITEM,5,424
FITEM,5,-431
FITEM,5,433
FITEM,5,-436
FITEM,5,439
FITEM,5,-440
FITEM,5,442
FITEM,5,444
FITEM,5,-446
FITEM,5,449
FITEM,5,-450
FITEM,5,452
FITEM,5,-453
FITEM,5,455
FITEM,5,-458
FITEM,5,461
FITEM,5,-462
FITEM,5,519
FITEM,5,-574
FITEM,5,578
FITEM,5,-585
FITEM,5,587
FITEM,5,-590
FITEM,5,593
FITEM,5,-594
FITEM,5,596
FITEM,5,598
FITEM,5,-600
FITEM,5,603
FITEM,5,-604
FITEM,5,606
FITEM,5,-607
FITEM,5,609
FITEM,5,-612
FITEM,5,615
FITEM,5,-616

FITEM, 5, 673 FITEM,5,-728 FITEM.5.732 FITEM, 5, -739 FITEM, 5, 741 FITEM, 5, -744 FITEM, 5, 747 FITEM,5,-748 FITEM.5.750 FITEM, 5, 752 FITEM, 5, -754 FITEM, 5, 757 FITEM, 5, -758 FITEM, 5, 760 FITEM, 5, -761 FITEM, 5, 763 FITEM, 5, -766 FITEM, 5, 769 FITEM, 5, -770 FITEM, 5, 827 FITEM.5.-882 FITEM,5,886 FITEM, 5, -893 FITEM, 5, 895 FITEM, 5, -898 FITEM,5,901 FITEM.5.-902 FITEM, 5, 904 FITEM, 5,906 FITEM, 5, -908 FITEM,5,911 FITEM,5,-912 FITEM.5.914 FITEM, 5, -915 FITEM, 5, 917 FITEM, 5, -920 FITEM, 5, 923 FITEM, 5, -924 FITEM, 5, 981 FITEM,5,-1036 FITEM,5,1040

FITEM, 5, -1047 FITEM, 5, 1049 FITEM.5.-1052 FITEM, 5, 1055 FITEM, 5, -1056 FITEM, 5, 1058 FITEM,5,1060 FITEM,5,-1062 FITEM.5.1065 FITEM, 5, -1066 FITEM, 5, 1068 FITEM, 5, -1069 FITEM,5,1071 FITEM, 5, -1074 FITEM.5.1077 FITEM, 5, -1078 FITEM, 5, 1135 FITEM, 5, -1190 FITEM, 5, 1194 FITEM,5,-1201 FITEM.5.1203 FITEM, 5, -1206 FITEM, 5, 1209 FITEM, 5, -1210 FITEM, 5, 1212 FITEM,5,1214 FITEM.5.-1216 FITEM, 5, 1219 FITEM,5,-1220 FITEM, 5, 1222 FITEM, 5, -1223 FITEM, 5, 1225 FITEM.5.-1228 FITEM, 5, 1231 FITEM,5,-1232 FITEM, 5, 1289 FITEM,5,-1344 FITEM, 5, 1348 FITEM, 5, -1355 FITEM, 5, 1357 FITEM, 5, -1360

LXVIII

FITEM, 5, 1363 FITEM,5,-1364 FITEM.5.1366 FITEM, 5, 1368 FITEM, 5, -1370 FITEM, 5, 1373 FITEM, 5, -1374 FITEM,5,1376 FITEM.5.-1377 FITEM, 5, 1379 FITEM, 5, -1382 FITEM,5,1385 FITEM, 5, -1386 FITEM, 5, 1443 FITEM.5.-1498 FITEM,5,1502 FITEM, 5, -1509 FITEM,5,1511 FITEM, 5, -1514 FITEM,5,1517 FITEM.5.-1518 FITEM,5,1520 FITEM,5,1522 FITEM, 5, -1524 FITEM, 5, 1527 FITEM,5,-1528 FITEM.5.1530 FITEM, 5, -1531 FITEM,5,1533 FITEM, 5, -1536 FITEM, 5, 1539 FITEM,5,-1540 FITEM.5.1597 FITEM, 5, -1652 FITEM,5,1656 FITEM, 5, -1663 FITEM, 5, 1665 FITEM, 5, -1668 FITEM,5,1671 FITEM,5,-1672 FITEM,5,1674

FITEM, 5, 1676 FITEM,5,-1678 FITEM.5.1681 FITEM, 5, -1682 FITEM, 5, 1684 FITEM, 5, -1685 FITEM, 5, 1687 FITEM,5,-1690 FITEM.5.1693 FITEM, 5, -1694 FITEM, 5, 1751 FITEM, 5, -1806 FITEM, 5, 1810 FITEM,5,-1817 FITEM.5.1819 FITEM, 5, -1822 FITEM, 5, 1825 FITEM, 5, -1826 FITEM, 5, 1828 FITEM,5,1830 FITEM.5.-1832 FITEM, 5, 1835 FITEM.5,-1836 FITEM, 5, 1838 FITEM, 5, -1839 FITEM,5,1841 FITEM.5.-1844 FITEM, 5, 1847 FITEM, 5, -1848 FITEM, 5, 1905 FITEM,5,-1960 FITEM,5,1964 FITEM.5.-1971 FITEM, 5, 1973 FITEM,5,-1976 FITEM, 5, 1979 FITEM,5,-1980 FITEM, 5, 1982 FITEM, 5, 1984 FITEM, 5, -1986 FITEM, 5, 1989

FITEM.5.-1990 FITEM,5,1992 FITEM.5.-1993 FITEM, 5, 1995 FITEM, 5, -1998 FITEM,5,2001 FITEM, 5, -2002 FITEM, 5, 2059 FITEM.5.-2114 FITEM, 5, 2118 FITEM, 5, -2125 FITEM, 5, 2127 FITEM, 5, -2130 FITEM, 5, 2133 FITEM.5.-2134 FITEM, 5, 2136 FITEM, 5, 2138 FITEM, 5, -2140 FITEM, 5, 2143 FITEM,5,-2144 FITEM.5.2146 FITEM, 5, -2147 FITEM, 5, 2149 FITEM, 5, -2152 FITEM, 5, 2155 FITEM, 5, -2156 FITEM.5.2213 FITEM, 5, -2268 FITEM,5,2272 FITEM, 5, -2279 FITEM,5,2281 FITEM,5,-2284 FITEM.5.2287 FITEM, 5, -2288 FITEM, 5, 2290 FITEM, 5, 2292 FITEM, 5, -2294 FITEM, 5, 2297 FITEM, 5, -2298 FITEM,5,2300 FITEM, 5, -2301

FITEM.5.2303 FITEM,5,-2306 FITEM.5.2309 FITEM, 5, -2310 FITEM, 5, 2367 FITEM, 5, -2422 FITEM, 5, 2426 FITEM,5,-2433 FITEM.5.2435 FITEM, 5, -2438 FITEM,5,2441 FITEM, 5, -2442 FITEM.5.2444 FITEM,5,2446 FITEM.5.-2448 FITEM, 5, 2451 FITEM, 5, -2452 FITEM, 5, 2454 FITEM, 5, -2455 FITEM, 5, 2457 FITEM.5.-2460 FITEM, 5, 2463 FITEM, 5, -2464 FITEM, 5, 2521 FITEM, 5, -2576 FITEM,5,2580 FITEM.5.-2587 FITEM, 5, 2589 FITEM,5,-2592 FITEM, 5, 2595 FITEM,5,-2596 FITEM, 5, 2598 FITEM.5.2600 FITEM, 5, -2602 FITEM, 5, 2605 FITEM, 5, -2606 FITEM, 5, 2608 FITEM, 5, -2609 FITEM, 5, 2611 FITEM,5,-2614 FITEM, 5, 2617

FITEM, 5, -2618 CM,_Y,LINE LSEL...P51X CM, Y1,LINE CMSEL,,_Y !* LESIZE,_Y1, , ,2, , , ,1 !* FLST,2,1498,4,ORDE,325 FITEM,2,1 FITEM,2,-168 FITEM,2,170 FITEM,2,-176 FITEM,2,181 FITEM,2,-188 FITEM,2,193 FITEM,2,-199 FITEM,2,204 FITEM,2,-211 FITEM,2,215 FITEM.2.-222 FITEM,2,227 FITEM,2,-230 FITEM,2,318 FITEM, 2, -323 FITEM,2,328 FITEM,2,-335 FITEM,2,337 FITEM,2,-341 FITEM,2,344 FITEM,2,-345 FITEM,2,348 FITEM.2.-349 FITEM,2,351 FITEM,2,353 FITEM,2,-355 FITEM,2,357 FITEM,2,-361 FITEM,2,363 FITEM,2,-364 FITEM,2,366

FITEM,2,-368
FITEM,2,370
FITEM,2,-373
FITEM,2,375
FITEM,2,-376
FITEM,2,378
FITEM,2,380
FITEM,2,-382
FITEM,2,384
FITEM,2,-420
FITEM,2,424
FITEM,2,-431
FITEM,2,433
FITEM,2,-436
FITEM,2,439
FITEM,2,-440
FITEM,2,442
FITEM,2,444
FITEM,2,-446
FITEM,2,449
FITEM,2,-450
FITEM,2,452
FITEM,2,-453
FITEM,2,455
FITEM,2,-458
FITEM,2,461
FITEM,2,-462
FITEM,2,519
FITEM,2,-574
FITEM,2,578
FITEM,2,-585
FITEM,2,587
FITEM,2,-590
FITEM,2,593
FITEM,2,-594
FITEM,2,596
FITEM,2,598
FITEM,2,-600
FITEM,2,603
FITEM,2,-604
FITEM,2,606

FITEM,2,-607
FITEM,2,609
FITEM,2,-612
FITEM,2,615
FITEM,2,-616
FITEM,2,673
FITEM,2,-728
FITEM,2,732
FITEM,2,-739
FITEM,2,741
FITEM,2,-744
FITEM,2,747
FITEM,2,-748
FITEM,2,750
FITEM,2,752
FITEM,2,-754
FITEM,2,757
FITEM,2,-758
FITEM,2,760
FITEM,2,-761
FITEM,2,763
FITEM,2,-766
FITEM,2,769
FITEM,2,-770
FITEM,2,827
FITEM,2,-882
FITEM,2,886
FITEM,2,-893
FITEM,2,895
FITEM,2,-898
FITEM,2,901
FITEM,2,-902
FITEM,2,904
FITEM,2,906
FITEM,2,-908
FITEM,2,911
FITEM,2,-912
FITEM,2,914
FITEM,2,-915
FITEM,2,917
FITEM,2,-920
FITEM.2.923 FITEM,2,-924 FITEM.2.981 FITEM,2,-1036 FITEM,2,1040 FITEM,2,-1047 FITEM,2,1049 FITEM,2,-1052 FITEM.2.1055 FITEM,2,-1056 FITEM,2,1058 FITEM,2,1060 FITEM,2,-1062 FITEM,2,1065 FITEM,2,-1066 FITEM,2,1068 FITEM,2,-1069 FITEM,2,1071 FITEM,2,-1074 FITEM,2,1077 FITEM.2.-1078 FITEM,2,1135 FITEM,2,-1190 FITEM,2,1194 FITEM,2,-1201 FITEM,2,1203 FITEM.2.-1206 FITEM,2,1209 FITEM,2,-1210 FITEM,2,1212 FITEM,2,1214 FITEM,2,-1216 FITEM.2.1219 FITEM,2,-1220 FITEM,2,1222 FITEM,2,-1223 FITEM,2,1225 FITEM,2,-1228 FITEM,2,1231 FITEM,2,-1232 FITEM,2,1289

FITEM.2.-1344 FITEM,2,1348 FITEM.2.-1355 FITEM,2,1357 FITEM,2,-1360 FITEM,2,1363 FITEM, 2, -1364 FITEM,2,1366 FITEM.2.1368 FITEM,2,-1370 FITEM,2,1373 FITEM,2,-1374 FITEM.2.1376 FITEM,2,-1377 FITEM.2.1379 FITEM,2,-1382 FITEM,2,1385 FITEM.2.-1386 FITEM,2,1443 FITEM,2,-1498 FITEM.2.1502 FITEM,2,-1509 FITEM,2,1511 FITEM,2,-1514 FITEM,2,1517 FITEM,2,-1518 FITEM.2.1520 FITEM,2,1522 FITEM,2,-1524 FITEM,2,1527 FITEM,2,-1528 FITEM,2,1530 FITEM.2.-1531 FITEM,2,1533 FITEM,2,-1536 FITEM,2,1539 FITEM,2,-1540 FITEM,2,1597 FITEM, 2, -1652 FITEM,2,1656 FITEM,2,-1663

LXXVII

FITEM.2.1665 FITEM,2,-1668 FITEM.2.1671 FITEM,2,-1672 FITEM,2,1674 FITEM,2,1676 FITEM,2,-1678 FITEM,2,1681 FITEM.2.-1682 FITEM,2,1684 FITEM,2,-1685 FITEM,2,1687 FITEM.2.-1690 FITEM,2,1693 FITEM.2.-1694 FITEM,2,1751 FITEM,2,-1806 FITEM,2,1810 FITEM,2,-1817 FITEM,2,1819 FITEM.2.-1822 FITEM,2,1825 FITEM,2,-1826 FITEM,2,1828 FITEM,2,1830 FITEM,2,-1832 FITEM.2.1835 FITEM,2,-1836 FITEM,2,1838 FITEM,2,-1839 FITEM,2,1841 FITEM,2,-1844 FITEM.2.1847 FITEM,2,-1848 FITEM,2,1905 FITEM,2,-1960 FITEM,2,1964 FITEM,2,-1971 FITEM,2,1973 FITEM,2,-1976 FITEM,2,1979

LXXVIII

FITEM.2.-1980 FITEM,2,1982 FITEM.2.1984 FITEM,2,-1986 FITEM,2,1989 FITEM,2,-1990 FITEM.2.1992 FITEM,2,-1993 FITEM.2.1995 FITEM,2,-1998 FITEM,2,2001 FITEM,2,-2002 FITEM.2.2059 FITEM,2,-2114 FITEM.2.2118 FITEM, 2, -2125 FITEM,2,2127 FITEM.2.-2130 FITEM,2,2133 FITEM,2,-2134 FITEM.2.2136 FITEM,2,2138 FITEM,2,-2140 FITEM,2,2143 FITEM,2,-2144 FITEM,2,2146 FITEM.2.-2147 FITEM,2,2149 FITEM,2,-2152 FITEM,2,2155 FITEM,2,-2156 FITEM,2,2213 FITEM.2.-2268 FITEM,2,2272 FITEM,2,-2279 FITEM,2,2281 FITEM,2,-2284 FITEM,2,2287 FITEM.2.-2288 FITEM,2,2290 FITEM,2,2292

FITEM.2.-2294 FITEM,2,2297 FITEM.2.-2298 FITEM,2,2300 FITEM,2,-2301 FITEM,2,2303 FITEM.2.-2306 FITEM,2,2309 FITEM.2.-2310 FITEM,2,2367 FITEM,2,-2422 FITEM,2,2426 FITEM.2.-2433 FITEM,2,2435 FITEM.2.-2438 FITEM,2,2441 FITEM,2,-2442 FITEM.2.2444 FITEM,2,2446 FITEM,2,-2448 FITEM.2.2451 FITEM,2,-2452 FITEM,2,2454 FITEM, 2, -2455 FITEM,2,2457 FITEM,2,-2460 FITEM.2.2463 FITEM,2,-2464 FITEM,2,2521 FITEM,2,-2576 FITEM,2,2580 FITEM,2,-2587 FITEM.2.2589 FITEM, 2, -2592 FITEM,2,2595 FITEM,2,-2596 FITEM,2,2598 FITEM,2,2600 FITEM.2.-2602 FITEM,2,2605 FITEM,2,-2606 FITEM.2.2608 FITEM,2,-2609 FITEM.2.2611 FITEM,2,-2614 FITEM,2,2617 FITEM,2,-2618 LMESH.P51X /VIEW, 1, -0.131920958451 , 0.971868933919 , 0.195109292462 /ANG. 1. -162.081639673 /REPLO /DIST,1,0.729,1 /REP.FAST /DIST.1.0.729.1 /REP.FAST /FOC. 1. -1.03941448241 . -1.13660942770 . -12.5411647450 /REPLO /VIEW, 1, -0.233565498861 , 0.877227245271 , 0.419427607456 /ANG. 1. -157.365032165 /REPLO /VIEW, 1, -0.325653721365 , 0.826988713156 , 0.458300471388 /ANG. 1. -162.711881186 /REPLO /VIEW, 1, -0.674588091606 , 0.534883770319 , 0.508753632825 /ANG, 1, -175.477902603 /REPLO /VIEW, 1, -0.824061968088 , 0.740678193270E-01, 0.561636742825 /ANG. 1. -176.305755883 /REPLO /VIEW, 1, -0.861634270986 , 0.131095519871 , 0.490306381492 /ANG, 1, -176.792832380 /REPLO /VIEW, 1, -0.901369575720 , 0.234899992736 , 0.363806104099 /ANG. 1. -178.070187422 /REPLO |* ANTYPE,0 FLST,2,28,4,ORDE,15 FITEM,2,1 FITEM.2.9 FITEM,2,-12 FITEM,2,21

FITEM.2.-24 **FITEM**,2,32 FITEM.2.-35 FITEM,2,44 FITEM,2,-46 **FITEM,2,55** FITEM.2.-58 FITEM,2,66 FITEM.2.-69 **FITEM**,2,78 FITEM,2,-81 |* /GO DL,P51X, ALL, /VIEW, 1, 0.882532039338E-01, 0.462539810849 , 0.882195157193 /ANG, 1, -153.486336208 /REPLO /VIEW, 1, 0.286429496100 , 0.828609191580 , 0.481004107460 /ANG, 1, -136.268565561 /REPLO /FOC, 1, -0.262934317096 , 1.27801550547 , -17.1631361624 /REPLO /VIEW, 1, 0.320696785776 , 0.944799626549 , 0.671359610558E-01 /ANG, 1, -92.6565672495 /REPLO /FOC, 1, -0.211425518537 , 1.38997404638 , -18.9847693357 /REPLO /FOC, 1, -0.433307325956 , 1.74408742997 , -22.9082911854 /REPLO /FOC, 1, -0.582316459236 , 2.04478204906 , -26.4281546090 /REPLO /VIEW, 1, 0.364573132734 , 0.913661116508 , 0.179749256106 /ANG. 1. -106.007521714 /REPLO FLST,2,35,3,ORDE,2 FITEM.2.2542 FITEM,2,-2576 |* /GO FK,P51X,FZ,125E9 /AUTO.1

LXXXII

/REP,FAST FINISH /SOL NSUBST,200,300,100 OUTRES, ERASE OUTRES, ALL, 1 AUTOTS,1 NCNV,2,0,0,0,0 **TIME.100** /STATUS,SOLU SOLVE FINISH /POST1 PLDISP,1 !* /EFACET,1 PLNSOL, U,SUM, 1,1.0 /USER, 1 /FOC, 1, 0.790072044200 , -0.124279255573 , -17.6055499551 /REPLO PLNSOL,U,SUM !* ANCNTR,15,0.5 FINISH /SOL

(Halaman ini sengaja dikosongkan)

LXXXIV

UCAPAN TERIMA KASIH

Pada pengerjaan tugas akhir ini penulis banyak mendapat bantuan dari berbagai pihak, pada kesempatan kali ini penulis mengucapkan banyak terima kasih kepada:

- 1. Allah SWT atas rahmat dan kuasa-Nya penulis dapat menyelesaikan laporan Tugas Akhir dengan baik dan tepat waktu serta segala anugerah yang diberikan.
- 2. Kedua orang tua penulis Bapak Drs. Moh. Rosyihuddin dan Ibu Maslahah atas semua dukungan moril dan materiil yang selalu dicurahkan.
- 3. Bapak Dr. Agung Purniawan, S.T., M.Eng selaku Ketua Jurusan Teknik Material dan Metalurgi FTI-ITS.
- 4. Bapak Mas Irfan P. Hidayat, S.T., M.Sc., PhD selaku dosen pembimbing pertama tugas akhir yang telah memberikan waktu, tenaga, dan pikirannya serta semangat yang tak hentihentinya dalam penyelesaian tugas akhir ini.
- 5. Ibu Diah Susanti, S.T., M.T., PhD selaku dosen pembimbing kedua tugas akhir yang telah memberikan bekal ilmu yang sangat bermanfaat.
- 6. Bapak Dr. Eng. Hosta Ardyananta S.T., M.Sc. selaku coordinator Tugas AKhir Jurusan Teknik Material dan Metalurgi FTI-ITS.
- 7. Bapak Sigit Tri Wicaksana, S.Si, M.Si. selaku dosen wali yang telah mengayomi selama penulis menjalani pendidikan di Jurusan Teknik Material dan Metalurgi.
- 8. Seluruh dosen dan karyawan Jurusan Teknik Material dan Metalurgi FTI-ITS.
- 9. Saudara Kandung Ika M. Kumala, Alya Yasmin, dan Alma Aurellia yang selalu memberikan dukungan, hiburan dan juga doa yang sangat berharga.
- 10. Sahabat terbaik Rustin Winarsih, Nidya Marchika S., Pradita Kusumah W., dan M.Haniv Vairuz yang selalu memberikan

support yang tiada henti-hentinya juga waktu-waktu berharganya untuk menemani dan mendengarkan setiap keluh kesah.

- 11. Teman seperjuangan menulis sekaligus teman kos Paguma, Asia dan Tiara Ansellya R.Y. yang mengalami suka duka menulis dan tetap memberikan dukungan semangat juga doa.
- 12. Rifai Arif Jurusan Teknik Mesin FTI-ITS, Mas Ridho Lab Komputasi, Dimas A. MT 17, Faisal MT 17, Yoga MT 17 yang telah menjadi teman diskusi yang sangat Baik.
- 13. Seluruh pihak yang telah memberikan partisipasi dalam Tugas Akhir ini.
- 14. Serta seluruh pihak yang belum bias dituliskan satu per satu oleh penulis. Terima kasih atas dukungan dan bantuan teman-teman sekalian.

BIODATA PENULIS

Penulis yang bernama lengkap Ayu Furoidah dilahirkan di Gresik pada tanggal 18 Juli 1996. Penulis merupakan anak kedua dari 4 bersaudara, dan telah menempuh pendidikan formal yaitu TK Muslimat NU 43, SDNU Kanjeng Sepuh Sidayu, SMP Negeri 1 Bungah dan SMAN 1 Gresik. Setelah lulus dari SMA, penulis mengikuti SNMPTN dan diterima sebagai Mahasiswa Institut

Teknologi Sepuluh Nopember Surabaya 2014. Penulis melanjutkan studi di Jurusan Teknik Material dan Metalurgi FTI ITS dengan nomor registrasi pokok 02511440000009. Semasa berkuliah di ITS, penuli sjuga aktif di kegiatan ekstrakampus, diantaranya di BEM ITS sebagai Staff Magang Kementrian Kebijakan Kampus di Tahun 2014-2015 dan sebagai Staff Kementrian Dalam Negeri Tahun 2015-2016, selain itu penulis juga aktif dalam Organisasi Internasional AIESEC sebagai Account Executive ICX IGIP dan selaku OC President AIESEC Fair kepengurusan 2015-2016. Penulis juga berkecimpung dalam kaderisasi HMMT FTI-ITS selaku Steering Commitee tahun 2016. Pengalaman kerja yang pernah diikuti penulis yaitu di bagian Quality Control BAF Divisi Cold Rolling Mill PT Krakatau Steel pada Juli-Agustus 2017. Selain itu, penulis juga pernah menjadi tentor mata pelajaran Matematika, Fisika, Biologi, dan Kimia di Lembaga Bimbingan Belajar D'Champion dari bulan Oktober hingga November 2017. Selesainya tugas akhir ini mengantarkan penulis memperoleh gelar Sarjana Teknik (ST) pada Jurusan Teknik Material dan Metalurgi Institut Teknologi sepuluh Nopember Surabaya.

Email: ayufuroidah18@gmail.com