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Abstract	
  	
  
	
  
Angiogenesis and vasculogenesis are essential neovascularisation processes. 

Various cell types and growth factors are involved, with vascular endothelial 

growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 identified as key 

components. The PhD project “In vitro vasculogenesis in 3D” tested the effect of 

parameters such as support cells, matrix composition and physiological hypoxia 

on the morphology and aggregation of ECs in 3D collagen hydrogels. 

Different aggregation patterns were identified depending on the culture 

conditions tested, and these were found to reflect the different developmental 

pathways that ECs take to form different sized tubular structures. ECs formed 

contiguous sheets in collagen only hydrogels, analogous to the ‘wrapping’ 

pathway in development. In contrast, in co-cultures in 3D collagen-laminin 

cultures, end-to-end networks formed, mimicking cord hollowing and cell 

hollowing.   

A relationship between matrix composition, growth factors and VEGF receptor 

levels in 3D collagen hydrogels was shown for the first time in this study. 

Results showed a key linkage between integrin expression on ECs and their 

uptake of VEGF, regulated by VEGFR2, resulting in end-to-end network 

aggregation in HBMSC-HUVEC co-cultures.  

The effect of physiological hypoxia on EC aggregation was also tested by 

lowering the oxygen tension to 5% O2 using a controlled culture environment. 

Angiogenic growth factors were quantified using ELISA and their levels were 

correlated to EC morphological progression within 3D collagen hydrogels.  

Overall, the findings here showed how different parameters affected EC 

morphology and aggregation in 3D in vitro collagen hydrogels. The study 
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provides an understanding of how these individual parameters influence EC 

morphology and show the mechanisms of how this is achieved in 3D in vitro.  
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Figure 3.11. Confocal micrograph images of HBMSC HUVEC co-cultures in 

collagen laminin constructs (Maximum projections of z stack images). 

HUVEC aggregated into end-to-end networks (arrows), CD31-green, DAPI 
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Figure 3.19. HDMEC morphology on day 7 and 14 in collagen only hydrogels. 
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were used. Error bars- SD. Analysis after 1 week in culture, significance 

described in text.	
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1 Introduction	
  	
  
	
  

1.1 Blood	
  vessels	
  
 

Blood vessels maintain a healthy immune system, supply tissues with oxygen 

and dispose of waste (Carmeliet and Jain, 2011). Nearly every organ in the 

human body is vascularised, with cartilage being the main exception. Blood 

vessels are important for organogenesis and tissue regeneration but are also 

the means for tumour metastasis and inflammatory disease progression 

(Carmeliet and Jain, 2011).  Blood supply abnormalities can cause stroke, 

myocardial infarction, pulmonary hypertension and other major diseases 

(Carmeliet and Jain, 2011). Healthy blood vessels are therefore crucial for 

maintaining an overall healthy body.  

 

All blood vessels, irrespective of size, from large arteries to small venules have 

an inner lining of endothelial cells (ECs), the endothelium (Aird, 2007a; Bouïs et 

al., 2001).  The endothelium is important for multiple physiological functions and 

actively transports small molecules and hormones (Aird, 2007a; Bouïs et al., 

2001). It also maintains blood pressure, the continuous movement of blood cells 

and haemostatic balance (Aird, 2007a; Bouïs et al., 2001). Depending on the 

location and function of the blood vessel, ECs differ in their exact function, 

shape and size, known as “EC heterogeneity” (Aird, 2007a).   

	
  

ECs have strong cell-cell junctions through transmembrane proteins, which link 

to components within the cell, allowing communication with the actin 

cytoskeleton (Bazzoni and Dejana, 2004). Cell-cell junctions are important for 

maintaining homeostasis and controlling permeability to solutes and leukocytes, 
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while also controlling EC apoptosis and growth through intracellular signalling 

(Bazzoni and Dejana, 2004). There are two main junctions, adherens junctions 

and tight junctions, which are also found in the epithelium (Bazzoni and Dejana, 

2004). While these are more distinct in the epithelium, there is more overlap 

between the two junctional systems in the endothelium (Bazzoni and Dejana, 

2004; Vestweber et al., 2009).  

 

Of the adherens junctions, the most important is vascular endothelial (VE) 

cadherin (Bazzoni and Dejana, 2004; Vestweber et al., 2009). Although VE-

cadherin is found in similar quantities on ECs as N-cadherin, studies have only 

shown disruption of the endothelium when VE-cadherin function is blocked 

(Vestweber et al., 2009). VE-cadherin is almost exclusively found on ECs 

(cytotrophoblast being an exception) (Bazzoni and Dejana, 2004) and it is 

mostly concentrated at EC-EC junctions. On the contrary, N-cadherin is 

distributed throughout the cell membrane and is thought to be associated to EC 

communication with surrounding cells such as pericytes and smooth muscle 

cells (Bazzoni and Dejana, 2004).  

 

VE-cadherin is associated intracellularly with β-catenin, plakoglobin, or γ-

catenin (Calera et al., 2004; Vestweber et al., 2009; Wallez et al., 2006) and 

interacts with the actin cytoskeleton through α-catenin (Vestweber et al., 2009). 

VE-cadherin is involved in cell migration, proliferation and vasculogenesis, 

especially during development (Calera et al., 2004). It is also closely related to 

VEGFR2 and affects VEGFR2 action and stability (Calera et al., 2004; Scott 

and Mellor, 2009).  
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In addition to adherens and tight junctions, there are other adhesion proteins, 

such as platelet/endothelial cell adhesion molecule (PECAM-1) (Bazzoni and 

Dejana, 2004). PECAM-1 is expressed on ECs, lymphocytes and platelets 

(Aurrand-Lions et al., 2002; Bazzoni and Dejana, 2004). PECAM-1 is found in 

inter-endothelial junctions and is a transmembrane protein and member of the 

immunoglobulin family (Aurrand-Lions et al., 2002; Bazzoni and Dejana, 2004). 

PECAM-1 affects EC migration through its integrin interaction with the matrix 

(Bazzoni and Dejana, 2004) and can indirectly affect VE-cadherin and EC cell-

cell adhesion through intracellular proteins (Wu and Sheibani, 2003). It is also 

likely responsible for leukocyte migration through the endothelium (Bazzoni and 

Dejana, 2004; Vestweber et al., 2009). PECAM-1-or CD31 and vascular 

endothelial (VE) cadherin are the most commonly used markers for the 

endothelium (Aird, 2007a). Both CD31 and VE-cadherin were chosen as EC 

markers in this study to test the morphology, aggregation and interaction of the 

cells.  

 

In larger vessels, ECs are resident on a basement membrane, surrounded by 

mesenchymal cells and the extracellular matrix (Armulik et al., 2005). This 

forms the tunica intima of the vessel (Armulik et al., 2005), which is surrounded 

by a layer of vascular smooth muscle cells, responsible for maintaining the tone 

and contraction of the vessel (Armulik et al., 2005).  

 

Capillaries are the intermediate exchange vessels and make up the bulk of the 

vascular system (Aird, 2007b). They are small, on average 10µm or less in 

diameter and have a thin wall, which consists of pericytes and extracellular 

matrix, essentially forming a 3D tube of ECs (Aird, 2007b). Pericytes are 
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vascular mural cells, set within the basement membrane of capillaries and 

venules (Armulik et al., 2005). Direct communication between pericytes and 

ECs through tight junctions, gap junctions or adherens junctions occurs where 

there are gaps in the basement membrane, also known as “peg-socket 

contacts” (Armulik et al., 2005). Pericytes are important for regulating several 

EC functions such as remodelling, maturation and stabilization, which are 

achieved by the direct communication of pericytes with multiple ECs allowing for 

a coordinated response of ECs (Armulik et al 2005). ECs are maintained in a 

quiescent state by pericytes and have an average lifespan of a year (Aird, 

2007a; Carmeliet and Jain, 2011).  

 

Both ECs and pericytes are resident on a basement membrane consisting of 

laminins, collagen IV, nidogen/entactin and heparan sulfate (Francis et al., 

2008; Grant et al., 1990). Laminin is a large heterodimeric glycoprotein 

(molecular weight= 800kDa), with α, β and γ chains and at least 15 known 

isoforms (Francis et al., 2008; Grant et al., 1990). It promotes cell proliferation, 

differentiation, migration and attachment (Ali et al., 2013; Grant et al., 1990). 

Collagen IV promotes EC attachment and differentiation, while binding together 

all basement membrane components (Grant et al., 1990). Laminin and collagen 

IV have been shown to drive EC migration and angiogenesis in in vitro assays 

and therefore their effect on ECs was tested in the current study (Kubota et al., 

1988; Nicosia, 2009; Nicosia et al., 1994) 
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1.2 Neovascularisation	
  
	
  
Neovascularisation is the process by which new blood vessels are formed. 

Three main processes result in neovascularisation and these are angiogenesis, 

arteriogenesis and vasculogenesis (Carmeliet, 2000; Phelps and Garcia, 2009). 

Angiogenesis is the most widely studied and understood process and is found 

in the presence of tumours, wound healing and ischemia (Phelps and Garcia, 

2009).  Sprouting angiogenesis starts with pericyte detachment from the vessel 

(Carmeliet and Jain, 2011). Pericytes are freed from the basement membrane 

as it is degraded by MMP action. EC junctions become loose in response to 

VEGF and cells begin to produce a provisional ECM. Integrins then drive EC 

migration where VEGF and bFGF create a pro-angiogenic environment. ECs 

migrate by following a lead cell known as the tip cell, guided by several factors 

and followed by ECs known as the stalk cells as seen in figure 1.1 (Carmeliet 

and Jain, 2011). Tip cells sense cues from their surrounding environment, while 

stalk cells provide information on their location to the ECs that follow to 

elongate the structure (Carmeliet and Jain, 2011).  

 

A blood vessel is fully complete when covered by pericytes and smooth muscle 

cells. This will occur through signalling from the ECs with factors such as 

PDGF. EC junctions and basement membrane proteins are also established to 

allow blood flow (Carmeliet and Jain, 2011).   

 

ECs have oxygen sensors and hypoxia- inducible factors (HIFs), which are 

used to adapt to changes in blood flow (Carmeliet and Jain, 2011). In normal 

oxygen conditions, enzymes such as pro-lyl hydroxylase domain 1-3 (PHD) 

hydroxylate HIF1α and HIF2α, which are then degraded (Carmeliet and Jain, 
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2011; Stamati et al., 2011). When the environment becomes hypoxic, PHDs are 

no longer active, which initiates a transcriptional response by HIFs in order to 

provide adequate oxygen. This response up-regulates angiogenic factors such 

as VEGF, driving the angiogenic process (Carmeliet and Jain, 2011; Ho et al., 

2006).  

 

Vasculogenesis occurs primarily during development but has also been 

described in adults (Carmeliet, 2000; Drake, 2003). Developmentally, 

vasculogenesis relies on the differentiation of progenitor cells, or angioblasts, 

into endothelial cells which then aggregate together into a primitive vascular 

structure (Carmeliet and Jain, 2011; Carmeliet, 2000; Drake, 2003). Factors 

such as VEGF, VEGFR2 and bFGF are thought to induce angioblast 

differentiation (Carmeliet and Jain, 2011; Carmeliet, 2000). The primitive 

vascular structure becomes mature, organised and adapted to individual organs 

through remodelling, sprouting and splitting (Carmeliet, 2000; Gerhardt et al., 

2003). For some organs, such as the kidneys, lungs and liver, angioblasts drive 

organ development through their interaction with the endoderm (Drake, 2003; 

Matsumoto et al., 2007).  

 

In adults, vasculogenesis involves the differentiation of endothelial progenitor 

cells (EPCs) from the bone marrow or blood circulation (Phelps and Garcia, 

2009). The exact source of these progenitor cells and their contribution in 

vasculogenesis is still somewhat controversial. However, a CD34 positive cell 

population has been characterised and associated with areas of 

neovascularisation (Phelps and Garcia, 2009). It is thought that the 
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differentiation of these cells into endothelial cells is driven by factors including 

VEGF, bFGF and IGF-1 (Carmeliet, 2000).  
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Figure 1.1. A schematic of angiogenesis by Carmeliet and Jain (2011) showing 

several of the factors and steps involved in the process. a) The process begins 

after stimulation of ECs with factors such as VEGF and bFGF and the 

degradation of the surrounding matrix. VE-cadherin junctions become loose, 

and a provisional matrix is deposited, b) tip cells start migrating using integrins 

to attach to the matrix and stalk cells follow. Pericytes are recruited to the area 

by ECs and a basement membrane is deposited, c) neighbouring branches fuse 

and a lumen forms. VE-cadherin junctions are re-established, the basement 

membrane fully forms and pericytes surround the new vessel.   

	
  
	
  
 

 

Figure 1.2.The process of cell differentiation for vasculogenesis in the embryo 

and adult (Fischer et al., 2006).  
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1.2.1 VEGF	
  and	
  VEGF	
  receptors	
  
	
  
Despite the complex interaction of various growth factors, cells and surrounding 

matrix in blood vessel formation, VEGF is considered a major component in 

both sprouting angiogenesis and vasculogenesis (Eichmann and Simons, 

2012). VEGF is a family of growth factors, which consists of VEGF-A (the most 

common), VEGF-B, VEGF-C, VEGF-D and placenta growth factor (PIGF) 

(Eichmann and Simons, 2012).  

 

The effects of VEGF are mediated through binding to its receptors, namely 

VEGFR1, VEGFR2 and VEGFR3. The receptors are expressed on the surface 

of different cell types such as endothelial cells, haematopoietic cells, 

macrophages, some tumour cells and vascular smooth muscle cells (Cébe-

Suarez et al., 2006).  

 

The three VEGF receptors have the same structure and contain an extracellular 

part, where VEGF binding occurs, one transmembrane part, a juxtamembrane 

domain, a split tyrosine kinase domain and a C-terminal domain (Koch et al., 

2011). Receptors can form homodimers with the same receptor type (eg. 

VEGFR1-VEGFR1), or heterodimers, with a different receptor type (eg. 

VEGFR1-VEGFR2) (Koch et al., 2011). Receptor dimerization is required for 

receptor activation and leads to conformational changes of the intracellular part 

of the receptor. VEGF receptor signalling influences several cell processes after 

receptor internalisation (Koch et al., 2011). 
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VEGFR1 has a 10 times greater binding affinity to VEGFA than VEGFR2 but a 

lower signalling capacity (Chen et al., 2010; Koch et al., 2011). There are 

suggestions that VEGFR1 is not necessary for EC migration and proliferation. 

Instead, VEGFR1 can work as a decoy receptor, preventing VEGF action by 

forming heterodimers with VEGFR2 (Koch et al., 2011). 

 

On the other hand, VEGFR2 is important for EC survival, proliferation, migration 

and tubulogenesis (Koch et al., 2011). VEGFR2 biology is complex and 

VEGFR2 can attach to various proteins such as VE-cadherin, Ephrin-B2, 

integrins and VEGFR3 (Eichmann and Simons, 2012). These interactions affect 

VEGFR2 signalling and endocytosis (Eichmann and Simons, 2012).    

 

In quiescent ECs approximately 40% of VEGFR2 receptors are found 

intracellularly. There are constant changes of individual receptor molecules’ 

location, through both fast internalisation of surface receptors and recycling of 

the intracellular pool (Scott and Mellor, 2009). Approximately 50% of the 

surface receptors are stable through attachment to VE cadherin, which occurs 

at EC-EC junctions (Scott and Mellor, 2009). This stabilisation by VE-cadherin 

inhibits VEGFR2 internalisation (Lampugnani et al., 2006; Scott and Mellor, 

2009). 

 

1.2.2 Angiopoietins	
  
	
  
Angiopoietins (Ang) are a family of four glycoproteins Ang-1, Ang-2, Ang-3 and 

Ang-4 that attach and activate receptor Tie-2 or Tie-1 (indirectly though Tie-2 

heterodimers) (Fagiani and Christofori, 2013). Ang-1 is involved in blood vessel 

remodelling and stability in adults and blood vessel maturation during 



	
   35	
  

development. As with other growth factors, maintaining a balanced expression 

of Ang-1 is important. Mice embryos deficient in Ang-1 die in utero while over 

expression of Ang-1 leads to enlargement of vessels (Fagiani and Christofori, 

2013). It works at different stages to VEGF during angiogenesis, with VEGF 

having an initial role, while Ang-1 has a later effect (Fagiani and Christofori, 

2013). 

 

Ang-1 is not normally released by ECs but by surrounding cells such as 

pericytes, vascular smooth muscle cells, fibroblasts and tumour cells (Fagiani 

and Christofori, 2013). Factors such as VEGF and PDGF as well as hypoxia 

increase Ang-1 expression in these cells. Ang-1 binding to Tie-2 activates 

several signalling pathways that lead to the survival of ECs, protecting them 

from apoptosis (Fagiani and Christofori, 2013).  

	
  

1.2.3 PDGF	
  
	
  
Another important factor during neovascularisation, especially for vessel 

stability is PDGF. PDGF is released by ECs during the angiogenic process in 

order to attract surrounding pericytes and smooth muscle cells to the 

neovascularisation area (Carmeliet and Jain, 2011). This is an important part of 

blood vessel maturation through the recruitment of support cells (Berthod, 2013; 

Carmeliet and Jain, 2011).  

 

1.2.4 ECM	
  and	
  integrins	
  
	
  
In addition to cytokines and growth factors that are known to be important for 

EC migration during angiogenesis, cell attachment to the extracellular matrix is 

equally important (Davis and Senger, 2005; Iivanainen et al., 2003).  
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The ECM surrounding ECs during angiogenesis influences the behaviour of the 

cells through integrins (Brooks, 1996). Integrins are heterodimeric receptors, 

which attach cells to the ECM. They consist of α and β subunits, from a group of 

18α and 8β subunits (Contois et al., 2009; Iivanainen et al., 2003). Their actions 

regulate several cell functions (Carmeliet and Jain, 2011; Serini et al., 2006). 

These include growth factors, growth factor receptors and other cell surface 

receptors, proteases and ECM components (Contois et al., 2009). Integrins are 

involved in different stages of the angiogenic process by influencing several EC 

biological functions. At least 9 integrins have been associated to angiogenesis 

(Hynes, 2007). These are α1β1, α2β1, α3β1, α4β1, α5β1, α6β1, α6β4, ανβ3 

and ανβ5. They are receptors to collagen (α1β1, α2β1), laminin (α1β1, α6β1, 

α6β4) or fibronectin (α4β1, α5β1) and are expressed on ECs, although some 

can vary depending on the source of ECs (Hynes, 2007).  

 

1.3 Tissue	
  engineering	
  	
  
	
  
Tissue engineering was developed in an attempt to solve immune-compatibility 

problems with tissue and organ transplants and address the lack of sufficient 

donor numbers (Kaigler et al., 2003; Kaully et al., 2009; Lee et al., 2011). It is a 

field that merges biological sciences and engineering by recapitulating 

developmental and adult biological processes (Lee et al., 2011). Tissue 

engineering takes advantage of the increasing knowledge of how cells are 

affected by signal transduction pathways, proteins and growth factors to 

influence cell differentiation, migration and proliferation (Lee et al., 2011).  

Three main strategies exist for tissue engineering practices: 1) direct delivery of 

the cells to the injured area or circulation, 2) cells incorporated into a scaffold to 
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form a tissue-like structure or 3) delivery of growth factors or drugs within 

scaffolds.    

 

One of the most important and challenging aspects of tissue engineering is the 

successful integration of a blood supply within three-dimensional (3D) tissues 

(Lesman et al., 2011). This is especially important when engineering larger 

tissues, more than a few millimetres in size, which is more clinically relevant 

(Kaigler et al., 2003). Once a tissue-engineered tissue is implanted, 

incorporated cells compete for oxygen and nutrients with each other and with 

host inflammatory cells (Kaully et al., 2009). Oxygen diffusion is a critical 

parameter for a metabolically active tissue and if it is slower than cell 

consumption will lead to cell death (Kaigler et al., 2003; Kaully et al., 2009). 

Therefore, to ensure cell viability, most cells need to be within close proximity to 

blood vessels, usually within 200µm, to ensure adequate oxygen is delivered to 

them (Kaully et al., 2009).  In the early stages post implantation, host 

vasculature is not sufficient to provide cells with oxygen and nutrients, which 

limits the engraftment and success of implants (Kaully et al., 2009).  

Incorporating a vascular network within these engineered tissues will therefore 

increase the short term and long term success of the process. In addition, an 

integrated vascular supply is also useful during in vitro culturing by influencing 

cell growth and organisation (Kaully et al., 2009; Lesman et al., 2011).    

 

Tissue engineering of capillary networks is mainly based on: i) scaffolds that 

release growth factors, ii) cultures of ECs in 3D scaffolds or iii) decellularized 

matrices (Kaully et al., 2009). In the current study I have focused on the use of 
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co-cultures with ECs in 3D scaffolds as a strategy for engineering capillary like 

structures.  

 

1.4 	
  In	
  vitro	
  studies	
  	
  
	
  
In vitro studies mimic angiogenesis or vasculogenesis. Ex vivo and in vivo 

studies are also widely used as models. These include the aortic ring outgrowth 

assay (Nicosia, 2009; Nicosia et al., 2011), the chick chorioallantoic membrane 

assay (CAM) (Hudlicka et al., 1989; Primo et al., 2010; Slevin et al., 2007; West 

et al., 1985), the corneal assay (Staton et al., 2009) zebrafish models and other 

models using mice and rabbits (Staton et al., 2009). The aortic ring outgrowth 

assay involves placing freshly isolated vessels from animals into a 3D ECM 

consisting of collagen and basement membrane proteins or fibrin (Nicosia, 

2009; Nicosia et al., 1994). This method tests EC migration into the surrounding 

matrix over a period of time. This method additionally tests EC interaction with 

surrounding support cells while in culture. A common in vivo assay, the CAM 

assay is a simple and relatively inexpensive way of testing substances and 

drugs. This is done in real time while angiogenesis is occurring in the living 

chick, usually through a small window in the shell of the egg (Staton et al., 

2009).   

 

The main difference between angiogenesis and vasculogenesis in in vitro 

approaches relates to the interaction of the ECs with the scaffold as shown in 

figure 1.3. Angiogenesis studies usually involve seeding cells on top of 3D 

scaffolds (Bayless et al., 2009; Davis et al., 2000; Joung et al., 2006; 

Montesano and Orci, 1987; Montesano et al., 1983). Initially designed by 

Montesano and Orci (Montesano and Orci, 1987), this method involves setting 
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a confluent layer of ECs on top of a scaffold. ECs migrate within the deeper 

layers of the scaffold and form tubular structures following the addition of 

exogenous growth factors such as VEGF and bFGF and/or agents such as 

Phorbol Myristate Acetate (PMA) (Bayless et al., 2009; Davis et al., 2000; 

Montesano and Orci, 1987). PMA is a tumorigenic agent that drives EC 

invasion within scaffolds and promotes EC tubulogenesis (Bayless and Davis, 

2003; Bayless et al., 2000; Bell et al., 2001; Montesano and Orci, 1987). 

 

The sandwich assay is another method that tests angiogenesis, where ECs are 

seeded on top of a collagen or fibrin hydrogel, which is then overlaid by another 

gel layer (Davis et al., 2000; Montesano et al., 1983). Following the setting of 

the second gel layer, ECs begin to organise into tubules and migrate through 

the collagen layers (Gagnon et al., 2002; Staton et al., 2009). The outgrowth of 

ECs seeded onto polystyrene beads and placed in an extracellular matrix is 

another method used to test EC migration and capillary structure formation, 

mimicking angiogenesis (Dietrich and Lelkes, 2006; Ghajar et al., 2006; 

Nakatsu et al., 2003; Nehls and Detlev, 1995; Vernon and Sage, 1999). 

 

Other angiogenesis assays rely on the organisation of ECs in 2D. This can 

either be in the form of EC culture and organisation on top of a gel- with no 

migration within the gel- (collagen, matrigel, fibrin) or on tissue culture plates 

coated with ECM proteins (Ingber and Folkman, 1989; Kubota et al., 1988; 

Vailhé et al., 2001, 1997; Vernon et al., 1995).  

 

On the other hand, vasculogenesis research uses single ECs embedded in a 

scaffold (Davis and Camarillo, 1996; Morin and Tranquillo, 2013). By mixing 
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ECs in the collagen hydrogels in the current thesis, the experiments were 

designed to mimic vasculogenesis.  

Davis and colleagues in the USA have done extensive work using collagen 

hydrogels over the last two decades, both for angiogenesis and 

vasculogenesis. Their vasculogenesis study design involves embedding ECs in 

a 3D collagen hydrogel, overlaid with Phorbol Myristate Acetate (PMA) and 

growth factor supplemented media. The presence of these factors results in EC 

end-to-end network aggregation (Davis and Camarillo 1996, Salazar et al 1999, 

Bell et al 2001, Bayless et al 2000, Bayless and David 2002). Since the initial 

publication of this method, (Davis and Camarillo, 1996), subsequent 

publications by their group (Bayless and Davis, 2003; Bayless et al., 2000; Bell 

et al., 2001; Salazar et al., 1999) have focused on specific aspects of the 

network aggregation process. 

 

 

Figure 1.3. The differences in the in vitro study designs of vasculogenesis and 

angiogenesis. Vasculogenesis mimicking studies involve seeding ECs as single 

cells interspersed throughout the 3D scaffold. Angiogenesis assays seed cells 

on the surface of a 3D scaffold and rely on the migration of the ECs within the 

scaffold. The figure was adapted from Davis et al 2007.  
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Several in vitro studies add supplementary cells to EC cultures to support and 

promote tubulogenesis (Ghajar et al., 2010; Rao et al., 2012; Sorrell et al., 

2009). This is mainly through the release of various angiogenic growth factors, 

including VEGF, bFGF and Angiopoietin-1 (Ghajar et al., 2006; Kolbe et al., 

2011). Supplementary cells vary between different studies and include MSCs 

(Au et al., 2008; Duffy et al., 2011; Kaigler et al., 2003; Kolbe et al., 2011; Rao 

et al., 2012), HDFs (Kunz-Schughart et al., 2006; Newman et al., 2011), 

osteoblasts (Hofmann et al., 2008; Unger et al., 2007), smooth muscle cells and 

pericytes (Sacharidou et al., 2012; Stratman et al., 2011, 2010, 2009). The most 

common sources are MSCs or HDFs (Duffy et al., 2011; Morin and Tranquillo, 

2013; Rao et al., 2012). MSCs and HDFs are the two supplementary cell 

sources chosen for the current study. 

	
  

1.5 Scaffolds	
  	
  
	
  
The ideal scaffold for tissue engineering purposes should be: 1) biocompatible, 

2) biodegradable, 3) have good mechanical properties, 4) appropriate 

architecture and porosity to allow for blood vessel infiltration and 5) be cost-

effective (O’Brien, 2011).  There are different scaffolds available, which can be 

natural polymers, synthetic polymers, or ceramic materials (Glowacki and 

Mizuno, 2007; O’Brien, 2011), each one with advantages and disadvantages 

(O’Brien, 2011).  

 

Ceramic materials such as hydroxyapatite and tri-calcium phosphate are 

suitable for bone tissue engineering due to their good mechanical properties 

and biocompatibility with osteoblasts (O’Brien, 2011). These materials are 

therefore selected in some studies, which test the integration of capillaries into 
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tissue engineered bone (Bulnheim et al., 2014). They are however brittle and 

have poor remodelling potential once implanted (O’Brien 2011). Synthetic 

polymers include poly-l-lactic acid (PLLA), poly-dl-lactic-co-glycolic acid (PLGA) 

and poly-glycolic acid (PGA), which can be moulded into the required 

architecture giving them a great advantage (Liu et al., 2006; O’Brien, 2011). 

They can also be manipulated so that cells can attach to their surfaces (O’Brien, 

2011). However, there are concerns for their biocompatibility and 

biodegradability once implanted in vivo (Liu et al., 2006; O’Brien, 2011).  

 

A scaffold that is commonly used in studies that test angiogenesis is matrigel 

(Connolly et al., 2002; Grant et al., 1990; Lawley and Kubota, 1989; Staton et 

al., 2009). Matrigel has been used both in in vitro and in vivo studies. It is a 

mixture of ECM and basement membrane proteins from the Engelbreth Holm 

sarcoma mouse. Its exact composition is not known and can contain additional 

growth factors, although a growth factor reduced version is also available 

(Staton et al., 2009). It is very potent and can induce EC tubule formation within 

hours of EC plating. The presence of lumens in matrigel cultures has been 

debated (Bikfalvi et al., 1991), although some studies show some lumen 

formation (Connolly et al., 2002; Grant et al., 1991). It should be noted that 

matrigel has also been shown to promote network aggregation in other cells 

such as fibroblasts and not just ECs (Donovan et al., 2001). 

Natural polymeric materials include collagen, hyaluronan, proteoglycans, 

chitosan and alginate (Glowacki and Mizuno 2007, Huang et al 2013, O’Brien 

2011, Liu et al 2007). The main advantages of using natural polymeric materials 

are biocompatibility, good cell adhesion and growth properties (Brown et al., 

2005; Glowacki and Mizuno, 2007; Huang et al., 2013; O’Brien, 2011). In 
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addition, they are biodegradable, allowing cells to remodel the scaffold and 

integrate with the surrounding matrix (O’Brien, 2011). The disadvantages of 

these materials are their poor mechanical strength and in some cases 

reproducibility of experimental results (O’Brien, 2011).  

Collagen is one of the most widely used natural polymers (Glowacki and 

Mizuno, 2007). It is the most abundant extracellular matrix component found in 

skin, bone, tendon, blood vessels and cartilage (Liu et al., 2006). While there 

are more than 20 types of collagen, collagen type I is most commonly used for 

tissue engineering applications, either on its own or in conjunction with other 

materials (Liu et al., 2006; O’Brien, 2011). It can be used as a swollen hydrogel 

or in a lattice like structure (Glowacki and Mizuno, 2007).  

 
The collagen used in the current study is (acetic) acid soluble rat-tail collagen I.  

The pH of the liquid collagen is increased using sodium hydroxide to a neutral 

pH to create a “cell friendly” hydrogel in which cells can be incorporated. During 

this process the collagen molecules aggregate into a random mesh of collagen 

fibrils (Brown et al., 2005). Hydrogels were selected as the main scaffold used 

in this study. The method of plastic compression to expel excess water and 

increase collagen density developed previously in this lab was used in some 

experiments, taking advantage of the characteristics of these constructs when 

spiraled into rod-like structures (Brown et al., 2005).   
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1.6 Developmental	
  tube	
  morphogenesis	
  	
  
 

Blood vessels, like other organs in the body such as the lungs and kidneys, are 

composed of tubular structures (Lubarsky and Krasnow, 2003).  These can vary 

in size, shape and specialised functions but five main processes have been 

described during embryonic development (Lubarsky and Krasnow, 2003).  

These are: wrapping, budding, cavitation, cord hollowing and cell hollowing 

(Lubarsky and Krasnow, 2003).  

 

Wrapping is commonly described during neural tube formation (Lubarsky and 

Krasnow, 2003). It involves the bending of an epithelial sheet; cells that will 

form the tubular structure move outwards, create an opening and separate from 

the epithelium until the edges meet. This forms a tubular structure that lays 

parallel to the initial epithelial sheet, as seen in figure 1.4a. Budding is the 

process in which cells grow outwards from a pre-existing tube, extending the 

tube structure as they branch out (Iruela-Arispe and Davis, 2009; Lubarsky and 

Krasnow, 2003). This is commonly described in branched structures, such as 

the mammalian lungs and the respiratory system in Drosophila (Lubarsky and 

Krasnow, 2003). It has also been compared to angiogenic sprouting (Iruela-

Arispe and Davis, 2009). Cavitation involves the elimination of cells in the 

centre of a dense mass creating a hollow lumen, found in salivary gland 

formation (Lubarsky and Krasnow, 2003). In cord hollowing, which also 

resembles angiogenic sprouting, lumens are created between cells in a tubular 

cord. Finally, cell hollowing is the process in which a lumen forms within a single 

cell, spanning the cytoplasm of the cell. Several hollow cells fuse together to 

form a tubular structure (Lubarsky and Krasnow, 2003).  
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Figure 1.4. The five processes of developmental tubulogenesis. These are 

wrapping, budding, cavitation, cord hollowing and cell hollowing. A detailed 

description can be found in the text. The figure was adapted from Lubarsky and 

Krasnow 2003. 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   46	
  

1.7 Thesis	
  overview	
  	
  
 

The purpose of this study was to test in an in vitro 3D controlled environment 

how parameters involved in neovascularisation affect EC aggregation and 

morphology. The parameters tested were supplementary cells, as a natural 

source of pro-angiogenic growth factors, the addition of basement membrane 

proteins in the ECM and the effect of physiological hypoxia.  

 

Initial experiments focused on the effect of cell-cell interactions, specifically with 

the use of HBMSCs, on EC morphology and aggregation. Once the HBMSC 

effect was determined, the effect of cell-matrix interactions was tested using 

basement membrane proteins laminin and collagen IV. Differences in EC 

aggregation in these different conditions were correlated to the release of 

angiogenic growth factors and uptake through receptor up-regulation. 

  

Having identified the effect of HBMSCs and the ECM on EC aggregation, HDFs 

were used as a different source of supplementary cells. In addition, the effect of 

oxygen concentration was also tested and physiological hypoxia was compared 

to normoxia for the effect on EC aggregation.  

 

1.8 Hypotheses	
  under	
  test	
  	
  
 
1. “ECs form end-to-end network structures when co-cultured with HBMSCs or 

HDFs in 3D collagen constructs.”  

 
2. “Basement membrane proteins promote EC capillary like structure formation 

in 3D in vitro when added to collagen I hydrogels.” 
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3. “Physiological hypoxia promotes greater EC end-to-end network aggregation 

compared to normoxia.”   

 

 

1.9 Aims	
  and	
  objectives	
  
 

The aim of this thesis was to determine how angiogenic parameters affect EC 

morphology and aggregation in 3D collagen hydrogels in vitro.  

 

The main objectives were: 

1. Test the morphology and aggregation of HUVECs when cultured in 3D 

collagen hydrogels in the presence of supplementary cells and basement 

membrane proteins  

2. Quantify angiogenic growth factor levels within the cultures in these 

different conditions and correlate differences to EC aggregation 

3. Quantify the number and type of VEGF receptor levels within cultures 

and relate to VEGF uptake and EC morphology  

4. Determine differences in the morphology and aggregation of ECs 

depending on the source of ECs used 

5. Determine the effect of physiological hypoxia on EC morphology and 

aggregation  
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2 Materials	
  and	
  Methods	
  
 

2.1 	
  Endothelial	
  cell	
  culture	
  	
  
 

Human Umbilical Vein Endothelial Cells (HUVECs) were purchased from 

PromoCell (Heidelberg, Germany) at passage 0 and grown in complete 

endothelial cell growth media (EGM) (PromoCell, Heidelberg, Germany) 

supplemented with 10% Fetal Calf serum (50ml) (FCS) (First Link, 

Wolverhampton, UK) and 1% Penicillin/ Streptomycin (P/S) (Gibco, Paisley, 

UK). At initial plating, a seeding density of 7000 cells/cm2 was used.  

For routine cell culture, cells were cultured in T75cm2 flasks. Flasks were 

checked daily for confluency, infections and growth using an inverted light 

microscope. When flasks were 90% confluent, they were passaged using a 1:3 

ratio. For passaging, EGM growth media was pipetted out of the flasks and 

flasks were washed twice with 5ml Phosphate buffered saline (PBS) (Oxoid, 

Thermo Scientific, Loughborough, UK). Cells were detached from the culture 

surface by using a 10% Trypsin/EDTA solution (Gibco, Paisley, UK) (0.25%) 

and incubated for 5 minutes at 37°C. Flasks were checked under the 

microscope for rounded, floating cells. To neutralise the trypsin solution 10ml of 

EGM was added to the cells, transferred to a 30ml universal tube and 

centrifuged at 2000rpm for 5minutes. After centrifugation, the supernatant was 

discarded without disturbing the cell pellet and the cells were either split into 

new sterile flasks or used in collagen hydrogels.  

 

For cell counting, cells were re-suspended in 4ml of EGM medium and 30µl of 

the cell suspension was pipetted into a clean eppendorf tube where it was 

mixed with an equal amount (30µl) of trypan blue (Sigma, Dorset, UK). Trypan 
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blue was used to stain dead cells blue, which were excluded from cell counting. 

Live cells were counted using a haemocytometer as shown below in Figure 2.1. 

The number of cells in the four 4x4 chambers were counted, averaged and the 

total number of cells was calculated using the formula N= M x V x D x 104. M 

represents the mean number of cells counted, V the media volume the cells 

were re-suspended in, (usually 4ml) and D the dilution with trypan blue (1:1 

dilution of cells and trypan blue, i.e. 2).  

 

 

 

 

  

Figure 2.1. A haemocytometer was used for cell counting. a) The 

haemocytometer was covered with a glass coverslip, adhered on its surface, b) 

live cells in the four 4x4 chambers were counted and the formula N= M x V x D 

x 104 was used to calculate the number of cells. 

 
 

2.2 Collagen	
  hydrogel	
  preparation	
  	
  
 

Collagen hydrogels were prepared using the same basic formula for all 

experiments. The exact amount and dimensions of the collagen hydrogels 

differed depending on the experimental setup. The standard method involved 

using acid soluble rat tail collagen type I solution (2.05mg/ml, First Link, 

Wolverhampton, UK) at an 80% final volume concentration, mixed with 10% 

	
  

	
  

	
  

	
  

a b 



	
   50	
  

10x Minimum Essential Medium (MEM) (Gibco, Paisley, UK). The collagen 

solution was neutralised by drop-wise addition of a 5M and 1M sodium 

hydroxide (NaOH) (AnalaR, UK) solution to reach pH~7.4.  Once neutralised, 

the colour of the collagen solution changed from yellow to light pink (Figure 

2.2). The collagen solution was mixed with the cells, in the required cell density, 

which was prepared in a 10% final collagen volume solution (in cell culture 

media). The mixed solution was pipetted into the appropriate well- plate or 

mould and placed in a humidified incubator set at 37°C for 30 minutes. Once 

gelation was complete, the corresponding media was added to culture the cells. 

 

2.3 HUVEC	
  only	
  hydrogels	
  	
  
 

HUVECs were trypsinised, counted and used in collagen hydrogels as 

described in sections 2.1 and 2.2. Collagen hydrogels were cast using 100000 

cells in 1ml of collagen, in a 12 well plate. Cells up to passage 5 only were used 

and experiments were performed in triplicate. Collagen hydrogels were cultured 

for 7 and 14 days in a humidified incubator set at 37°C, 5% CO2, with media 

changes at least once a week. Media samples were kept on days 7 and 14 and 

stored at -80°C for VEGF and PDGF protein analysis using ELISA. Collagen 

hydrogels were fixed using 10% neutral buffered formalin (NBF) (Sigma, Dorset, 

UK) and CD31 immunofluorescence was used for image analysis.  

 

2.4 Phorbol	
  myristate	
  acetate	
  addition	
  to	
  HUVEC	
  only	
  cultures	
  	
  
	
  

Collagen hydrogels were prepared as described above in sections 2.2. and 2.3. 

Phorbol myristate acetate (PMA, Sigma, Dorset, UK) was added in 3 different 
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concentrations- 10ng/ml, 20ng/ml and 50ng/ml both within the collagen 

hydrogel (mixed within the cell suspension) and the overlying media.  

	
  
	
  

a  
 
 

b  

c 	
  

Figure 2.2. The process of collagen neutralisation and gel setting. a) Collagen 

solution mixed with 10xMEM before neutralisation, b) neutralised collagen 

solution, c) collagen hydrogel set in a 12 well plate, d) collagen hydrogel 

dimensions. 

	
  

2.5 Human	
  bone	
  marrow	
  stem	
  cell	
  culture	
  
 

Human bone marrow stromal cells (HBMSCs) were isolated and cryopreserved 

from patients undergoing hip surgeries at the Royal National Orthopaedic 

Hospital (RNOH), with informed consent and ethical approval. Cells were 

isolated using the method adapted by Igarashi et al (2007). Bone marrow 

aspirates (8-10ml) were transferred to a sterile 50ml tube containing 10ml 

Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma, Dorset, UK) 

supplemented with 20% FCS and 1% P/S and 1ml of heparin (1000IU) to 

prevent blood coagulation. Cells were centrifuged at 1500rpm for 7 minutes. 

After centrifugation the lipid layer was carefully removed using a sterile Pasteur 

pipette. An additional 30ml of culture media was added and cells were 

3mm	
  

2cm	
  

d 
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centrifuged again at 1500rpm for 7 minutes. The supernatant above the cell 

pellet was removed and 30ml of media was added and the cells were well 

mixed. Cells were counted using the protocol described above (section 2.1) and 

seeded in T75cm2 flasks initially at a density of 2x107. The flasks were not 

disturbed for the first 72 hours to allow the HBMSCs to attach to the flasks. 

HBMSCs attached to the flask surface and all floating cells were discarded. 

Once the cells reached confluency they were passaged into T225 cm2 flasks.  

DMEM was removed and replenished twice a week and cells were usually 

passaged every 10 days.  

 

HBMSCs were passaged at 80% confluency. This involved the removal of the 

culture medium, followed by two washes with 8ml of PBS and trypsinised with 

8ml of Trypsin/EDTA. Flasks were incubated at 37°C for 5 minutes to detach 

the cells from the tissue culture flask surface. To ensure that the majority of the 

cells were floating, flasks were gently tapped and checked under an inverted 

microscope. DMEM (16ml) was added to the flask to neutralise trypsin, 

transferred to a universal tube and centrifuged at 2000rpm for 5minutes. DMEM 

was carefully removed from the universal and the cell pellet was split into new 

flasks in a 1:2 ratio or counted and used in collagen hydrogels.  

	
  

2.6 HBMSC-­‐	
  HUVEC	
  collagen	
  hydrogels	
  	
  
 

Collagen hydrogels were cast using HBMSCs and HUVECs. Different ratios of 

the two cell types were mixed by maintaining a constant number of HBMSCs at 

200000 cells/ml but increasing the number of HUVECs between 100000 

cells/ml, 200000cells/ml, 300000cells/ml and 400000cells/ml. Cell morphology 

and endothelial cell aggregation were tested using CD31 immunofluorescence 
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as described below and media samples were kept at -80°C for VEGF and 

PDGF protein analysis using ELISA. HBMSC only hydrogels were also set with 

200000 cells/ml for control protein analysis.  

2.7 Basement	
  membrane	
  incorporation	
  in	
  collagen	
  hydrogels	
  	
  
 

Collagen IV (mouse, BD Biosciences, Oxford, UK) or laminin (type V, mouse, 

BD biosciences, Oxford, UK) were added and mixed in collagen hydrogels to 

test the effect of basement membrane proteins on EC morphology and 

aggregation. Based on previously published literature (Nicosia et al., 1994) 

50µg/ml of collagen IV and/or laminin was added to the cultures. Collagen IV 

was added to the collagen I solution prior to neutralisation and neutralised with 

NaOH, before mixing the neutralised solution with the cells. Laminin was added 

and mixed with the cell suspension prior to mixing with the neutralised collagen 

solution. Basement membrane proteins were added in both HUVEC only 

cultures and HBMSC-HUVEC co-cultures. 

 

Constructs were fixed in 10% NBF and were stained with an anti-CD31 antibody 

and DAPI for cell nuclei (vectashield mounting medium, Vector labs, 

Peterborough, UK) to test cell morphology and aggregation. Cells that stained 

positive with both anti-CD31 and DAPI were ECs, while cells that stained with 

DAPI but were CD31 negative were HBMSCs. The supernatant was kept at -

80°C for VEGF and PDGF protein analysis using ELISA.   

2.8 Integrin	
  α6	
  blocking	
  	
  
 

To test the effect of cell attachment to laminin, anti-integrin α6 antibody (GoH3, 

Chemicon International, California, US) was added to the cultures. Therefore, 

while laminin was present in these cultures, α6 integrin blocking prevented 
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attachment of cells to this protein. Integrins α6β1 and α6β4 are laminin 

receptors on ECs. Laminin attachment was blocked using 40 µg/ml of the anti-

integrin α6 antibody as recommended by the manufacturer. This was done in 

HUVEC only cultures and HBMSC-HUVEC cultures in collagen-laminin 

hydrogels. Constructs were cultured for a week and CD31 immunofluorescence 

was used to test the morphology and aggregation of the HUVECs. In HUVEC 

only cultures cell morphologies were quantified and compared to HUVEC only 

cultures with laminin. For HBMSC-HUVEC co-cultures with the anti-integrin 

antibody, CD31 immunofluorescence was used to test differences in cell 

morphologies compared to laminin co-cultures.  

	
  
	
  

2.9 CD31	
  immunofluorescence	
  	
  
 

For immunofluorescence, collagen whole mounts were used. Collagen 

hydrogels were fixed in 10% NBF for 1 hour and then washed in PBS 3 times 

for 10 minutes. Hydrogels were then placed in 1% Bovine serum albumin (BSA) 

(Sigma, Dorset, UK), 0.2% Triton X (Sigma, Dorset, UK) and PBS solution for 1 

hour for permeabilisation and blocking. Hydrogels were then washed again in 

PBS 3 times for 10 minutes, followed by incubation in anti CD31 mouse primary 

antibody (JC70/A from Abcam, Cambridge, UK) for 48 hours at 4°C. Following 

incubation, hydrogels were washed again thoroughly in PBS (3x10 minutes) 

and incubated with 2o antibody Alexa Fluor 488 goat anti mouse IgG (H+L) 

(molecular probes, life technologies, Paisley, UK) for 2.5 hours at room 

temperature. Hydrogels were washed again in PBS for 30 minutes (3x10mins), 

mounted on glass slides with a drop of DAPI mounting medium (Vector shield, 

Vector Laboratories, Peterborough, UK) and covered with a coverslip. 
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Constructs were viewed using an upright fluorescent microscope (Olympus 

BX61) or a Zeiss LSM confocal microscope. 

	
  

2.10 Image	
  analysis	
  	
  
 

Images were captured using the Olympus BX61 microscope or a Zeiss LSM70 

confocal microscope. Data were obtained from 8-10 images per sample, from 

different fields of view and Image J (NIH, USA) software was used for image 

analysis. 

 

HUVECs were categorised into different cell morphologies, as determined 

mainly by the 2D characteristics of the cells, stained with CD31. The criteria 

used to categorise EC morphologies were: cell size, cell shape, cell-cell 

interactions and proximity, cell processes and cell height.  

 

Cells were initially grouped into spindle-like morphologies and polygonal 

morphologies. The 2D surface area occupied by the cells was measured in the 

two polygonal morphologies. The presence or absence of cell processes 

extending from the cells was also noted as part of the cell shape classification. 

The intensity of the CD31 staining on the cell surface and the proximity to other 

HUVECs in culture were also criteria used to categorise cells into different 

morphologies. Cells were categorised into these groups and the percentage of 

each type of morphology in each culture condition was calculated at each time-

point.  

 

Confocal micrograph images were used to assess the 3D morphology of 

HUVECs, in HUVEC only cultures. The 3D morphology was quantified by 
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measuring the height of the HUVECs on day 7 and 14.  This was especially 

useful for determining differences between the polygonal cell morphologies that 

appeared similar in 2D. Specifically, the height of the cells was measured using 

confocal micrograph images. This was done by counting the number of views in 

which individual cell nuclei were visible and correlated to the depth within the 

construct, in micrometres.  

 

In co-cultures with HBMSCs with and without laminin, the criteria described 

above were used to classify HUVECs within the cultures. In co-cultures with 

added laminin, HUVECs also aggregated into end-to-end networks by fusing 

and attaching to neighbouring ECs. A structure was characterised as a network 

if it contained more than 2 ECs and contained visible nuclei. These networks 

were measured in length in micrometres using Image J software.  

 

2.11 VE	
  Cadherin	
  immunofluorescence	
  	
  
 

Whole mount collagen hydrogels seeded with HBMSCs and HUVECs with or 

without laminin were fixed in 10% NBF for 1 hour and then washed in PBS 3 

times for 10 minutes. They were permeabilised in 1% Bovine serum albumin 

(BSA) (Sigma, Dorset, UK), 0.2% Triton X (Sigma, Dorset, UK) in PBS for 1 

hour at room temperature. Hydrogels were then washed again in PBS 3 times 

for 10 minutes, followed by incubation in anti VE cadherin mouse primary 

antibody (F-8: sc-9989, Santa Cruz Biotechnology, Texas, USA) overnight at 

4°C. Following incubation, hydrogels were washed again thoroughly in PBS 

(3x10 minutes) and incubated with 2o antibody goat anti mouse Alexa Fluor 488 

(Abcam, Cambridge, UK) for 2.5 hours at room temperature. Hydrogels were 
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washed again in PBS for 30 minutes (3x10 minutes), mounted on glass slides 

with a drop of DAPI mounting medium (Vector labs, Peterborough, UK) and 

coversliped. Constructs were viewed using an upright fluorescent microscope 

Olympus BX61. The distribution of the staining was noted for differences 

between the two culture conditions.  

 

2.12 	
  Protein	
  analysis	
  –ELISA	
  	
  
	
  
Enzyme Linked Immunosorbent assay (ELISA) kits were purchased from R&D 

systems (Abingdon, UK). The protocol was provided with each individual kit and 

was followed precisely, as recommended by the manufacturer. ELISA is a quick 

and reproducible method for quantifying proteins present in media, serum and 

tissue samples. ELISA kits contained one 96 well plate, protein standards, an 

antibody conjugate, a substrate solution, a wash buffer and a stop solution.  

Microplates were purchased pre-coated with the appropriate capture antibody 

for the protein tested (Figure 2.3).  

 

Each sample and control was assayed in duplicate and averaged to ensure the 

accuracy of the readings. Standards were diluted as directed in the protocol 

(slightly different between proteins tested) to obtain a standard curve of different 

protein dilutions. The standard curve was always run in parallel to the 

experimental samples and an equation in the form of y=ax+b (example shown 

in Figure 2.4) was obtained.  
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Figure 2.3. ELISA principles. a) Culture media containing the protein/analyte is 

added to the well, which binds to the capture antibody. Any excess analyte is 

washed away, allowing for the conjugated detection antibody to bind to the 

analyte, b) the analyte at this stage is already bound to the capture antibody on 

the plate, c) the substrate solution is added and changes the colour of the 

solution to blue. The stop solution turns the colour yellow, which is then read on 

a microplate reader.   

 

The exact quantity of each solution used and the incubation timings differed 

depending on the protein assayed. A detailed description of them can be found 

in table 2, which includes all proteins assayed in this study. The first step of the 

process involved pipetting the appropriate amount of assay diluent (table 2.1) 

into each well. Media samples and standards were then pipetted into the 96 

well plates carefully noting where each sample was placed. The plate was 

sealed with a plate sealer provided in the kit and incubated for 2 hours at room 

temperature.  At this stage the antibody that was coated onto the microplate 

bound any analyte present in the culture media. The excess liquid was removed 

TMB substrate 
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Yellow 
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Capture antibody 

HRP-conjugated detection antibody 

TMB substrate 
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c 
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and washed away thoroughly with the wash buffer. The washing stage was 

critical for the accuracy of the readings. The wells were washed three times and 

the plate was gently tapped onto paper towels to remove all excess liquid. HRP 

conjugated detection antibody was then added to each well, covered with a 

plate sealer and incubated at room temperature. Following the incubation, the 

plate was washed again thoroughly three times. The tetramethylbenzidine 

(TMB) substrate solution was added to the wells, leading to a change in colour 

from colourless to blue. The intensity of the colour was proportional to the 

amount of analyte (i.e. protein) present. The plate was incubated in the dark for 

30 minutes (20 minutes for VEGF) and the colour development was stopped 

with the addition of 50µl of stop solution to each well. The stop solution turned 

the colour from blue to yellow. The colour absorbance was measured using a 

plate reader at 450nm with wavelength correction set at 570nm.  

 

	
   Assay 
diluent 

Sample/ 
standard 

Conjugate Substrate 
solution 

Stop 
solution 

VEGF 50µl 200µl-2hrs 200µl-2hrs 200µl- 20mins 50µl 

PDGF 100µl 100µl-2hrs 200µl- 
1.5hrs 

200µl- 30mins 50µl 

bFGF 100µl 100µl-2hrs 200µl- 2hrs 200µl-30mins 50µl 

Ang-1 100µl 50µl-2hrs 200µl-2hrs 200µl - 30mins 50µl 

TGFβ1 50µl 50µl-2hrs 100µl-2hrs 100µl- 30mins 100µl 

Table 2.1.	
   Protein levels were quantified using ELISA. ELISA kits were 

purchased for VEGF (generic), PDGF, bFGF, TGFβ1 and Angiopoietin-1. The 

table shows the solution volumes and incubation timings used for each solution 

for the different proteins.  
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The readings for the standards were used to plot a standard curve and the 

equation was used to convert all sample readings into pg/ml. An example of a 

protein standard can be seen in Figure 2.4.  

 

 

	
  

Figure 2.4. Example of a PDGF standard curve. The equation was used to 

convert the readings into pg/ml for each experimental sample. 

	
  

2.13 Flow	
  cytometry	
  for	
  VEGFR1	
  and	
  VEGFR2	
  	
  
 

Flow cytometry is a laser-based technique that allows the analysis of various 

biological, chemical and physical characteristics of cells. It can be used to 

obtain qualitative and quantitative characteristics of cells. These characteristics 

can relate to the size of the cells, their complexity, DNA and RNA content and 

the presence of various membrane bound or intracellular proteins. Antibodies 

conjugated with fluorescent dyes can bind these proteins and can be used to 

quantify the percentage of cells that specifically express these proteins (Brown 

and Wittwer, 2000). The principles of flow cytometry can be seen in the 

schematic below, in Figure 2.5. The forward light scatter on the flow cytometer 
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provides information on the size of the cells while the side scatter gives 

information on the granularity of the cells.  

 

 

 

Figure 2.5. Schematic of the principles of flow cytometry. The well-mixed cell 

suspension passes through the cytometer where it intersects the argon-ion 

laser. Forward light scatter (FSC) detectors and side scatter light detectors 

(SSC) collect the signals and provide information on cell size and granularity 

respectively. Fluorescence emission detectors can be used to distinguish 

different cell populations. The signals are digitally converted for analysis on a 

computer screen (ADC- analogue digital converter) (Brown and Wittwer, 2000). 

 

Collagen hydrogels were set and cultured as described above. Flow cytometry 

analysis was used to quantify VEGF receptor levels in collagen vs collagen-

laminin constructs. Specifically, HUVEC only constructs with and without 

laminin and HBMSC-HUVEC co-culture constructs with and without laminin 

were analysed on day 2 and day 7.  
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Collagen constructs were digested using collagenase type IV (Sigma Aldrich, 

Dorset, UK) on a shaker, at 37°C for 30 minutes. Cells were centrifuged, placed 

in media and incubated at 37°C on a shaker for 4 hours to enable the 

regeneration of the receptors, as suggested by the manufacturer. 1x105 cells (in 

25µl) were function blocked using mouse IgG (R&D systems, Abingdon, UK) for 

15 minutes at room temperature. Cells were washed and stained separately 

with 10µl phycoerythrin (PE) conjugated anti-VEGFR1 or anti-VEGFR2 (R&D 

systems, Abingdon, UK), as recommended by the manufacturer and published 

in (Imoukhuede and Popel, 2012, 2011). Tubes were incubated on ice for 30 

minutes and then washed with stain buffer (PBS 0.5% BSA, EDTA) twice. Cells 

were re-suspended in 200µl stain buffer for flow cytometry analysis. In co-

cultures, 5µl FITC conjugated anti CD31 antibody (BD biosciences, Oxford, UK) 

was also used to distinguish endothelial cells from HBMSCs. Cells stained with 

an isotype were also used as controls to calculate the number of PE positive 

cells.  

 

Flow cytometry was performed using BD LSRII. Tubes were mixed well before 

they were placed in the flow cytometer and 5µl 7aminoactinomycin D 

(7AAD)(BD pharmigen, Oxford, UK) was added to exclude dead cells. At least 

10000 events were collected for each sample.  

 

For data analysis, the FlowJo software (version 10.0, TreeStar, USA) was used. 

To obtain the percentage of HUVECs positive for VEGFR1 and VEGFR2 

several steps were followed. Cells stained with an isotype control without 7AAD 

were first used to gate for live cells. This was done by plotting a graph of 7AAD 

(laser PE-Cy5-A) against the linear forward scatter (FSC-A) as shown in Figure 
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2.6a. The cells stained with the isotype and 7AAD were then used to quantify 

the percentage of live cells in the culture (Figure 2.6b). This was applied to all 

the data. For each different experimental parameter this was repeated with the 

appropriate cells.  

 

 
a                                                                b 
 
Figure 2.6. Gating for live cells. a) HUVECs stained with isotype only were 

placed in the cytometer and run. PE-Cy5-A without 7AAD was plotted against 

FSC, b) HUVECs stained with isotype and with 7AAD were placed in the 

machine and using the information from a) the percentage of live cells was 

obtained.  

 

Once the percentage of live cells in the cultures was calculated, the percentage 

of PE positive cells (VEGFR1 or VEGFR2) was quantified. A Side Scatter (SSC-

A) graph against PE-A (VEGFR1 or VEGFR2) was plotted using the isotype 

control cells. The PE positive area on the right of the graph, as shown in figure 

2.7a was gated and applied to the live cell populations of all samples.    
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For HUVEC only cultures this quantified the percentage of HUVECs that were 

both alive at the time of running the experiment and positive for either VEGFR1 

or VEGFR2. In co-cultures, the addition of an anti-CD31 antibody was 

necessary to distinguish the HUVECs from either the HBMSCs or HDFs. Cells 

this time were gated for FITC (Alexa Fluor 488) on the control isotype live cells, 

similar to the PE positive cells and applied to all the live cells that were also PE 

positive. Thus, as can be seen in the example in Figure 2.7b a high percentage 

of cells (93.6%) were CD31 positive. This suggested that the majority of PE 

positive cells were indeed HUVECs.  
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a                                                              b 
 

 
c                                                            d 
 
Figure 2.7. Gating for PE and CD31 positive cells. Examples of a) isotype 

control HUVEC only, gating PE positive cells, b) PE positive HUVECs in 

HUVEC only culture, c) isotype control in co-cultures used to gate for FITC 

(CD31) positive cells, d) FITC positive cells that were also PE positive. SSC-

side scatter  
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2.14 Number	
  of	
  VEGFR1	
  and	
  VEGFR2	
  per	
  cell	
  
	
  
Quantibrite PE beads were purchased from BD biosciences (Oxford, UK). Each 

tube contained pellets of beads, conjugated with four quantities of PE. They 

were used to convert the amount of fluorescence per cell to the number of 

receptors per cell (Figure 2.8). The beads were run on the flow cytometer 

separately from the experimental tubes, but using the same settings as those 

for cell data acquisition. 

 

A linear side to forward scatter plot was used for gating PE bead singlets 

(Figure 2.8a). A histogram of the bead singlets against PE was plotted, with the 

four peaks representing the four different PE quantities, as seen in Figure 2.8b. 

The four peaks were selected on the histogram and the fluorescence geometric 

means were calculated using FlowJo (version 10.0.6 CA, USA) (Figure 2.8c). 

By using the number of PE molecules/bead provided by the manufacturer, a 

calibration curve was plotted. The lot specific values for the Quantibrite beads 

purchased were: high=62336 molecules/bead, medium-high=23843 

molecules/bead, medium-low= 5359 and low=474 molecules/ bead. A curve 

was plotted for log molecules/bead vs log geometric means. The curve was 

fitted by linear regression y=ax+b and by solving for x= log10 (PEmolecules/cell) 

(eg. x= log10 (geometric mean+1.0381) /1.0033) the number of receptors bound 

per cell was calculated.  
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   a                                                             b 
 
 

 Geometric 
means 

Log 
geometric 
means 

PE 
molecules/bead 

Log 
molecules 

Low 44.3 1.646 474 2.675 
Med Low 509 2.706 5359 3.729 
Med 
high 

2223 3.346 23843 4.377 

High 5980 3.776 62336 4.794 
   c 

d 	
  

Figure 2.8. Flow cytometry of quantibrite beads used for calibration of 

fluorescence intensity. a) The quantibrite beads were analysed using a side vs 

forward scatter plot. Cells were selected and a histogram (b) was plotted to 

select the four peaks representing the 4 fluorescence quantities, c) the table 

shows an example of the geometric means calculated for the beads and d) 

shows an example of the standard curve obtained for the beads.   
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For the experimental samples, cells were gated as described above for live and 

PE positive cells. In co-cultures, CD31 positive cells that were also PE positive 

were selected. A side scatter vs forward scatter plot was graphed and cells 

were selected on the basis of their size and granularity. Cells between 50K and 

100K on the forward scatter and 50K-125K on the side scatter were selected. 

This limited the number of clusters of cells, but also limited the amount of debris 

or disintegrated cells analysed.  

 

The geometric means of the single cell population was then calculated using 

FlowJo. The standard curve equation was then used to convert the geometric 

means into the number of PE molecules per cell, i.e the number of receptors 

per cell.   

	
  

	
  
a                                                                 b   
 
Figure 2.9. Single cell selection. a) SSC vs FSC plot of the whole cell 

population, b) single cells were selected from the PE positive cell population (in 

co-cultures CD31/PE double positive cells). The single cell population was used 

to quantify the number of receptors per cell.  
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2.15 Human	
  Dermal	
  Microvascular	
  Endothelial	
  Cells	
  culture	
  	
  
 

Adult human dermal microvascular endothelial cells (HDMECs) were purchased 

from Invitrogen (Paisley, UK) at passage 1 and plated in four T25cm2 flasks at a 

density of 5x103 cells as recommended by the manufacturer. Flasks were pre-

treated with 3ml of attachment factor (Invitrogen, Paisley, UK) for 30 minutes at 

37°C, which was removed prior to plating the cells. The vial of cryopreserved 

cells was warmed for a few seconds in the palms of the hands, before the 

addition of 1ml of pre warmed Medium 131 (Invitrogen, UK) supplemented with 

microvascular growth supplement (Invitrogen, Paisley, UK) and 1% P/S. Cells 

were centrifuged, the supernatant removed and the cells were plated in the pre-

treated flasks with 5 ml of medium 131. For routine culture, cells were grown in 

T75cm2 pre-treated flasks and passaged in a 1:2 ratio. Cell passaging and 

counting was followed as for the HUVECs. Cells were used up to passage 6 for 

all experiments.  

2.16 	
  HDMECs	
  collagen	
  hydrogels	
  and	
  collagen-­‐laminin	
  hydrogels	
  	
  	
  
 

Collagen hydrogels were set using 100000 HDMECs as described for HUVECs. 

Laminin was also added in the collagen hydrogels and the morphology and 

aggregation of the cells was compared. Co-cultures with HBMSCs with and 

without laminin were also set using 200000 HBMSCs and 400000 HDMECs, 

which was established from HUVEC cultures as the best ratio for EC 

morphology. The morphology and aggregation of the cells was tested using 

CD31 immunofluorescence. 
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2.17 HDMEC	
  culture	
  image	
  analysis	
  	
  
	
  
HDMEC image analysis was done using the same criteria used for HUVEC only 

cultures and co-cultures (section 2.10). 

2.18 	
  Collagen	
  hydrogel	
  compression	
  
 

Collagen hydrogels were prepared using the same basic method as described 

in 2.2. Three million HBMSCs were seeded in a 5ml final volume collagen 

hydrogel and cast in one of the two compartments of a rectangular mould, 

placed on a glass slide. Each chamber of the mould measured 33x22x10 mm3. 

Following the 30-minute gelation stage, (at room temperature) constructs were 

compressed to expel 90% of the water, resulting in a compacted,  ~11% 

collagen density construct (Brown et al 2005). The process of compression 

involved placing the collagen hydrogel onto three layers of Whatman’s filter 

paper (grade 1, 150mm diameter) and a nylon mesh.  Another nylon mesh was 

placed on top of the gel to protect it from the mould and glass slide (120grams) 

which were placed on top of the collagen construct in order to speed up the 

process of compression. 

 
a 

 
b 

Figure 2.10. Collagen hydrogels were set in a) stainless steel moulds and b) 

compressed into flat sheets using the weight of the glass slide and stainless 

steel mould.   

1cm	
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Following a 5-minute compression, the glass slide and mould were removed. 

The compressed sheet of collagen measuring ~100µm was spiralled on its short 

axis using a sterile scalpel blade, to form a tightly spiralled cylindrical rod 

(Figure 2.11). 

	
  
 

a  

             

b 

Figure 2.11. A schematic of the process of collagen hydrogel compression and 

spiralling. a) Following the 30-minute gelation, the constructs were placed on 

filter paper, sandwiched between two nylon meshes and compressed using the 

weight of the glass slide and stainless steel mould, b) the resulting flat sheet 

was then spiralled on its short axis. Spiralled constructs measured ~2.3mm in 

diameter and 21mm length.  

	
  

2.19 Segregated	
  co-­‐cultures	
  of	
  HBMSCs	
  and	
  HUVECs	
  	
  

Triplicate samples of compressed, spiralled HBMSC constructs were set.  

Constructs were cut into 4 equal pieces and placed in a mould where freshly 

neutralised collagen hydrogel covered the spiral and the mould.  The mould 

used was 38x30x4 mm in size, (internal dimensions 30x14x4 mm), with dividers 

Filter paper 

Nylon mesh 
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allowing for compartmentalisation of different cell seeded collagen hydrogels 

(figure 2.12a).   

 

HBMSC constructs were split into four groups: i) the spiral was placed in a 

hydrogel with or without HUVECs on the same day it was compressed and 

spiralled (day 0) ii) the construct was snap-frozen in liquid nitrogen on day 0 

and then placed in the hydrogel, iii) the HBMSC spiral was cultured for a week 

and then placed in a hydrogel or iv) pre-cultured for a week, snap frozen in 

liquid nitrogen and then placed in the hydrogel with or without HUVECs.  

 

HBMSC spirals were placed in acellular hydrogels to test the presence of 

angiogenic growth factors in the area of the spiral versus the acellular area. In 

other constructs, HUVECs were seeded in the hydrogels and were only present 

in the area of the hydrogel away from the spiral (Figure 2.12). Hydrogels were 

cultured at 37°C 5% CO2, 21%O2 for 1 week. 

 

Acellular hydrogels were used for protein analysis. At the end of 1-week culture 

the constructs were cut in two parts: region 1 was where the HBMSC construct 

was present, while region 2 was the acellular part (Figure 2.12). The gels were 

snap frozen and stored at -80°C. Constructs were then powdered using a pestle 

and mortar to release the protein trapped within the matrix. The medium used to 

culture the constructs was also kept for ELISA analysis of VEGF, PDGF and 

bFGF. Hydrogels with HUVECs were fixed in 10% NBF for CD31 

immunofluorescence staining and the medium was kept at -80°C for ELISA 

analysis.  
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2.20 Image	
  analysis	
  	
  

Whole mounts of collagen constructs were stained for CD31 and viewed using 

the upright fluorescent microscope. Images were captured and analysed for 

HUVEC morphology using the criteria used for the HUVEC only constructs and 

co-culture constructs (section 2.10).    

 

	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  

	
  
	
  
	
  
	
  

	
  

Figure 2.12. Schematic of the experimental setup. Moulds with dividers (a) 

were used to segregate the two cell types. The divider was removed within a 

minute of the fresh collagen setting to ensure the integration of the two 

hydrogels but to avoid mixing the HUVECs and the HBMSC spiral. For protein 

analysis regions 1 and 2 as shown above were analysed in addition to the 

media of HBMSC only constructs and HBMSC-HUVEC constructs. HUVECs 

were seeded in the hydrogel separate from the HBMSC spiral, as shown above, 

in region 2.  
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2.21 Effect	
  of	
  oxygen	
  concentration	
  on	
  HUVEC	
  morphology	
  	
  
 

HBMSC-HUVEC (2:4 ratio) collagen-laminin hydrogels were prepared as 

described in 2.6 and 2.7. The constructs were placed in either normal 

atmospheric conditions in a humidified incubator set at 37°C, 5% CO2, 21% O2 

or in an incubator (SANYO) set at 37°C, 5% CO2, 5% O2 (the oxygen was 

lowered by pumping nitrogen into the incubator to displace oxygen). Cells were 

cultured for 7 days, fixed and stained for CD31. CD31 images were used for 

analysis of HUVEC morphology and aggregation, as described in section 2.10. 

The supernatant was stored at -80°C for ELISA analysis of VEGF, PDGF, 

Angiopoietin-1 and TGFβ1. HBMSC only cultures served as controls for protein 

analysis, as did HUVEC only cultures.  

2.22 	
  Human	
  dermal	
  fibroblast	
  culture	
  
 

Adult human dermal fibroblasts (HDFs) were isolated from healthy adult skin 

discarded following reconstructive surgery. The skin was washed, de-fatted and 

dissected into small pieces. The tissue was digested in DMEM composed of 1% 

P/S, 5% FCS and type I collagenase (Worthington Biochemical Corporation, 

New Jersey, USA) for 3 hours at 37°C on a shaker. The supernatant was 

pipetted in a sterile universal tube and centrifuged for 5 minutes at 2000rpm. 

The cell pellet was obtained and re-suspended in fresh DMEM with 10% FCS, 

1%P/S and plated in a T225 flask. Cells were monitored for attachment and 

confluence until they reached 80% confluence. Media changes occurred every 

3-4 days.  Cells up to passage 7 were used in all experiments and cell 

passaging was done using the same method described for HBMSCs.  
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2.23 HDF:	
  HUVEC	
  co-­‐cultures	
  	
  
 

HDF: HUVEC collagen hydrogels with added laminin were set in 12 well plates 

as described above. 200000 HDFs and 400000 HUVECs /1 ml hydrogel were 

used in all experiments. HDF only hydrogels were also set for control protein 

analysis. Constructs were cultured in a normal humidified incubator set at 37°C, 

5% CO2 and 21%O2 or an incubator set at 37°C, 5% CO2 and 5% O2. 

HUVEC morphology and aggregation was tested with CD31 

immunofluorescence and media samples were used for protein analysis using 

ELISA kits for VEGF, PDGF, Angiopoietin-1 and TGFβ1.  

	
  

2.24 Flow	
  cytometry	
  for	
  VEGFR1	
  and	
  VEGFR2	
  	
  

VEGF receptors were quantified using flow cytometry in collagen hydrogels 

(with laminin) cultured in normoxia and physiological hypoxia on day 2. HUVEC 

only cultures and HBMSC-HUVEC and HDF-HUVEC co-cultures, cultured at 

20% vs 5% O2 were quantified. The methods described above (section 2.13) 

were used to digest hydrogels and stain the cells. The number of receptors per 

cell was also calculated by obtaining a new standard curve for the quantibrite 

beads, as described above.  

	
  

2.25 Statistical	
  analysis	
  	
  

Statistical analysis was done using Prism software version 6 (Graph Pad). 

Statistical significance was set at 0.05. When two data groups only were 

analysed a t-test was used to test for differences (eg. HUVEC cell height and 

2D surface area of cell morphologies). Differences between cell morphologies, 

protein levels, and flow cytometry analysis where there were multiple groups, a 

one-way analysis of variance (ANOVA) or a Kruskal-Wallis test was used. Post-
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hoc tests were used to identify which group comparisons had significant 

differences, using either a post-hoc Bonferroni test or a Tukey’s test.  
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3 Results	
  
 

3.1 Endothelial	
  cell	
  morphology	
  in	
  3D	
  collagen	
  hydrogels	
  

These initial experiments were designed to test HUVEC response when 

cultured in collagen hydrogels in the absence of any supplementary cells or 

growth factors. This is an area that lacks in research as most researchers focus 

on driving EC tubulogenesis with the addition of various factors.  

 

The hypothesis under test was that HUVECs attach and spread throughout the 

collagen hydrogels, without forming any end-to-end networks. Cell seeded 

collagen hydrogels were cultured for 1 and 2 weeks as described in the 

methods (2.2, 2.3). Constructs were stained using CD31 immunofluorescence 

as described in section 2.9 and HUVEC morphology and aggregation were 

tested using fluorescence microscopy as described in (2.10). Results showed a 

change in cell morphology with increasing culture time. Three different HUVEC 

morphologies were identified in these cultures: 1) multipolar, 2) flattened, and 3) 

cobblestone (Figure 3.1, cells shown with arrows).  

 

Multipolar cells were spindle-like cells with multiple cell processes extending 

from them. Flattened cells were usually polygonal in shape, with faint CD31 

staining in their cytoplasm. Cobblestone cells were smaller cells than the 

flattened, with more intense cell membrane CD31 staining and usually 

aggregated in groups. A major component, which defined these different 

morphologies, was the 2D size of the cells as described in the methods 2.10, 

which was significantly different (p<0.01) between the flattened (1600µm2) and 

cobblestone cells (345µm2) (as seen in Figure 3.1 d, e, f). The height or 
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thickness of the flattened (7.16 µm) and cobblestone (7.57µm) cells was 

quantified using confocal microscopy as described in 2.10 but showed no 

statistical difference in the z plane between the two cell morphologies (Figure 

3.3c).  

 

a HUVEC 7 days b HUVEC 14 days 

  c HUVEC multipolar d HUVEC flattened 

  e HUVEC cobblestone  f

  

 

Figure 3.1. HUVEC morphologies in collagen constructs. a,b) HUVEC 

morphologies on day 7(a) and day 14 (b), c,d,e higher magnification of HUVEC 

morphologies: c- multipolar (arrow), d-flattened (two arrows) and e- cobblestone 

(arrowhead). CD31- green, DAPI-blue, f) Graph shows the 2D size of the 

flattened and cobblestone cell morphologies on day 14, error bars- SD, *p<0.05.  
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The cobblestone morphology of ECs was similar to the morphology commonly 

described when culturing and expanding endothelial cells on conventional 2D 

surfaces (Grant et al., 1990). The flattened morphology was an intermediate 

morphology between the multipolar and cobblestone morphologies as 

evidenced by the increasing number of flattened cells with culture time. The 

progression from multipolar to flattened to cobblestone morphology was mainly 

time dependent (Figure 3.2).  Increasing the culture time of the HUVEC only 

collagen hydrogels from 1 to 2 weeks resulted in a significant increase (p<0.05) 

in the number of flattened cells (from ~50% to ~68%) within the cultures, with 

the striking absence of the multipolar cells and presence of cobblestone cells 

(Figure 3.2). 

 

 

Figure 3.2. HUVEC morphologies on day 7 and 14 in collagen hydrogels. Cells 

were stained for CD31 and the percentage of multipolar, flattened and 

cobblestone morphologies were quantified. *p<0.05 Note: disappearance of 

multipolar cell morphology. Error bars represent SD.  
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As culture time increased, HUVEC migration within the collagen hydrogels was 

evident, with the majority of the cells at the end of the two-week culture period 

found on the ventral surface of the scaffold. Cell migration was initially seen 

using a normal upright microscope and confirmed using confocal microscopy 

(Figure 3.3). As cells migrated to the top of the ~3mm deep scaffold a 

cobblestone-flattened cell sheet in 3D formed (Figure 3.1,Figure 3.3). This cell 

sheet was mainly found on the 33µm ventral aspect of the constructs (Figure 

3.3). Z stack images of HUVEC only collagen constructs on day 7 showed cell 

nuclei interspersed throughout the hydrogel (Figure 3.3a). In contrast, on day 

14 cell nuclei were primarily present on the ventral surface of the scaffold 

(Figure 3.3b).  

 

 

a  

c 
b  

Figure 3.3. Confocal micrographs of HUVEC only cultures in collagen 

hydrogels. a) 7 days, cells are interspersed within the matrix, b) after 14 days, 

cells aggregate on the ventral surface of the construct. Images depth 33µm (of 

a ~3mm gel), c) HUVEC height measured using confocal microscopy- ns=not 

significant, error bars are SD.  

 

HUVEC migration to the surface of the collagen constructs suggests a cell 

response mimicking the “wrapping” process found in development (Lubarsky 
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and Krasnow, 2003). During “cell wrapping” ECs migrate outwards from a cell 

sheet to form a tubular structure. This will be further discussed in the discussion 

and is an area that will require future investigation.  

 

Results confirmed the initial hypothesis that HUVECs attach and spread within 

the collagen hydrogels. In addition, as hypothesised, cells did not aggregate 

into end-to-end networks but formed cobblestone aggregates on the ventral 

aspect of the collagen hydrogels. This HUVEC response within 3D collagen 

hydrogels was used as a baseline to test the effect of cell-cell and cell matrix 

interactions.  

 

3.2 The	
  effect	
  of	
  PMA	
  on	
  HUVEC	
  morphology	
  	
  

Phorbol Myristate Acetate (PMA) is widely used in studies testing angiogenesis 

and vasculogenesis as it promotes EC tube/network formation and EC invasion 

within 3D scaffolds (Bayless and Davis, 2003; Davis and Camarillo, 1996; 

Montesano and Orci, 1987). PMA was added in HUVEC only cultures to test the 

hypothesis that PMA promotes end-to-end network formation. PMA was added 

in the collagen and overlying media of HUVEC only cultures as described in the 

methods (2.4). Due to the varying amounts of PMA used in literature, three 

different concentrations (10ng/ml, 20ng/ml and 50ng/ml) were tested. 

Constructs were cultured for up to 14 days and at 48 hours, 7 days and 14 days 

CD31 immunofluorescence was used to test cell morphology and aggregation.  

 

HUVECs aggregated into end-to-end networks by 48hours in culture, proving 

the hypothesis (Figure 3.4). An early time point was chosen as most studies 

testing PMA have shown that the effect of PMA on EC tubulogenesis is very 
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rapid (Bayless and Davis, 2003; Davis et al., 2000; Montesano and Orci, 1987). 

There were no flattened or cobblestone cells in any of the cultures.  

 

 

 
a  

  

 
b 

 
c 

Figure 3.4. HUVEC only cultures 

with PMA. Images show CD31 

stained HUVECs on day 7 with a) 

10ng/ml, b) 20ng/ml and c) 50ng/ml. 

The arrows show the end-to-end 

network aggregation.  

There were significant differences (p<0.05) in network lengths depending on the 

PMA concentration as shown in Figure 3.5. In the first 48 hours the shortest 

networks (86µm length) formed in the 10ng/ml PMA concentration, which were 

significantly shorter (p<0.05) than both the 20ng/ml (134µm length) and 50ng/ml 

(150µm length) networks. There was no difference in network lengths between 

the 20ng/ml and 50ng/ml concentrations. On day 7 there was also a significant 

difference (p<0.05) in the mean length of end-to-end networks that formed 

between the lowest concentration- 10ng/ml (138µm) and both 20ng/ml (190µm) 

and 50ng/ml (188µm). There was no difference between 20ng/ml networks and 

50ng/ml networks. On day 14 network lengths did not significantly increase in 

any of the three concentrations. On the contrary, in the 20ng/ml constructs 

100	
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100	
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network lengths decreased from 190µm to 161µm. In the 10ng/ml and the 

50ng/ml constructs there were small non-significant increases (p>0.05) in 

network lengths from 138µm to 147µm and from 188µm to 202µm respectively. 

 

Figure 3.5. Mean length of networks with the three concentrations of PMA 

tested at 48hours, 7 days and 14 days in culture. *p<0.05   

	
  
These results proved the hypothesis that PMA promotes end-to-end network 

formation when added to HUVEC cultures. Results showed that networks 

completely formed by day 7 and peaked at their maximum lengths for all three 

PMA concentrations at this time point. The results also showed that there was 

no difference between the 20ng/ml and 50ng/ml constructs, while both 

promoted significantly greater network aggregation compared to the lowest 

concentration of 10ng/ml. Results on day 14 suggest that culturing constructs 

beyond day 7 does not promote further network aggregation. In fact as shown 
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by the 20ng/ml results further culture can cause disintegration of the networks 

and results in smaller networks than earlier time points. 

 

The average number of nuclei visible within networks was also quantified as 

seen in Figure 3.6. Results were in agreement with the network lengths. Results 

at 48 hours showed that there were significantly fewer nuclei (p<0.05) in the 

10ng/ml constructs (~4) compared to the 50ng/ml (~7). There was no difference 

between the 20ng/ml constructs (~5) and 10ng/ml or 50ng/ml. On day 7 there 

were significantly (p<0.05) fewer nuclei per network in the 10ng/ml constructs 

(7) and the 20ng/ml (11) and 50ng/ml (10). On day 14 there was no difference 

in the number of visible nuclei per network between any of the PMA 

concentrations (around 8 nuclei per network). Results supported findings with 

network lengths and showed that the optimum network aggregation occurred by 

day 7. 

 

Figure 3.6. The number of nuclei per network was quantified. Nuclei were 

counted in constructs with 10ng/ml, 20ng/ml and 50ng/ml of added PMA at 

48hours, 7 days and 14 days. *p<0.05 
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Experiments with PMA proved its ability to drive HUVEC end-to-end network 

formation. These findings were used as a comparator to the following 

experiments, which tested the effect of cell-matrix interactions and cell-cell 

interactions on HUVEC morphology and aggregation in the absence of PMA.  

	
  
	
  

3.3 HUVEC	
  morphology	
  in	
  co-­‐cultures	
  	
  

HUVEC morphology and aggregation was tested in collagen hydrogels with and 

without PMA as described in the previous sections and the results were used as 

a standard for HUVEC behaviour in collagen hydrogels. The hypothesis under 

test was that co-cultures with HBMSCs would promote HUVEC end-to-end 

network aggregation due to HBMSC released angiogenic growth factors. This 

hypothesis was based on previous findings by this group and others showing 

that HBMSCs release various angiogenic growth factors (Cheema et al., 2010; 

Kachgal and Putnam, 2011).  

 

Collagen hydrogels were seeded with varying HBMSC and HUVEC numbers to 

test how co-cultures affect HUVEC morphology and aggregation. Specifically, 

200000 HBMSCs/ml were used in all co-cultures, while the number of HUVECs 

was varied to test the effect on EC morphology. HUVECs were used in co-

cultures at 100000/ml (2:1 HMBSCs:HUVECs), 200000/ml (2:2), 300000/ml 

(2:3) and 400000 cells/ml (2:4). Cells in co-cultures were cultured for 7 days. 

HUVEC morphology and aggregation were tested using CD31 

immunofluorescence as described in the methods (2.9). CD31 positive cells 

were HUVECs, while HBMSCs were only stained with DAPI for cell nuclei. This 

was confirmed by staining HBMSC only cultures, using the same CD31 protocol 

with no positive cells observed. The percentages of multipolar, flattened and 
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cobblestone HUVECs were quantified, similar to that described for HUVEC only 

cultures in 3.1. The overlying medium and collagen hydrogels were also kept for 

protein analysis using ELISA.  

 

Addition of HBMSCs to the HUVEC cultures resulted in a reduction in the 

number of single multipolar cells and a progression towards the increased 

aggregation of the ECs towards the cobblestone morphology. The presence of 

HBMSCs within the cultures resulted in the formation of the cobblestone 

morphology within 7 days. This was faster than HUVEC only cultures where 

limited cobblestone formation was found on day 7 (Figure 3.2). This however, 

could be due to the higher cell density in co-cultures where both HUVECs and 

HBMSCs were present. The combined presence of both cell types would result 

in increased cell- cell contact due to the proximity of the cells. To test the 

hypothesis that the presence of a greater number of cells was sufficient to 

induce a change in HUVEC morphology and aggregation, a higher number of 

HUVECs was cultured in single cultures. 400000 HUVECs were cultured in 

single cultures (equal to the highest number of HUVECs used in the co-

cultures) in collagen hydrogels.  While the percentages of the 3 different cell 

morphologies (multipolar, flattened and cobblestone) were not quantified, there 

were no multipolar cells visible and cells were mainly flattened as seen in Figure 

3.7. On the contrary, in the initial 100000 HUVECs/ml cultures ~50% of the cells 

were multipolar on day 7 and ~50% were flattened. The absence of multipolar 

cells in these cultures with a higher number of HUVECs suggests that the 

number of cells present had a substantial effect on the speed of change in cell 

morphology, from multipolar to flattened, to cobblestone morphologies.  
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Despite the fact that a higher number of HUVECs can promote a quicker 

change towards the flattened morphology, cobblestone aggregates were found 

throughout the collagen hydrogels. ECs did not specifically aggregate on the 

ventral surface of the collagen constructs as found in HUVEC only cultures. 

Evidence of this, can be seen in figure 3.8. with cells seen in different focal 

planes. HUVECs migrated to the ventral surface of the collagen constructs in 

HUVEC only cultures as cell morphology changed from flattened to cobblestone. 

The absence of evident migration of HUVECs to the ventral side of the collagen 

constructs in co-cultures indicates that the presence of HBMSCs and potentially 

the growth factors released by them (as shown by the VEGF data shown in the 

next section) limit this migratory phenomenon. This could be as HUVECs try to 

maintain close proximity to growth factors produced by the HBMSCs or obtain 

cell contact with them as well as other HUVECs.  

 

Figure 3.7.	
  Phalloidin staining in 

HUVEC only cultures on day 7. 400 

000 cells/ml were seeded in collagen 

only cultures to test the effect of cell 

number on cell migration and 

morphology. Cells started migrating 

to the top by day 7. 

 

The percentages of the multipolar, flattened and cobblestone morphologies 

were quantified in the different co-culture ratios to test the effect of HBMSCs on 

HUVEC aggregation and morphology. No significant differences between the 4 

ratios tested were found, mainly due to the high variance observed in the 
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cultures. Multipolar cells were only present in the 2:1 and 2:2 ratios, ~25% and 

~5% respectively. The highest percentage of flattened cells was found in the 2:1 

ratio, ~58%, while the other ratios had similar values close to 25%. The 2:1 ratio 

had the lowest cobblestone morphology (~30%), while high percentages of ~ 

70-80% were found in the 2:2, 2:3, 2:4 ratios (Figure 3.8). Therefore, the 

greatest HUVEC aggregation was found in these higher HUVEC number 

cultures. 

 

 HUVECs did not aggregate into end-to-end networks in any of the co-culture 

conditions in collagen hydrogels, disproving the hypothesis. In contrast, 

HUVECs aggregated into cobblestone aggregates. The hypothesis that 

HBMSCs released angiogenic growth factors was tested in the following 

experiments, using VEGF as an exemplar factor.  

 

 

 

 

Figure 3.8. HUVEC morphology in HBMSC-HUVEC co-cultures. a-d: CD31 

immunofluorescence (green) of different cell ratios tested. HBMSCs were 

200000/ml and HUVECs increased from 100000/ml (a) to 400000/ml (d). 

Double arrows show flattened cells and arrowheads point to cobblestone 

aggregates. HBMSCs were CD31- and therefore all CD31+ cells were assumed 

HUVECs. Nuclei were stained blue with DAPI. e) Percentage of EC (CD31+) 

morphologies in mixed co-cultures with HBMSCs. Cell morphologies were 

categorized into three morphologies and the percentages were calculated for 

different cell ratios tested. Error bars- SEM, **p<0.01 
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3.4 VEGF	
  protein	
  levels	
  	
  

During angiogenesis and vasculogenesis in vivo multiple growth factors guide 

ECs and promote new vessel formation. Despite the multitude of growth factors 

involved, VEGF is still considered to have a significant role, especially during 

the early stages (Eichmann and Simons, 2012). Based on previous findings 

from this group and others (Cheema et al., 2010; Kolbe et al., 2011) the 

hypothesis under test was that HBMSCs would be releasing angiogenic 

proteins, with VEGF tested as an exemplar factor.  

 

VEGF was quantified using ELISA both within the collagen co-culture constructs 

and in the surrounding media (as described in 2.12). VEGF levels were also 

quantified in HUVEC only cultures and HBMSC only cultures, once the optimum 

culture conditions for HUVEC aggregation were established and are described 

in section 3.9. 

 

Results showed that approximately 4 times more VEGF diffused into the 

surrounding media (1360-2000pg/ml) than retained within the matrix (202-

517pg/ml). As collagen hydrogels have high water content, diffusion of such 

factors is quick and efficient. VEGF levels within the collagen hydrogels were 

not different between different cell ratios. In the media, there was significantly 

more (p<0.05) VEGF in the 2:3 and 2:4 ratio compared to the 2:2 ratio. Taking 

into account both the high cobblestone aggregation of the HUVECs and the 

presence of higher VEGF levels in the 2:4 ratio, this ratio was selected for all 

future studies. It allowed for both optimum cell-cell contact and high VEGF 

protein levels released by HBMSCs (Figure 3.9).  

 



	
   91	
  

VEGF results proved the hypothesis that HBMSCs would be releasing 

angiogenic growth factors. Despite the presence of VEGF, HUVECs aggregated 

into cobblestone, similar to HUVEC only cultures. This suggested that HBMSC 

presence was not sufficient to induce a significant change in cell aggregation. 

The next experiments focused on the effect of cell-matrix interactions on 

HUVEC morphology and aggregation, both in the presence and absence of 

HBMSCs.  

 

 

Figure 3.9. VEGF levels in mixed co-cultures in collagen only constructs. VEGF 

was quantified in the constructs and media samples of mixed co-cultures at day 

7 of culture. Approximately 4 times more of the factors diffused in the 

surrounding media than retained within the constructs. Error bars-SD 

	
  

3.5 Effect	
  of	
  basement	
  membrane	
  proteins	
  on	
  EC	
  aggregation	
  

	
  	
  
Endothelial cells are usually in contact with basement membrane proteins in 

vivo, which include laminin and collagen type IV (Francis et al., 2008; Grant et 

al., 1990). These proteins have also been found to affect EC morphology in 

different experimental models in vitro, by promoting EC migration and capillary 
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like structure formation (Kubota et al., 1988; Nicosia et al., 1994). Collagen IV or 

laminin (50µg/ml) were added in collagen I hydrogels to test HUVEC 

aggregation and morphology in their presence as described in the methods 2.7.  

 

Firstly, the hypothesis tested was that there would be no cobblestone 

aggregation in HUVEC only cultures, in contrast to the cobblestone sheet that 

formed in collagen only cultures. In addition, experiments tested the hypothesis 

that the presence of basement membrane proteins and VEGF releasing 

HBMSCs would promote HUVEC end-to-end network aggregation.  

 

In HUVEC only cultures, HUVEC morphological progression and cell fusion 

changed in the presence of laminin (Figure 3.10). At 7 days, ~90% of cells 

showed the multipolar morphology and ~10% showed the flattened morphology, 

in contrast to collagen only hydrogels where 55% were multipolar and 45% 

were flattened cells. Increasing culture time to 2 weeks resulted in an increase 

in the number of flattened cells to ~45% of cells and a decrease in multipolar 

cells to ~55% (Figure 3.10). There were no cobblestone cells present at either 7 

or 14 days in laminin cultures, in contrast to collagen only hydrogels in which 

~20% cells were cobblestone at 2 weeks. These findings proved the first 

hypothesis and showed that the presence of laminin alters EC morphology and 

aggregation compared to culture within a collagen I only scaffold.  

In co-cultures, the 2:4 ratio (HBMSC:HUVEC) ratio was chosen based on the 

results of co-cultures with collagen only (Figure 3.8,Figure 3.9). These 

experiments tested the effect of both laminin and HBMSCs on HUVEC 

morphology. Results showed that HUVECs aggregated into end-to-end 

networks as opposed to the cobblestone aggregation (Figure 3.10,Figure 
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3.11,Figure 3.12) and there were no cobblestone aggregates in collagen-

laminin co-cultures (Figure 3.10). This confirmed the hypothesis that in the 

presence of both laminin and HBMSCs, HUVECs aggregate into end-to-end 

networks. 

 

 

Figure 3.10. HUVEC morphologies in collagen-laminin constructs. The 

percentage of CD31+ cell morphologies in HUVEC only cultures on days 7 and 

14 and HBMSC-HUVEC cultures on day 7. The percentage of multipolar, 

flattened, cobblestone and networks was quantified. *p<0.05, error bars- SD 
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a  b  

Figure 3.11. Confocal micrograph images of HBMSC HUVEC co-cultures in 

collagen laminin constructs (Maximum projections of z stack images). HUVEC 

aggregated into end-to-end networks (arrows), CD31-green, DAPI blue. a) x20, 

b) x40 magnification of different areas of the constructs. Scale bar= 50µm  

 

The effect of collagen type IV, as a different basement membrane protein, on 

HUVEC morphology was also tested (Figure 3.12a). Addition of collagen type 

IV to collagen I showed that laminin is a more potent stimulus for network 

formation (Figure 3.12a,b,table). On average, networks with collagen IV were 

around 74µm in length, (40-120µm) whereas with laminin approximately 95µm 

(50-250µm length) (p<0.05) (Figure 3.12-table). There were also fewer 

networks per hydrogel (experimental observation) in the collagen I and IV 

hydrogels. The data suggested that laminin induced a faster and greater 

change in EC aggregation compared to collagen IV. 

 

In summary, HUVECs aggregated into end-to-end networks in cultures 

containing laminin, only when HBMSCs were present. These findings showed 

that both HBMSCs and laminin were necessary to promote end-to-end 

network aggregation. As shown by the co-culture results with collagen only, 
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HBMSCs released VEGF. It was therefore hypothesised that VEGF released by 

HBMSCs promoted HUVEC aggregation into end-to-end networks only in the 

presence of laminin. VEGF protein levels were tested in laminin co-cultures and 

compared to both collagen only co-cultures and to baseline levels produced by 

HBMSCs when cultured alone (as shown in the following sections). Before 

testing VEGF levels, the importance of cell attachment to laminin for HUVEC 

end-to-end network aggregation was tested using α6 integrin antibodies. 

 

a  b  

 

Figure 3.12. Endothelial cell networks in HBMSC-HUVEC co-cultures with 

basement membrane proteins. Collagen IV (a) or laminin (b) were added to the 

cultures and the length of the networks (arrows), the number of nuclei per 

network and the average area occupied by the networks were quantified (table). 

Scale bar= 50 µm 

Endothelial cell networks 

 Average length 
(µm) 

Average 
number of 
nuclei 

Average area 
occupied (µm2) 

Collagen I + 
Collagen IV 

74.84 ± 21.14  3.23 ± 1.09 245.29 ± 63.62 

Collagen I + 
laminin 

95.85 ± 48.78 5.18 ± 2.93 822.16 ± 562.5 
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3.6 The	
  effect	
  of	
  a6	
  integrin	
  blocking	
  	
  

Integrins are receptors that attach cells to the ECM. Their actions are thought to 

regulate various cell processes and are critical during angiogenesis and 

vasculogenesis (Carmeliet and Jain 2011). Each integrin heterodimer is found 

on different cell types and it conveys information between different matrix 

components.  

 

Laminin experiments showed that the presence of laminin had a significant 

effect on EC morphology and aggregation. Integrins α6β1 and α6β4 are 

specifically involved in the attachment of ECs to laminin (Primo et al 2010). The 

hypothesis under test was that blocking α6 integrin would block cell attachment 

to laminin and revert HUVEC morphology and aggregation back to the 

morphology found in collagen only cultures. An integrin α6 antibody was chosen 

and added to collagen- laminin hydrogels to inhibit EC attachment to laminin, 

both in HUVEC only cultures and co-cultures, as described in section 2.8. After 

a week in culture, CD31 immunofluorescence was used to test EC morphology.  

 

Blocking α6 integrin resulted in 46% of the ECs in the HUVEC only cultures 

showing the “flattened” morphology (Figure 3.13a), similar to the percentages 

(55.6%) seen in collagen only cultures. Therefore, the morphology of the cells 

reverted back to the morphology observed in collagen only hydrogel cultures 

(Figure 3.1,Figure 3.13). Cells in co-cultures aggregated in the cobblestone 

morphology as seen in figure 3.13c, similar to results with collagen only co-

cultures. Although the percentage of the different morphologies was not 

quantified, there was no evidence of end-to-end network aggregation as found 

in collagen-laminin co-cultures (Figure 3.13).   
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 a 

b  

c 
 

Figure 3.13. HUVEC morphologies in collagen-laminin cultures with added anti-

integrin antibody. a) HUVEC morphologies in HUVEC only cultures and co-

cultures with anti-integrin antibody, (error bars- SD) b) image showing HUVEC 

morphology in HUVEC only cultures, the arrows show a flattened cell c) 

cobblestone aggregates shown with an arrowhead in co-cultures with HBMSCs 

with anti-integrin antibody.  

	
  
	
  
Results here showed that blocking HUVEC attachment to laminin through a6 

integrin essentially reverted HUVEC morphology back to collagen only 

morphology and aggregation. This proved the hypothesis that cell attachment to 

laminin was critical for promoting HUVEC end-to-end network formation in co-

cultures. The effects of laminin on HUVEC morphology and behaviour were 
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further investigated by testing VE-cadherin distribution, VEGF and PDGF 

release by the cells.  

	
  

3.7 VE-­‐cadherin	
  expression	
  	
  

VE-cadherin is one of the adherens junctions found on ECs. It interacts with the 

cytoskeleton of the cells and controls cell migration, proliferation and 

vasculogenesis, especially during development (Calera et al., 2004). The 

hypothesis under test was that VE-cadherin expression on HUVECs in end-to-

end networks would be more prominent than on HUVECs in cobblestone 

aggregates.  

 

VE-cadherin staining was used in co-cultures with HUVECs and HBMSCs in 

collagen hydrogels cultured with or without laminin after a week in culture. 

Immunofluorescence staining showed differences in the distribution of the 

staining on HUVECs in constructs with or without laminin. When laminin was 

present, staining was mainly present on the HUVEC membrane. Where laminin 

was absent staining was distributed throughout the cytoplasm of the cells 

(Figure 3.14).  

 

These differences in VE-cadherin distribution suggest differences in HUVEC-

HUVEC communication in these cultures. This shows that where HUVECs 

aggregated into cobblestone in collagen only co-cultures, cells did not form 

strong HUVEC-to-HUVEC junctions, at least by 7 days in culture. On the 

contrary, HUVECs in co-cultures with added laminin show clear membrane 

localisation, and stronger HUVEC-to-HUVEC junctions. These findings proved 
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the hypothesis that VE-cadherin expression would be more prominent in co-

cultures with laminin, where HUVECs showed end-to-end cell attachment.  

 

Higher VE-cadherin membrane localisation is critical for initiating cell-signaling 

cascades and can have a significant effect on cell behaviour. VE-cadherin is 

also closely linked to growth factor receptors such as VEGFR2 (Calera et al 

2004, Scott and Mellor 2009). Therefore VEGF release and VEGF receptor 

expression were quantified to test a link between these factors and VE-cadherin 

distribution. 

 

 

Figure 3.14. VE-cadherin immunofluorescence images. Immunofluorescence of 

a) HBMSC-HUVEC co-cultures in collagen only hydrogels, b) HMBSC-HUVEC 

co-cultures in collagen-laminin hydrogels. VE-cadherin- green, DAPI-blue, scale 

bar= 50µm  

 

3.8 PDGF	
  levels	
  

PDGF is a growth factor involved in the neovascularisation process. It is mainly 

released by ECs to attract cells such as pericytes and smooth muscle cells for 

additional support to the new vessel (Carmeliet and Jain, 2011). It was 
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therefore hypothesised that the main PDGF releasing cells would be the 

HUVECs. In addition, based on the significant differences in HUVEC 

morphology in the presence of laminin, HUVEC attachment to laminin was also 

hypothesised to increase PDGF release by the cells.  

 

PDGF levels were quantified using ELISA.  The surrounding medium only was 

analyzed based on previous findings with VEGF. VEGF findings had shown that 

approximately 4 times (3.8 times) more protein was released into the medium 

(2000pg/ml) than retained within the hydrogels (517pg/ml). Medium from 

HUVEC only constructs, HBMSC only constructs and co-cultures were all 

analyzed, in collagen hydrogels with and without laminin.  

 

HUVECs were found to be the only PDGF producing cells. PDGF was only 

present in HUVEC only cultures and was absent in HBMSC only cultures and 

co-cultures (Figure 3.15,Table 3.1). For protein analysis purposes, 400000 

HUVECs were seeded in monocultures, in order to ensure that PDGF levels 

reflected the number of cells present in co-cultures as well. The absence of any 

protein in co-cultures suggests either uptake of the protein by HBMSCs or a 

feedback mechanism that prevents PDGF release by HUVECs in co-cultures. 

However the exact mechanisms involved in this were not studied in this thesis. 

PDGF levels were quantified in HUVEC only cultures in collagen hydrogels with 

and without laminin. It was found that HUVECs released significantly (p<0.05) 

more PDGF in collagen-laminin cultures than in collagen only cultures. This 

suggests that cell attachment to laminin has an effect on the release of 

angiogenic growth factors by HUVECs. The difference in protein levels was also 

accompanied by the increasing number of multipolar cells found in collagen-
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laminin cultures. Cell-attachment to laminin therefore affected both protein 

release by HUVECs and cell morphology and aggregation.  

 

In summary, these findings proved the hypothesis that HUVECs would be the 

main PDGF releasing cells. The absence of any PDGF in co-cultures suggests 

either uptake by HBMSCs or a feedback inhibition mechanism. Results also 

proved an increase in PDGF levels in the presence of laminin, which showed 

that HUVEC attachment to laminin affected the release of angiogenic growth 

factors. This was accompanied by an increase in multipolar cells. The next 

hypothesis under test was that cell attachment to laminin also affected VEGF 

release and uptake.  

 

 

Figure 3.15. PDGF ELISA levels in collagen only cultures and collagen-laminin 

cultures. PDGF was only present in HUVEC only cultures, absent in co-cultures. 

*p<0.05, error bars-SD. 
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3.9 The	
  effect	
  of	
  cell	
  attachment	
  to	
  laminin	
  on	
  VEGF	
  protein	
  levels	
  
	
  	
  
Initial co-culture experiments in collagen only hydrogels showed that VEGF was 

present in the medium of the cultures. The hypothesis under test was that 

HUVEC aggregation into end-to-end networks in co-cultures with laminin (in 

contrast to the cobblestone aggregation with collagen only) was correlated to an 

increase in VEGF protein levels. VEGF protein levels were quantified in 

collagen-laminin cultures and compared to VEGF levels in collagen only 

cultures.  

ELISA was used to quantify VEGF in the medium of HUVEC only cultures, 

HBMSC only cultures and in co-cultures, with and without laminin. HUVECs did 

not produce any VEGF in either collagen only or collagen-laminin cultures 

(Table 3.1). There were no significant differences in VEGF levels in HBMSC 

only cultures with or without laminin. This strongly suggests that laminin did not 

directly affect the release of angiogenic growth factors by HBMSCs or trapped 

any of the VEGF. This was in contrast to the effect of laminin on HUVEC 

release of PDGF, with an increase in PDGF release by HUVECs in collagen-

laminin cultures. In contrast, there was a significant (p<0.05) decrease in the 

amount of VEGF in the medium of laminin co-cultures (880pg/ml) compared to 

collagen only hydrogels (2000pg/ml) (Figure 3.16). The decrease in VEGF in 

cultures where laminin is present suggested an increase in the uptake of VEGF 

by ECs. This highlighted a connection between VEGF uptake and cell 

attachment to basement membrane proteins.  

 

In summary, there was a decrease in the amount of VEGF detected in collagen-

laminin co-cultures disproving the hypothesis that cell-attachment to laminin 

increased VEGF release. However, the combination of VEGF levels in HBMSC 
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only cultures and co-cultures suggested greater protein uptake by ECs, which 

was hypothesised to promote HUVEC end-to-end network aggregation. In order 

to test the hypothesis that VEGF uptake was increased when laminin was 

present, the number and type of VEGF receptors expressed on HUVECs were 

quantified.  

 

Figure 3.16. VEGF protein levels in constructs with and without laminin. 

HUVECs did not produce any VEGF, while HBMSCs produced the same 

amount in both the presence and absence of laminin. There was a significant 

decrease in VEGF in co-cultures with laminin, while there was no difference in 

collagen only co-cultures. * P<0.05, error bars- SD, no error bars on collagen 

co-cultures as the maximum value was exceeded. (N=3 samples) 

	
  
 VEGF PDGF 

 Collagen Laminin Collagen Laminin 

HUVEC only 0pg/ml 0pg/ml Yes (fig.3.15 ) 

HBMSC HUVEC Yes (fig. 3.16) 0pg/ml 0pg/ml 

Table 3.1. VEGF and PDGF presence in HUVEC only cultures and HBMSC-

HUVEC cultures in collagen only hydrogels and collagen-laminin hydrogels.  
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3.10 Number	
  and	
  type	
  of	
  VEGF	
  receptors	
  expressed	
  on	
  HUVECs	
  	
  
 

VEGF receptors are important regulators of VEGF activity and depending on 

the type of receptor that VEGF binds to, it can have a positive or negative effect 

on angiogenesis (Carmeliet and Jain, 2011; Eichmann and Simons, 2012). 

VEGFR2 is thought to be the main pro-angiogenic receptor, while VEGFR1 can 

bind VEGF as a decoy receptor (Eichmann and Simons, 2012). The main 

hypothesis under test was that there would be significantly higher VEGFR2 

levels in collagen- laminin cultures where HUVECs aggregated into end-to-end 

networks, compared to collagen only cultures.  

 

VEGFR1 and VEGFR2 receptors were quantified using flow cytometry as 

described in the methods 2.13, 2.14. The number of cells positive for each type 

of receptor and the average number of receptors per cell were quantified. 

These receptor differences were then correlated to HUVEC morphological 

differences as well as the differences in VEGF protein levels.  

 

3.10.1 HUVEC	
  only	
  cultures	
  

As shown in Figure 3.17, in HUVEC only cultures, there were significantly (p< 

0.001) more VEGFR2 positive cells (~15%) in collagen-laminin cultures than 

collagen only cultures (~4%). There were also significantly (p<0.001) more 

VEGFR2 positive cells (~15%) than VEGFR1 (~2%) positive cells in collagen-

laminin cultures. These findings proved the hypothesis that cell attachment to 

laminin increased the percentage of VEGFR2 positive cells, promoting a pro-

angiogenic response.  
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The number of receptors per HUVEC was then analyzed using quantibrite 

beads as described in the methods. Using the equation for the bead calibration 

the number of receptors per cell was calculated in the cultures. It was found that 

HUVECs in collagen only cultures had significantly (p<0.05) more VEGFR1 

receptors per cell (40000 receptors/cell) than collagen-laminin (20000 

receptors/cell) cultures. There was no difference between VEGFR2 levels per 

HUVEC in the presence or absence of laminin.  

 

These findings showed that when HUVEC attach to laminin a pro-angiogenic 

response was more likely as there were overall more VEGFR2 (%) positive cells. 

However, in the absence of VEGF in HUVEC only cultures, end-to-end 

networks did not form (Figure 3.10). The next step was to test VEGF receptor 

levels in co-cultures, where VEGF releasing HBMSCs were also present.  
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Figure 3.17.	
  The percentage of positive HUVECs for each VEGF receptor was 

quantified using flow cytometry. PE conjugated VEGF receptor antibodies were 

used. Separate tubes were stained for each receptor type.  The number of 

receptors per cell was calculated using quantibrite beads. For each receptor 

triplicate cell samples were analyzed. *p<0.05 ,***p<0.001. error bars- SD (col-

collagen, lmn-laminin) 
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3.10.2 HBMSC-­‐HUVEC	
  co-­‐cultures	
  

VEGF protein levels in collagen-laminin co-cultures were significantly lower than 

collagen only cultures. Thus, it was hypothesised that there would be overall 

higher VEGF receptor levels in collagen-laminin co-cultures to reflect greater 

protein uptake by the cells. It was hypothesised that specifically VEGFR2 levels 

would be higher than VEGFR1 to reflect the end-to-end network aggregation of 

the cells in collagen-laminin co-cultures.  

 

VEGF receptor analysis was done as described in the methods (2.13, 2.14) and 

an anti-CD31 antibody was used in addition to VEGF receptor antibodies to 

select HUVECs only for analysis. Therefore, the number of cells positive for 

both the receptors and CD31 were calculated and the percentages below all 

relate to double positive cells. On day 2, there were significantly (p<0.001) more 

VEGFR2 positive cells compared to VEGFR1 positive cells in both collagen only 

cultures (~7% to ~4%) and collagen-laminin cultures (~11% to ~6%) (Figure 

3.18a). However, VEGFR2 positive cells were significantly higher (p<0.001) in 

collagen-laminin (~11%) cultures compared to collagen only (~7%). This 

suggests that although there were more VEGFR2 positive HUVECs in both 

matrix conditions, cell attachment to laminin further increased VEGFR2 positive 

cells. Higher receptors levels at this early stage would have allowed for greater 

VEGF uptake by HUVECs, reflected in the drop in VEGF protein levels 

measured by ELISA in collagen-laminin co-cultures.  The higher number of 

VEGFR2 positive cells in collagen-laminin cultures also correlates to the end-to-

end network aggregation of the cells, a pro-angiogenic response by the cells.  

On day 7, the number of cells positive for both VEGFR1 and VEGFR2 was 

significantly lower (p<0.05) in laminin cultures (~ 5% each) compared to 
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collagen only cultures (~10% each). This decrease in receptor percentages on 

day 7 compared to day 2 suggests VEGF binding and receptor internalisation. 

The lower VEGF protein levels found in collagen-laminin co-cultures compared 

to collagen only cultures strongly support higher VEGF binding.  

 

The number of receptors per cell was also analyzed and no differences were 

found between the two culture conditions and the receptor types on day 2. On 

day 7 however there was a significant increase (p<0.01) in the number of 

receptors per cell (~40 000 receptors/cell) for both VEGFR1 and VEGFR2 in 

collagen-laminin cultures compared to day 2 (30 000 receptors/cell) (Figure 

3.18b). There were also significantly (p<0.001) more receptors, both VEGFR1 

and VEGFR2, in collagen-laminin cultures (~40 000 receptors/cell) compared to 

collagen only (~30000 receptors/cell) cultures.  

 

In summary, on day 7 the percentage of HUVECs positive for each receptor 

type decreased compared to day 2, while at the same time the number of 

receptors per cell increased. Stronger HUVEC-HUVEC junctions compared to 

collagen only cultures accompanied the higher number of receptors per cell. 

Stronger cell junctions were suggested by the increased membrane localisation 

of VE-cadherin, as shown by immunofluorescence (Figure 3.14), in collagen-

laminin co-cultures. Previous studies had shown that VE-cadherin stabilises 

receptor expression on the surface of cells (Lampugnani et al., 2006). While the 

percentage of cells positive for each receptor type was not affected by VE-

cadherin, surface expression of receptors increased as receptors are 

hypothesised to have stabilised by this mechanism. This is an area that should 

be tested further in the future.  
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The data showed that cell attachment to laminin increased the presence of 

VEGFR2 receptors at early stages (Figure 3.18). Results on day 2 proved the 

hypothesis that higher VEGFR2 levels would be present in collagen-laminin co-

cultures to reflect the end-to-end network response by HUVECs. In addition, it 

proved the hypothesis that an overall higher percentage of VEGF receptors 

would be present to allow for greater VEGF uptake by HUVECs.  

By day 7, the continuous release of VEGF by the HBMSCs resulted in 

increasing uptake of the protein by HUVECs, which resulted in internalisation of 

the receptors as time in culture progressed. This was shown with a decrease in 

VEGF receptor percentages in collagen-laminin co-cultures, but not in collagen 

only cultures. Overall, these findings suggest an important link between VEGF 

receptors, especially VEGFR2 and laminin. 
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a 

b 
 
Figure 3.18. VEGFR1 and VEGFR2 levels in co-cultures with HBMSCs in 

collagen hydrogels with or without laminin. a) Cells were stained with both anti-

CD31 (FITC) and anti-VEGFR1/2 (PE) to calculate the percentage of HUVECs 

(double positive cells) positive for each receptor type. b) The number of 

receptors per cell was calculated using quantibrite beads. Single cells positive 

for both FITC and PE only were used. Error bars represent SD and *p<0.05, 

**p<0.01,***p<0.001. 
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3.11 HDMEC	
  morphology	
  in	
  collagen	
  constructs	
  
	
  
In vivo ECs differ in their exact function, shape and size depending on the 

vessel they are found in (Aird, 2012, 2007b). The hypothesis under test was 

that there would be significant differences in cell behaviour, migration and 

morphology between large vessel ECs such as HUVECs and microvascular 

ECs, HDMECs. Based on differences observed in 2D culture by us and others 

(Kumar et al., 1987) between large vessel and micro-vessel ECs the hypothesis 

under test was that there would be an increase in multipolar cells and no 

cobblestone cells in HDMEC cultures.  

 

HDMECs were seeded in collagen hydrogels, as described for HUVECs. 

HDMECs were initially cultured alone in collagen only hydrogels and cell 

morphology and aggregation were tested. As shown in Figure 3.19 ~60% of the 

cells were multipolar on day 7 and ~40% were flattened. On day 14 the number 

of multipolar cells significantly (p<0.01) decreased to approximately 40% while 

the number of flattened cells increased to ~60%. This finding suggested a time-

dependent change in cell morphology, similar to the HUVEC cultures, from the 

multipolar morphology to the flattened morphology. In agreement with the 

hypothesis, in contrast to the HUVEC cultures, there were no cobblestone 

aggregates in any of the HDMEC cultures. The absence of cobblestone 

aggregates was also accompanied by the absence of HDMEC migration to the 

top of the collagen scaffold. In contrast, HUVECs had formed a cobblestone cell 

sheet by day 14 on the top surface of the collagen scaffold (Figure 3.2,Figure 

3.3).  

 



	
   112	
  

These experiments proved the hypothesis that there would be cell-source 

dependent differences and that there would be no cobblestone aggregates in 

HDMEC cultures. This highlights the differences between large vessel and 

small vessel ECs in in vitro 3D cultures. These differences will be discussed 

further in the discussion.  

 

a   b  

c  

Figure 3.19. HDMEC morphology on day 7 and 14 in collagen only hydrogels. 

a,b) HDMEC only morphology in 3D collagen hydrogels, day 7 (a) and day 14 

(b). Single arrow shows multipolar cells and double arrows show flattened cells. 

Scale bar is 100 µm, CD31 is green, DAPI is blue. c) The graph shows the 

percentage of cells positive for the multipolar and flattened morphologies at 7 

and 14 days (Kruskall Wallis) **p<0.01, error bars- SD. 
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3.12 HBMSC-­‐HDMEC	
  co-­‐cultures	
  	
  

Culturing different EC types in monocultures in collagen hydrogels showed 

significant differences in cell morphology and migration. Next, the effects of the 

presence of HBMSCs and/or laminin in these cultures were tested. The first 

hypothesis under test was that there would be no cobblestone aggregates in 

co-cultures in collagen only, similar to the absence of any cobblestone in 

HDMEC only cultures. In collagen-laminin co-cultures it was hypothesised that 

HDMEC attachment to laminin would promote end-to-end network aggregation, 

similar to HUVEC co-cultures. 

 

 HDMECs were co-cultured with HBMSCs using the 2:4 ratio, shown in the 

HUVEC co-cultures as the optimum ratio for cell aggregation and protein 

release. Cells were cultured for a week and stained for CD31 for cell 

morphology analysis as seen in Figure 3.20a,b. In collagen only co-cultures, 

HDMECs were mainly multipolar, with ~97% of the cells multipolar and only 

~3% of the cells flattened (p<0.001) (Figure 3.20c). Cobblestone cells were 

absent in HDMEC co-cultures, proving the hypothesis that there would be no 

cobblestone cells. These morphologies were very different to HUVEC co-

cultures in collagen, where there were no multipolar cells and ~80% of HUVECs 

were cobblestone and 20% were flattened.  

 

When laminin was added to collagen constructs, the number of multipolar cells 

decreased to ~20% of HDMECs, while the flattened cells increased significantly 

(p<0.01) to ~80%. While in co-cultures with HBMSCs and HUVECs there were 

abundant end-to-end HUVEC networks, in HDMEC co-cultures there was a 

striking absence of any networks. This disproved the hypothesis that HDMEC 
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attachment to laminin in the presence of HBMSCs would also promote end-to-

end networks.  

 

Results showed that HBMSC and laminin addition did not successfully promote 

HDMEC end-to-end network aggregation. This suggests that cell-cell and cell-

matrix interactions with HDMECs were significantly different than HUVECs. 

Other supplementary cells, such as HDFs, which are also derived from skin, 

could have a different effect on HDMEC aggregation. This could be tested in 

the future.  

 

Thus, there were significant differences between HDMEC cultures and HUVEC 

cultures in terms of EC morphology, migration and aggregation. This was 

evident in both EC only cultures and co-cultures. Both the cobblestone sheet 

and the end-to-end networks that were found in HUVEC cultures could be 

useful for tissue engineering purposes. The absence of HDMEC aggregation in 

any of the cultures, proved less attractive for tissue engineering applications. 

Therefore HUVECs were used for all subsequent experiments and different 

parameters were tested that could further stimulate specific HUVEC 

aggregation patterns.  
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b  a    

c  

Figure 3.20. HDMEC morphologies in co-cultures with HBMSCs in collagen 

only constructs and collagen-laminin constructs. a,b) CD31 

immunofluorescence images showing HDMEC morphologies in co cultures (a) 

collagen, (b) collagen-laminin, CD31-green, DAPI-blue, scale bar 100µm. 

Single arrow showing multipolar cells and double arrows showing flattened 

cells. c) The graph shows the percentages of HDMEC morphologies in collagen 

only and collagen-laminin constructs on day 7. Error bars represent SD and 

*p<0.05, ****p<0.0001 
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3.13 Segregated	
  co-­‐	
  cultures	
  

During angiogenesis in vivo there is a gradient of angiogenic growth factors that 

drives EC migration and new vessel formation to the ischemic area (Carmeliet 

and Jain, 2011; Phelps and Garcia, 2009). The hypothesis under test was that 

the experimental setup as described in 2.19 would mimic the gradient of 

angiogenic factors found in angiogenesis, with a gradual decrease in 

angiogenic growth factor levels from the HBMSC spiral, distally to the HUVEC 

populated hydrogel area. The hydrogel, in which the HBMSC spiral was 

embedded, was initially cut into three sections: the spiral or depot region (1 on 

schematic in Figure 2.12), the mid section and distal section as shown in figure 

2.12. Protein analysis showed no difference between mid and distal regions of 

the hydrogels, disproving this hypothesis. Therefore the results for the mid and 

distal sections were merged into one, the acellular hydrogel. As a result, the 

experimental setup was used to test the effect of the presence of growth 

factors, released by HBMSCs, in the absence of direct HBMSC-HUVEC 

contact. The hypothesis was that the release of angiogenic growth factors by 

the HBMSCs would promote HUVEC end-to-end network aggregation.  

 

Four different culture conditions for the HBMSC spirals were then tested as 

described in the methods 2.19 to find the optimum culture conditions that would 

result in the maximum release of angiogenic growth factors by HBMSCs. These 

conditions were: 1) pre-culturing the HBMSC spirals for a week, 2) pre-culturing 

and “fixing” (snap freezing) the HBMSC spirals, 3) placing the HBMSC spirals 

within the hydrogel without pre-culturing (day 0 live) and 4) “fixing” (snap 

freezing) the HBMSC spiral on day 0.  
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For the first condition HBMSC spirals were pre-cultured for a week before 

placing within the hydrogel. The hypothesis here was that pre-culturing would 

result in up-regulation of various angiogenic proteins before placing the spiral 

within the collagen hydrogel. Additionally, HBMSCs would continue to release 

angiogenic factors once placed within the collagen hydrogel. The release of a 

greater amount of these angiogenic factors was hypothesised to increase 

HUVEC end-to-end network aggregation and migration, to a greater extent 

compared to the other conditions tested.  

 

The second culture condition tested the hypothesis that “snap freezing” the 

HBMSC construct (i.e. fixing HBMSCs) would result in slow release of factors 

retained within a compressed collagen matrix. Only protein trapped within the 

compressed collagen matrix would be released with no additional protein 

release by the HBMSCs. The growth factors released were hypothesised to 

promote HUVEC end-to-end network aggregation, but more limited than the 

pre-cultured “live” constructs. 

 

The final two conditions were used as comparisons to the pre-cultured spirals 

and were hypothesised to result in the least amount of angiogenic growth 

factors and HUVEC aggregation. HBMSC spirals were placed in a hydrogel 

(with or without HUVECs as shown in Figure 2.12) on the same day that 

compressed collagen spirals were set (day 0).  

 

Protein levels were quantified in the collagen depot, acellular hydrogel and 

medium of HBMSC cultures and in the medium of cultures with both the 

HBMSC spiral and HUVECs.  
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3.14 VEGF	
  protein	
  levels	
  

VEGF protein release and uptake was found to be important in the aggregation 

of HUVECs in mixed co-cultures. Therefore, VEGF protein levels were 

quantified in segregated co-cultures. The hypothesis under test was that 

HBMSCs would be producing VEGF, which would diffuse into the hydrogel and 

surrounding media. In addition, it was hypothesised that there would be no 

VEGF in day 0 “snap frozen” cultures (in any of the regions tested) and that the 

highest VEGF levels would be present in the 1-week pre-cultured (live) cultures.  

VEGF levels were quantified using ELISA in the depot region of the collagen 

hydrogels (1 on schematic figure 2.12), the remaining acellular region of the 

construct (2 on schematic figure 2.12) and the surrounding medium after a 

week in culture.  

 

VEGF levels were significantly higher within the depot (~1200pg/ml) (p<0.01) 

and acellular (~1000pg/ml) (p<0.001) regions of hydrogels in day 0 constructs 

compared to pre-culture constructs (~500pg/ml and 110 pg/ml) (Figure 3.21). 

This disproved the hypothesis that higher protein levels would be detected in 

pre-cultured live constructs. In contrast, there was no difference in VEGF levels 

within the medium of HBMSC constructs, with ~1500pg/ml in day 0 constructs 

and 1300pg/ml in pre-culture constructs. These results show that the majority of 

VEGF is released within the first week of HBMSC spiral culture. This suggests 

that VEGF produced in the pre-culture constructs was “lost” in the pre-culture 

medium resulting in lower protein levels within the hydrogels. 

 

VEGF was almost absent in the “snap frozen” HBMSC cultures, except in the 

medium of pre-culture constructs where there were ~150pg/ml of VEGF. The 



	
   119	
  

absence of any significant amount of VEGF in pre-cultured constructs suggests 

that VEGF was not efficiently trapped within the collagen spiral. It is also 

possible that VEGF diffused out of the spirals immediately after it was placed in 

the hydrogels and was lost in the media change on day 3 of the hydrogel 

cultures.  

 

In conclusion, the high levels of VEGF found in day 0 (live) cultures compared 

to the pre-culture constructs suggest that the majority of VEGF is produced 

within the first week of HBMSC culture. This disproved the hypothesis that pre-

culturing the HBMSC spirals would result in the highest VEGF levels. In addition 

the data showed that “snap-freezing” HBMSC constructs did not “trap” sufficient 

angiogenic proteins.  

 

 

Figure 3.21. VEGF protein levels measured by ELISA. VEGF levels were 

measured in the proximal (spiral area), acellular hydrogel region and 

surrounding medium of HBMSC only constructs. Error bars- SD, n=3, 

significance described in the text  
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3.15 bFGF	
  protein	
  levels	
  	
  

bFGF was tested as another exemplar angiogenic factor in these cultures. 

Protein levels were analysed using ELISA, as described above for VEGF. The 

hypotheses under test were that bFGF levels would be highest in the pre-

cultured (live) group and absent in day 0 “snap frozen”.  

 

bFGF levels in the pre-culture constructs were significantly lower than day 0 

constructs.  This was found both within the proximal region (~500pg/ml vs 

~1300pg/ml) (p<0.001), where the HBMSC spiral was located and in the 

surrounding medium (p<0.01). This shows that the majority of the protein was 

produced within the first week of culture. Therefore, similar to VEGF, some of 

the bFGF would have been released and “lost” in the media of the pre-culture 

constructs.  

 

In addition, bFGF levels in day 0 constructs within the depot region 

(~1300pg/ml) were significantly (p< 0.0001) higher compared to the remaining 

hydrogel (~60pg/ml) and surrounding media (230pg/ml) (p<0.0001) (Figure 

3.22). This suggests that at this time-point the majority of the protein was 

trapped within the compressed collagen matrix and did not diffuse into the 

surrounding media, or indeed into the hydrogel.  

 

In contrast, both day o and pre-culture constructs in which the HBMSC spirals 

had been snap-frozen had very low (80pg/ml) to undetectable (0pg/ml) protein 

levels. Thus, bFGF was not effectively trapped in pre-culture constructs, similar 

to VEGF.  

 



	
   121	
  

The results for bFGF support VEGF data and show that for protein release 

purposes pre-culturing the HBMSCs does not maximise protein levels. In fact, 

instead this results in protein “loss” into the pre-culture medium. In addition, 

“snap freezing” HBMSC constructs after pre-culturing does not effectively trap 

enough proteins within the collagen matrix. Co-culture medium was then also 

tested for VEGF and bFGF levels.  

 

 

Figure 3.22. bFGF protein levels using ELISA. bFGF was quantified in the 

constructs and medium of HBMSC only constructs. Day 0 live and “snap frozen” 

and 1 week pre cultured live and “snap frozen” HBMSC constructs were used. 

Error bars- SD. Analysis after 1 week in culture, significance described in text.  

 

3.16 Co-­‐culture	
  protein	
  levels	
  	
  
	
  

3.16.1 VEGF	
  and	
  bFGF	
  protein	
  levels	
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VEGF and bFGF levels would not increase, based on initial experiments with 

HUVECs only (table 3.1) where there were no detectable levels of VEGF. 

 

Results showed that HBMSCs were the only VEGF producing cells in co-

cultures. This was proven by the absence of VEGF in the medium of day 0 

“snap frozen” co-cultures, where HUVECs were the only live cells. There was 

also no VEGF in the pre-cultured “snap frozen” co-cultures (Figure 3.23). In day 

0 “live” cultures there was no difference between VEGF detected in the medium 

of the HBMSC only cultures (1500pg/ml) and the co-cultures (1300pg/ml). 

However, in pre-culture constructs, VEGF was significantly lower in the co-

culture medium (300pg/ml) compared to the HBMSC only medium (1300 pg/ml). 

This shows either uptake of the protein by HUVECs or a feedback mechanism 

that reduces VEGF release by HBMSCs when HUVECs are present.  

 

bFGF levels in co-culture medium were very low to absent in all HBMSC culture 

conditions. For day 0 “snap frozen”, 1 week pre-culture and 1 week pre-culture 

“snap frozen” these low bFGF levels were not different to the levels measured 

in the HBMSC only medium. For day 0 (“live”) constructs however, there was a 

sevenfold drop in protein levels compared to the HBMSC only levels (232 pg/ml 

to 32 pg/ml). This suggests either uptake of bFGF by the HUVECs or down-

regulation of bFGF release by HBMSCs due to the presence of the HUVECs 

and factors released by them.  

 

Results for VEGF and bFGF proved the hypothesis that HBMSCs were 

primarily responsible for both proteins released. Therefore, the levels of both 

VEGF and bFGF did not increase in any co-culture conditions compared to 
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HBMSC only cultures. In contrast, VEGF levels decreased in 1-week pre-

cultured co-cultures, while bFGF levels decreased in day 0 co-cultures. This 

suggested that the presence of HUVECs affected VEGF and bFGF levels, 

however in different ways. PDGF levels were finally quantified, with the 

hypothesis under test that PDGF would only be produced by HUVECs. 

	
  

3.16.2 PDGF	
  protein	
  levels	
  

PDGF was quantified in initial collagen hydrogel experiments, where it was 

released by HUVECs when in culture alone. In HBMSC only cultures and in 

HBMSC-HUVEC mixed co-cultures there was no PDGF. 

 

ELISA was also used in these segregated cultures to quantify PDGF (Figure 

3.23). PDGF was absent in all HBMSC only cultures and was only detected 

when HUVECs were present. In HBMSC-HUVEC segregated cultures there 

was approximately two times more PDGF in the medium of day 0 cultures (327-

458pg/ml) compared to the pre-culture constructs (122-200pg/ml). PDGF levels 

were significantly higher in day 0 “snap-frozen” cultures compared to the pre-

culture constructs, both live and “snap-frozen” (p<0.01). Differences between 

“live” and “snap frozen” within the same time-point were not significant. 

 

In summary, these results proved that PDGF was only produced by HUVECs. 

bFGF levels were low in all culture conditions but showed a drop compared to 

HBMSC only cultures in day 0 cultures. VEGF levels decreased the most in 1-

week cultures compared to HBMSC only cultures. This could have been due to 

greater uptake of VEGF by HUVECs, however, this was not tested. Overall, 
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from these results there was no obvious relationship between the levels of the 

three different proteins in co-cultures.  

 

	
  
Figure 3.23. Protein levels assessed using ELISA. PDGF was absent in 

HBMSC only constructs, in both within the hydrogel and surrounding medium. 

This included the area of the spiral and the surrounding medium. Error bars 

represent SD, **p<0.01, triplicate samples 
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The initial hypothesis of these experiments was that there would be a gradient 

of angiogenic factors from the HBMSC depot to the distal part of the HUVEC 

hydrogel, which was disproven early on. Despite the absence of a gradient of 

factors, segregated co-cultures tested the effect of the presence of a source of 

angiogenic growth factors in the absence of HBSMC-HUVEC contact on 

HUVEC morphology.  
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CD31 immunofluorescence was used as an indicator of HUVEC morphology in 

the different culture conditions. As the images in Figure 3.24 show HUVECs 

had mainly a flattened morphology. However, due to the complexity of these 

experiments it was concluded that this experimental setup was not successful.  

Therefore, detailed analysis of cell morphology and aggregation was not 

undertaken.  

 

a Day 0 (live) b Day 0 “snap frozen” 

 

   
 

c Pre-culture (live) d Pre-culture “snap frozen” 

        

Figure 3.24. HUVEC morphologies in the four different culture conditions of the 

HBMSC spirals. HUVECs did not aggregate into networks in any of the 

conditions tested and were predominantly flattened cells (shown with double 

arrows). 
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3.18 HUVEC	
  network	
  formation	
  in	
  normoxia	
  and	
  physiological	
  hypoxia	
  
	
  
Cells are commonly cultured at atmospheric oxygen conditions set at 21% O2, 

5% CO2. However, much lower oxygen levels surround most cells in the body. 

A 5% O2 culture environment was chosen as it falls within the “physiological 

hypoxia” conditions found in vivo in various tissues, including the bone marrow 

(Stamati et al., 2011). The hypothesis under test was that HUVECs would 

optimally aggregate into networks when cultured in physiological hypoxia (5% 

O2) compared to normoxia (21% O2). Greater network aggregation was 

hypothesised to be due to the presence of higher levels of angiogenic growth 

factors, released by the support cells.  

 

HUVECs were co-cultured with HBMSCs or HDFs in collagen-laminin cultures 

and CD31 immunofluorescence was used to test HUVEC morphology. HDFs 

were chosen as a different source of support cells to test their effect on HUVEC 

aggregation in both oxygen conditions.  

 

Results showed longer and more (experimental observation) network 

aggregates in HBMSC co-cultures cultured in normoxia (98-150 µm) compared 

to hypoxia (73-104 µm). In HDF co-cultures, network aggregates were only 

present in physiological hypoxia (93-105 µm), with no visible networks in 

normoxia (Figure 3.25). There were no cobblestone aggregates in any of the 

culture conditions. The absence of any network aggregation or any cell-cell 

(HUVEC) interaction in HDF co-cultures in normoxia suggested that there were 

significant differences in HUVEC response depending on the support cells 

present.  
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These results showed that in fact in HBMSC co-cultures HUVECs aggregated 

into networks more when cultured in normoxia, contrary to the intial hypothesis. 

On the contrary, in HDF co-cultures, the hypothesis that HUVECs would form 

more networks in hypoxia was supported.  

 

Normoxia (21% O2) Physiological hypoxia (5% O2) 

 
a b 
 

 
c 

 

 
d 

Figure 3.25. HUVEC aggregation in co-cultures with HBMSCs and HDFs in 

normoxia and hypoxia. Scale bar=100 µm. Upper panels (a,b) are the HBMSC 

co-cultures and lower panels (c,d) are HDF co-cultures. Arrows show network 

aggregation in HBMSC co-cultures in normoxia and HDF co-cultures in 

physiological hypoxia.  

	
  
To test the hypothesis that differences in HUVEC aggregation in the two oxygen 

conditions were correlated to greater angiogenic growth factor release by the 
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support cells PDGF, VEGF, Angiopoietin-1 and TGFβ1 were tested using 

ELISA. Protein levels were then correlated to HUVEC aggregation. 

	
  

3.19 PDGF	
  protein	
  levels	
  

PDGF was selected as it was previously tested in other experimental setups 

and was found to be produced by HUVECs. PDGF levels were analysed using 

ELISA in normoxia and hypoxia cultures. It was hypothesised that PDGF would 

only be present in HUVEC only cultures and that higher levels would be present 

in physiological hypoxia than normoxia.  

 

HUVEC only cultures, HBMSC only, HDF only and co-cultures with HBMSC- 

HUVEC and HDF-HUVEC were all tested. ELISA results supported previous 

findings and showed that PDGF was only present when HUVECs were cultured 

alone (Figure 3.26). HUVECs produced nearly double the amount of PDGF in 

normoxia (~430pg/ml) compared to hypoxia (230pg/ml) (p<0.001). HBMSCs 

and HDFs did not produce any PDGF in either normoxia or hypoxia when 

cultured alone. PDGF was also absent in co-cultures with both supplementary 

cells in both oxygen conditions. These results were in agreement with initial 

findings in collagen hydrogels with HBMSCs where PDGF was also absent in 

co-cultures.  

 

Overall, PDGF protein levels showed that oxygen levels affected PDGF release, 

with more efficient release by HUVECs in normoxia compared to physiological 

hypoxia. This disproved the hypothesis that cells would be releasing more 

PDGF in physiological hypoxia. However, the absence of any protein in co-

cultures or HBMSC/HDF cultures proved the hypothesis that HUVECs were the 
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only PDGF releasing cells. This suggests either uptake of the protein by 

HBMSCs and HDFs or the presence of a feedback mechanism that slows 

PDGF release. PDGF findings at this stage do not provide a correlation 

between PDGF levels and HUVEC morphology and aggregation.  

 

 

 

Figure 3.26. PDGF protein levels in cultures in normoxia and hypoxia. PDGF 

was only produced in HUVEC cultures and was absent in any of the co-cultures. 

PDGF was not detected in any of the HBMSC only or HDF only cultures.  

*** p<0.001  
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  levels	
  

VEGF protein levels were also quantified, as both VEGF release and uptake 

was shown to be important for HUVEC response and aggregation (collagen vs 

collagen-laminin experiments). The hypothesis under test here was that 
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hypoxia than normoxia. Based on previous findings it was hypothesised that 

HUVECs would not be producing any VEGF.  

 

VEGF levels were tested in HUVEC only cultures, HBMSC only cultures, HDF 

cultures and in co-cultures of HUVECs with HBMSCs and HDFs in normoxia 

and hypoxia.  HUVECs did not produce any VEGF, either in normoxia or 

hypoxia, in agreement with the hypothesis and initial findings.  

 

HBMSCs produced the same amount of VEGF in both oxygen conditions 

(Figure 3.27). In co-cultures, there was significantly (p<0.01) less VEGF present 

in normoxia (880pg/ml) compared to hypoxia (~1700pg/ml). There was also a 

significant drop (p<0.001) in the levels of VEGF in normoxia co-cultures 

(880pg/ml) compared to the amount produced by HBMSCs when cultured alone 

(2000pg/ml) (Figure 3.27). In hypoxia co-cultures (~1700pg/ml) there was no 

difference in VEGF levels compared to the HBMSC only cultures (~2000pg/ml). 

These findings showed that VEGF levels were in fact lower when HUVECs 

aggregated into networks in normoxia. The significant drop in VEGF compared 

to HBMSC monocultures, suggested greater uptake of the protein by HUVECs. 

In order to test this hypothesis VEGF receptor levels were quantified.    

HDFs produced fourfold less VEGF than HBMSCs in both normoxia and 

hypoxia cultures (Figure 3.27). As with HBMSC monocultures, there was no 

difference in the amount of VEGF produced when HDFs were cultured alone in 

the two oxygen conditions. There was however a significant difference (p<0.01) 

in VEGF levels in co-cultures, with more VEGF present in hypoxia (~400pg/ml) 

co-cultures than normoxia cultures (~30pg/ml). In this case, higher VEGF levels 

correlated with the greatest network aggregation of the cells. However, the 
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overall VEGF levels in HDF cultures were much lower than HBMSC cultures.  

This suggested that the mechanisms involved in promoting end-to-end network 

aggregation were different depending on the support cells present. Other 

soluble growth factors could be more significant in HDF co-cultures such as 

angiopoietin-1 and TGFβ, which were tested and the results shown in the next 

sections. In addition, other factors, such as extracellular matrix proteins, which 

were not tested in these cultures, could also be involved in the process.  

To test the role of VEGF release and its uptake by HUVECs in these conditions, 

VEGF receptor types and levels were quantified in both normoxia and hypoxia 

cultures.  

a  
 

 
               b 
Figure 3.27. VEGF levels quantified by ELISA. a) VEGF levels in the medium of 

HBMSC only and HBMSC-HUVEC cultures in normoxia and physiological 

hypoxia, b) VEGF levels in HDF only and HDF-HUVEC cultures in normoxia 

and physiological hypoxia . Error bars are SD ** p<0.01 
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3.21 VEGF	
  receptors	
  	
  

VEGF receptors are important mediators of VEGF action to the cells. As shown 

in experiments with and without laminin, the number and type of VEGF 

receptors significantly influences VEGF uptake and consequently HUVEC 

aggregation. VEGFR1 acts as a decoy receptor, while VEGFR2 acts as a pro-

angiogenic receptor.  

 

VEGF protein levels were significantly lower in HBMSC co-cultures in normoxia 

compared to i) HBMSC only in normoxia and ii) HBMSC-HUVEC in 

physiological hypoxia. This led to the hypothesis that VEGF uptake was 

greatest in normoxia, where the greatest HUVEC end-to-end network 

aggregation was also found. Since the pro-angiogenic VEGFR2 receptors were 

associated with HUVEC end-to-end network aggregation in collagen-laminin 

experiments, it was specifically hypothesised that VEGFR2 positive HUVECs 

would be higher in normoxia than hypoxia.  

 

In HDF co-cultures the greatest HUVEC end-to-end network aggregation was in 

hypoxia, while there were no networks in normoxia. However, VEGF levels 

were higher in hypoxia than normoxia. This was in direct contrast to HBSMC co-

culture results. It was therefore hypothesised that VEGF uptake was not 

increased in HDF co-cultures in physiological hypoxia and therefore receptor 

levels did not increase.  

 

The levels of the two main receptors VEGFR1 and VEGFR2 were quantified 

using flow cytometry in co-culture conditions in both normoxia and physiological 
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hypoxia. The percentage of VEGFR1 and VEGFR2 positive HUVECs were 

quantified and the number of receptors per HUVEC was also calculated.  

HUVEC monocultures were tested first for VEGFR1 and VEGFR2 levels in both 

normoxia and physiological hypoxia. This was done in order to obtain baseline 

levels of receptor levels in the absence of any support cells. When HUVECs 

were cultured alone, there were significantly more VEGFR2 positive HUVECs in 

both normoxia and hypoxia (~15% and 12%) compared to VEGFR1 (~2% and 

~5%) (p<0.001 and p<0.05 respectively). There was no difference however in 

the number of positive cells for either VEGFR1 or VEGFR2 between the two 

oxygen conditions, when comparing the same receptor type (Figure 3.28).  This 

suggests that oxygen levels did not affect the percentage of positive cells for 

each receptor type.  

 

The number of receptors per HUVEC was also calculated by using the 

calibrated beads. In HUVEC only cultures, there was no difference in the 

number of receptors per HUVEC in normoxia, (~30000 receptors/cell vs 33000 

receptors/cell) while in hypoxia there were significantly more VEGFR1 (~30000 

receptors/HUVEC) receptors than VEGFR2 per cell (~26000 receptors/cell) 

(p<0.05) (Figure 3.28). In addition, when comparing the two oxygen conditions, 

VEGFR2 levels were significantly higher in normoxia (~33000 receptors/cell) 

compared to hypoxia (26 000 receptors/cell) (p<0.01). 

The levels of the receptors were then quantified in both HBMSC and HDF co-

cultures. 
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a                                                            b 

	
  
Figure 3.28. VEGF receptor flow cytometry results in HUVEC only cultures in 

normoxia and hypoxia. Receptors were quantified using flow cytometry with PE 

conjugated VEGFR1 and VEGFR2 receptors. a) The percentage of positive 

HUVECs for each receptor type was quantified in both normoxia and hypoxia, 

b) the number of receptors per HUVEC was calculated using quantibrite beads. 

triplicate samples were analysed, and error bars represent SD. *p<0.05, 

**p<0.01, ***p<0.001 

 

In HBMSC co-cultures in normoxia there were significantly (p<0.05) more 

VEGFR2 positive cells (~11%) compared to VEGFR1 (~6%). In addition, there 

were significantly (p<0.05) more VEGFR2 (~11%) positive HUVECs in normoxia 

compared to hypoxia (~5%) (Figure 3.29). Higher percentages of VEGFR2 

positive cells allow for greater pro-angiogenic response by HUVECs. This is as 

a result of the role of VEGFR2 as a positive angiogenesis inducer. This was 

evidenced by the greater network aggregation in normoxia co-cultures 

compared to hypoxia. In contrast, in hypoxia cultures there was no difference in 

the percentage of cells expressing each type of receptors.   
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Receptor numbers per cell were also calculated, with significantly higher 

numbers found for both receptor types in physiological hypoxia conditions. 

Specifically, there were 30 000 VEGFR1 receptors in normoxia and 40 000 

receptors in hypoxia (p<0.01). There were also significantly more (p<0.05) 

VEGFR2 receptors in hypoxia (~40 000 receptors/cell) compared to normoxia 

(~30 000 receptors/cell).  

 

 
a                                                              b      

Figure 3.29. VEGF receptors in HBMSC HUVEC cultures in normoxia and 

physiological hypoxia. Receptors were quantified using flow cytometry with PE 

conjugated VEGFR1 and VEGFR2 receptors. CD31 (FITC conjugated) antibody 

was used to select the HUVECs. a) The percentage of positive HUVECs for 

each receptor type was quantified in both normoxia and hypoxia, b) the number 

of receptors per HUVEC was calculated using quantibrite beads. * p<0.05, 

**p<0.01, triplicate samples were analysed, and error bars represent SD. 
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aggregated into more end-to-end networks as shown with CD31 

immunofluorescence.  

 

In HDF co-cultures, there was no difference in the number of HUVECs positive 

for VEGFR1 (~ 15%) or VEGFR2 (~17%) between the two oxygen conditions 

(5% vs 21%). There was also no difference in the type of receptors present 

(R1vs R2) within the same oxygen condition (figure 3.30). This would suggest 

that VEGF receptors and as a result VEGF was not as important in promoting 

network aggregation in HDF co-cultures.  

 

The number of receptors per HUVEC was then calculated. There were no 

differences between VEGFR1 and VEGFR2 within the same oxygen condition. 

In normoxia levels averaged around 36000 receptors per cell and in hypoxia 

25000 receptors per cell. Thus, there was a significant (p<0.01) decrease in the 

numbers of receptors in hypoxia compared to normoxia. The low levels, as with 

HBMSC co-cultures, coincided with the greatest network aggregation of 

HUVECs. This again could suggest greater receptor internalisation and HUVEC 

response in these conditions.   

 

These results strongly suggest that in HBMSC co-cultures, VEGF and its 

receptors have a significant role in HUVEC aggregation. Especially, the higher 

number of VEGFR2 positive cells in normoxia, compared to hypoxia suggest 

both greater uptake of VEGF by the cells and a greater pro-angiogenic 

response. This resulted in greater network aggregation of HUVECs. The 

similarity in the percentage of HUVECs positive for the two types of receptors in 

HDF co-cultures in the two oxygen conditions and the lower levels of VEGF 
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(~800pg/ml vs 400pg/ml) present compared to HBMSC cultures, suggest a 

smaller role for VEGF and its receptors in the angiogenic response of HUVECs. 

However, the presence of significantly fewer (p<0.01) receptors per HUVEC in 

hypoxia compared to normoxia, indicate greater receptor internalisation and 

VEGF uptake compared to normoxia. In the absence of a supplementary cell 

type, HUVECs show some differences between normoxia and hypoxia, 

however these differ in co-cultures. Thus, the presence of supplementary cells 

influences receptor expression as well as internalisation.  

 

	
   	
  
a                                                              b 
 
Figure 3.30. VEGF receptors in HDF HUVEC cultures in normoxia and hypoxia. 

Receptors were quantified using flow cytometry with PE conjugated VEGFR1 

and VEGFR2 receptors. CD31 (FITC conjugated) antibody was used to select 

the HUVECs. a) The percentage of positive HUVECs for each receptor type 

was quantified in both normoxia and hypoxia, b) the number of receptors per 

HUVEC was calculated using quantibrite beads. * p<0.05, **p<0.01, triplicate 

samples were analysed, and error bars represent SD. 
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To further elucidate the effect of angiogenic growth factors and oxygen culture 

conditions on HUVEC response other protein levels were quantified. 

Specifically, the role of angiogenic proteins such as Angiopoietin-1 and TGFβ1 

was tested.  

	
  
	
  
	
  
	
  

 Normoxia (21% O2) Physiological hypoxia 
 (5% O2) 

 HBMSC HDF HBMSC HDF 
Ang-1 0pg/ml 133.25±22.98 

 
0pg/ml not 

quantified 
TGFβ1 0pg/ml 121pg/ml± 

2.12pg/ml 
0pg/ml 0pg/ml 

PDGF 0pg/ml 0pg/ml 0pg/ml 0pg/ml 
Table 3.2. Angiopoetin-1, TGFβ1 and PDGF levels in HBMSC and HDF only 

cultures in normoxia and physiological hypoxia.  

	
  

3.22 Angiopoietin-­‐1	
  protein	
  levels	
  

Angiopoietin-1 is usually released by surrounding cells during angiogenesis and 

has been found to promote EC migration and sprouting and prevent apoptosis 

in in vitro experiments (Metheny-Barlow and Li, 2003). The hypothesis under 

test was that angiopoietin-1 levels would be higher in co-culture conditions 

where HUVECs aggregated into greater end-to-end network aggregates; i.e. 

HBMSC-HUVEC co-cultures in normoxia and in HDF-HUVEC co-cultures in 

hypoxia.  

 

Angiopoietin-1 levels were quantified using ELISA from the medium of HBMSC 

only cultures, HDF only cultures HUVEC only cultures and co-cultures of 

HMBSC-HUVECs and HDF-HUVECs in both normoxia and physiological 

hypoxia.  
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 Angiopoietin-1 was not produced in any of the HUVEC only cultures (figure 

3.31) or the HBMSC only (table 3.2) cultures. However, high levels of 

angiopoietin-1 were found in HBMSC co-cultures in normoxia (1000pg/ml/) and 

lower levels in hypoxia co-cultures (400pg/ml) (Figure 3.31). The hypothesis is 

that HUVECs stimulated HBMSCs to produce angiopoetin-1. Although this was 

not directly tested here, HUVECs are known to produce angiopoeietin-2 rather 

than angiopoietin-1 (Fagiani and Christofori, 2013). Therefore, HUVECs were 

unlikely to be the source of angiopoietin-1 release in these conditions. In HDF 

co-cultures there were higher levels of angiopoietin-1 in hypoxia co-cultures 

(190pg/ml) compared to normoxia (33pg/ml).  

 

Although these results were not statistically different, higher levels of 

angiopoietin-1 in both HBMSC and HDF co-cultures correlated with the greatest 

network aggregation. This proved the hypothesis that angiopoietin-1, in addition 

to other factors, promoted HUVEC network aggregation. These results also 

show that ECs stimulate the production of angiopoietin-1 by HBMSCs.   

 

 

Figure 3.31. Angiopoietin-1 levels quantified by ELISA. Angiopoietin-1 was 

absent in HUVEC only cultures in both oxygen conditions. The highest levels 

were present in HBMSC co-cultures in normoxia. Error bars= SEM., p=ns 
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3.23 TGFβ1	
  protein	
  levels	
  

TGFβ1 levels in these cultures were tested, as TGFβ1 is an angiogenic growth 

factor often added to culture media to promote tubulogenesis. TGFβ1 levels 

were quantified in the medium of HUVEC only cultures, HDF only, HBMSC only 

and HBSMC-HUVEC, HDF-HUVEC cultures in normoxia and hypoxia using 

ELISA.  

In our experiments we found that both HUVECs and HDFs produced TGFβ1 

(Figure 3.32). HBMSCs did not produce any TGFβ1 when cultured alone (table 

3.2). HUVECs produced ~800pg/ml in normoxia and ~500pg/ml, not 

significantly different in the two oxygen conditions. In HBMSC co-cultures the 

levels quantified in normoxia and hypoxia were the same as the levels found in 

HUVEC only cultures (800 and 500pg/ml respectively, not statistically 

significant). These results suggested that HUVECs were the TGFβ1 producing 

cells (figure 3.32). In HDF co-cultures there was no significant difference 

between the levels found in normoxia (~300pg/ml) and hypoxia (~450pg/ml); 

however TGFβ1 in this case could have been produced by either of the two cell 

types. In both HBMSC and HDF co-cultures the highest levels of TGFβ1 

corresponded to the greatest EC network aggregation seen, suggesting a link 

between its presence and EC end-to-end network aggregation. However, these 

differences were not statistically significant, thus definite conclusions about 

TGFβ1 levels and HUVEC aggregation cannot be drawn.  
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Figure 3.32. TGFβ1 protein levels quantified by ELISA.  There were no 

significant differences between the levels of TGFβ1 in the different culture 

conditions tested. Error bars are SD, triplicate samples in each condition, p=not 

significant  
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4 Discussion	
  	
  
	
  

4.1 Endothelial	
  cell	
  culture	
  in	
  3D	
  scaffolds	
  	
  	
  

One of the major limitations of 3D scaffolds is maintaining cell viability, 

especially within the core of constructs, where there is limited oxygen and 

nutrients (Kaully et al., 2009). A key aim of engineering complex and functional 

3D structures is to successfully integrate capillary networks. This will increase 

long-term success of future implants (Duffy et al. 2011, Kaully et al 2009). In the 

current study cells were incorporated into the 3D collagen scaffold in order to 

ensure that network aggregates formed throughout the constructs. For tissue 

engineering purposes this is superior to many studies that seed cells on the 

surface of scaffolds and either rely on exogenous factors (growth factors, PMA) 

to promote cell invasion within the constructs (Bayless et al., 2009; Davis et al., 

2000; Joung et al., 2006; Montesano and Orci, 1987; Montesano et al., 1983) or 

study EC organisation into networks in 2D on the scaffold surface (Ingber and 

Folkman, 1989; Kubota et al., 1988; Vailhé et al., 2001, 1997; Vernon et al., 

1995).  

 

In addition to tissue engineering applications, these 3D constructs can be used 

as models for testing different aspects of angiogenesis and vasculogenesis. 

Using in vitro models where possible, limits the use of ex vivo and in vivo 

models, such as the aortic ring outgrowth assay (Nicosia, 2009; Nicosia et al., 

2011), the chick chorioallantoic membrane assay (CAM) (Hudlicka et al., 1989; 

Primo et al., 2010; Slevin et al., 2007; West et al., 1985), the corneal assay (Ali 

et al., 2013; Staton et al., 2009) zebrafish models and others using mice and 

rabbits (Staton et al., 2009). These models have contributed substantially to 
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understanding angiogenesis, for example by highlighting the importance of a6 

integrins in the aortic ring and CAM assays (Primo et al., 2010), the role of 

basement membrane proteins in the aortic ring assay (Nicosia, 2009; Nicosia et 

al., 1994) and the role of hyaluronan and its receptors in angiogenesis using the 

CAM assay (Slevin et al., 2007; West et al., 1985). However, it is becoming 

increasingly necessary to work towards reducing the number of animals 

required for medical research (“reduce, refine, replace” principle).   

 

By mixing ECs within the collagen hydrogel in this study, the assay was a closer 

mimic of vasculogenesis (Davis and Camarillo, 1996; Morin and Tranquillo, 

2013). While important, especially in development, in vitro studies are more rare 

due to the 3D nature of the assays. Cells are interspersed throughout the 

scaffold, which make practical quantification and assessment more challenging 

(Staton et al., 2004). Thus, in addition to the benefit for tissue engineering 

applications, the current 3D in vitro study tested vasculogenesis, a less 

researched process. 

 

There are numerous scaffolds available, used in different types of assays and 

experimental designs. These include fibrin and collagen I (Bayless and Davis, 

2003; Bayless et al., 2009; Montesano and Orci, 1987; Rao et al., 2012), 

matrigel (Kubota et al., 1988), starch-polycaprolactone (Ghanaati et al., 2011) 

and silk fibroin (Unger et al., 2004). Collagen I hydrogels are not commonly 

selected as scaffolds in vasculogenesis. Davis and colleagues in the USA have 

done the majority of work using collagen hydrogels both for angiogenesis and 

vasculogenesis. Their vasculogenesis study design involves embedding ECs in 

a 3D collagen hydrogel, overlaid with Phorbol Myristate Acetate (PMA) and 
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growth factor supplemented media. PMA is a tumour promoter agent, which 

drives EC invasion within the scaffold and promotes EC tubulogenesis very 

quickly (Bayless and Davis, 2003; Bayless et al., 2000; Bell et al., 2001; Davis 

and Camarillo, 1996; Salazar et al., 1999).  

 

PMA was added in some of the cultures in the present study as a control to test 

and compare the PMA effect to the other parameters tested. My results showed 

HUVEC network formation in 3D collagen hydrogels, within 48 hours in the 

presence of PMA without any additional growth factors. There was no evidence 

of flattened or cobblestone cells in any stage of the cultures. Network lengths at 

this early time point with PMA were (almost) equal to network lengths found in 

day 7 mixed co-cultures with laminin. However, the results also showed that 

networks in PMA cultures peaked by day 7 and appeared to plateau or 

disintegrate after that (Figure 3.5). Therefore the stability of these structures 

beyond that point is unclear. This quick network aggregation and network 

disintegration shows similarities to tumour angiogenesis, where blood vessels 

form quickly but are abnormal in both structure and function showing blood 

vessel leakiness, branching and lumen abnormalities (Carmeliet and Jain, 

2011). While PMA may not directly affect cellular DNA (Powerski et al., 2011) its 

use raises concerns about safety and relevance to healthy EC response. 

Therefore, PMA experiments were only used as controls as this method is 

traditionally used to induce EC network aggregation. The use of supplementary 

cells and matrix proteins used maximises the translation of findings to the 

physiological cell response. 
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4.2 The	
  effect	
  of	
  co-­‐cultures	
  	
  	
  	
  

	
  	
  
Co-cultures of ECs with supplementary cells are based on various cell sources 

in literature (Morin and Tranquillo, 2013). These range from MSCs (Au et al., 

2008; Duffy et al., 2011; Kaigler et al., 2003; Kang et al., 2013; Kolbe et al., 

2011; Rao et al., 2012), HDFs (Alekseeva et al., 2014; Kunz-Schughart et al., 

2006; Newman et al., 2011) and osteoblasts (Fuchs et al., 2009; Herzog et al., 

2014; Hofmann et al., 2008; Pirraco et al., 2014; Unger et al., 2007) to smooth 

muscle cells and pericytes (Sacharidou et al., 2012; Stratman et al., 2011, 

2010, 2009). The most common sources are MSCs or HDFs, which were both 

used in this study (Duffy et al., 2011; Ghajar et al., 2010; Grainger et al., 2013; 

Morin and Tranquillo, 2013; Rao et al., 2012). Despite the extensive use of 

supplementary cells in studies using various scaffolds (eg. fibrin) (Morin and 

Tranquillo, 2013; Rao et al., 2012) the majority of collagen hydrogel work relies 

on growth factor addition and PMA (Bayless and Davis, 2003; Bayless et al., 

2009; Bell et al., 2001; Salazar et al., 1999). There is limited published work 

using native collagen scaffolds and mixed co-cultures of HUVECs with 

supplementary cells. The current work addressed this by testing co-cultures of 

ECs with the two most commonly used supplementary cells, HBMSCs and 

HDFs in 3D collagen scaffolds.  

 

MSCs are mainly selected due to both MSC multi-potentiality and the release of 

pro-angiogenic growth factors (Au et al., 2008; Bronckaers et al., 2014; Duffy et 

al., 2011; Kaigler et al., 2003; Kolbe et al., 2011; Rao et al., 2012). 

Incorporating multi-potential HBMSCs within the collagen hydrogels increases 

future applications, mainly for vascularised bone tissue engineering. A 1:1 

media composition was selected to allow favourable culture conditions for both 
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cell types. Some published studies use EC medium only in co-cultures, to 

ensure the viability of ECs, which have greater culture medium demands and 

are more sensitive in vitro (Bulnheim et al., 2014; Kirkpatrick et al., 2011; Kolbe 

et al., 2011). From the cultures tested in the current study there was no 

evidence that using a mixture of EC medium with MSC medium compromised 

cell response and ECs successfully formed end-to-end networks. Interestingly, 

in literature, an increase in MSC osteogenic markers in co-cultures of MSCs 

and HDMECs compared to MSC monocultures, in the absence of osteogenic 

supplements has been shown (Bulnheim et al., 2014). Osteogenic markers 

were not tested in any of the cultures here but this is an important area for 

future work. On the other hand, some studies add osteogenic supplements to 

cultures to induce osteogenesis with varying degrees of success (Bulnheim et 

al., 2014; Kolbe et al., 2011). Therefore, further work focusing on MSC 

differentiation in MSC- HUVEC co-cultures can be useful for engineering 

vascularised bone tissues and fine-tuning media composition will be an 

important factor in this (Bulnheim et al., 2014; Kolbe et al., 2011; Vater et al., 

2011).  

 

One of the difficulties of co-culturing two or more different cell types is 

optimising the ratios used without compromising cell response (Kirkpatrick et 

al., 2011). In literature, cell ratios used vary and are dependent on the cells, 

scaffolds and overall experimental design used. Despite the use of different cell 

ratios, a lower proportion of the more robust, proliferative cells, is usually 

chosen (Bulnheim et al., 2014; Duffy et al., 2011; Kirkpatrick et al., 2011; Rao et 

al., 2012). At the same time, adequate growth factor release by supplementary 

cells has to be ensured as emphasised by findings by Rao et al (2012) where 
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MSC factors were insufficient due to the low number of cells used. Therefore, 

the optimum cell ratios that would agree with these principles had to be 

determined for the conditions and experimental design used in the current 

study. The 1:2 MSC:EC ratio used (200000:400000/ml) showed the balance 

between growth factor release by supplementary cells and EC aggregation. It is 

worth noting that Bulnheim et al (2012) also chose a 1:2 ratio in their study, as 

this was the best for long term EC viability. Despite this ratio not being the 

optimum for MSC osteogenic differentiation there was still an up-regulation of 

several osteogenic markers (Bulnheim et al., 2014). This emphasises the 

potential future use of the cultures described in this thesis, for the purpose of 

vascularised bone tissues.  

 

The other popular source of supplementary cells used in literature is HDFs 

(Berthod, 2013; Newman et al., 2011; Sorrell et al., 2007). HDF- HUVEC co-

cultures were also tested using similar conditions to HBMSC cultures and found 

HUVEC network aggregation in physiological hypoxia. The effect of 

physiological hypoxia will be discussed further in section 4.8. While the data 

showed a significant role for VEGF release and uptake in HBMSC co-cultures 

when ECs formed networks (as discussed in 4.5), in HDF co-cultures there was 

no such evidence. VEGF released by HDFs was very low and VEGF receptors 

showed no up-regulation, suggesting no direct VEGF effect on HUVEC 

aggregation. This was in agreement with some studies showing that VEGF is 

not necessary for EC network formation (Newman et al 2011) but disagreed 

with others showing VEGF mediated network aggregation (Levenberg et al 

2005). Newman et al also showed that in a 3D fibrin bead assay, the 

combination of angiopoietin-1, angiogenin, hepatocyte growth factor, TGFα and 
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TNFα were necessary for EC network aggregation. Angiopoeitin-1 was 

quantified here, however levels were low in HDF co-cultures. When HDFs are 

used most studies emphasise the deposition of matrix protein by HDFs as the 

main mechanism by which fibroblasts affect EC response (Berthod, 2013; Kunz-

Schughart et al., 2006; Newman et al., 2011; Sorrell et al., 2007). Matrix protein 

deposition by HDFs was not tested in the current study, however a potential link 

between matrix and hypoxia will be discussed in section 4.8.   

 

As mentioned, HBMSC co-cultures have the potential to be useful for bone 

tissue engineering applications. Studies using EC co-cultures with fibroblasts 

have focused on tissues such as muscle and skin, more closely related to 

fibroblasts. For example, Levenberg et al (2005) used a PLLA/PLGA scaffold 

seeded with myoblasts, endothelial cells and fibroblasts. Myoblasts 

differentiated and organised into multinucleated myotubes while at the same 

time endothelial cells organised into capillary networks throughout the scaffolds 

(Levenberg et al., 2005). Fibroblasts were found to increase and stabilise the 

capillary structures, mainly through the release of VEGF (Levenberg et al., 

2005). A similar study using fibrin and fibrin-PLLA-PLGA by Lesman et al (2011) 

showed successful integration of capillary structures with myotubes. Other 

attempts in literature include skin vascularisation using keratinocytes, fibroblasts 

and endothelial cells on 3D porous chitosan/collagen (Black et al., 1998; Kaully 

et al., 2009). Thus, by showing data that EC end-to-end networks can form 

within 3D collagen scaffolds using either HBMSCs or HDFs, tissue-engineering 

applications in the future can expand into different areas.  
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The data presented in co-cultures focused on the effect of the supplementary 

cells on ECs. However, ELISAs show PDGF protein release by HUVECs in 

monocultures (table 3.1), which is absent in co-cultures (with both HBMSCs and 

HDFs). This suggests PDGF protein uptake by HBMSCs and HDFs, a finding 

supported by different published studies (Au et al., 2008; Berthod, 2013; 

Duttenhoefer et al., 2013; Loibl et al., 2014; McFadden et al., 2013). PDGF is 

one of the main factors attracting pericytes to newly formed capillaries in vivo 

(Andrae et al., 2008; Berthod, 2013; Carmeliet and Jain, 2011). Others have 

shown evidence that HBMSCs and HDFs acquire a pericyte-like phenotype in 

co-cultures with ECs through a PDGF effect (Au et al., 2008; Berthod, 2013; 

Duttenhoefer et al., 2013; Loibl et al., 2014). Interestingly, McFadden et al 

(2013) recently suggested that the delayed addition of MSCs to EC cultures in 

collagen-proteoglycan scaffolds further enhances the perivascular role of 

MSCs. Their findings suggested PDGF release by ECs prior to MSC addition, 

which was utilised by MSCs after addition to EC cultures, quickly promoting a 

supportive role for EC networks that had formed.  

 

In addition, different PDGF isoforms have been shown to affect collagen gel 

contraction by HDFs and crucially HDF migration in scratch wound assays 

(Donovan et al., 2013). Thus, in the current study PDGF uptake could result in 

HBMSC/HDF migration towards EC networks, promoting network stability and 

maturation. PDGF uptake by supplementary cells needs to be confirmed in 

future studies. In addition, supplementary cells should be tested for pericyte 

markers such as CD146, NG2 and αSMA (Berthod, 2013; Duttenhoefer et al., 

2013; Loibl et al., 2014). If proven, the acquisition of a perivascular role by 
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HBMSCs and HDFs will be important for the long-term maintenance and 

maturity of engineered capillary structures. 

 
	
  

4.3 The	
  effect	
  of	
  matrix	
  composition	
  

When pure collagen I was used in my cultures, ECs migrated to the top surface 

and aggregated into the cobblestone morphology. This was an important finding 

as HUVEC migration to the surface of 3D scaffolds over time has not been 

described elsewhere. Others have described EC aggregation in cobblestone in 

2D on the surface of scaffolds but not in 3D (Kubota et al., 1988; Kumar et al., 

1987). As will be discussed in more detail in 4.4, this cell behaviour can have 

significant implications both for testing developmental pathways and tissue 

engineering applications.  

 

Despite HBMSC addition to collagen I cultures and the presence of VEGF, 

HUVECs aggregated into cobblestone. This suggested that collagen I 

prevented HUVEC end-to-end network aggregation. Kroon et al (Kroon et al., 

2002) also showed that collagen I inhibited EC (using human foreskin 

microvascular ECs) tube formation on fibrin constructs. More recently, Rao et al 

(Rao et al., 2012) used EC-MSC co-cultures and tested the effect of collagen I 

addition to a fibrin matrix. Their study also showed that EC tubules became 

increasingly longer when fibrin was added and the percentage of collagen I was 

decreased. These findings suggested that collagen I prevents or slows down 

end-to-end network formation. However, results in the current study prove that 

by fine-tuning matrix composition different HUVEC aggregation patterns can be 

achieved. Collagen I remains an ideal scaffold for tissue engineering, as it is 

abundant, biomimetic and can be used for several tissue engineering 
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applications (Brown et al., 2005; O’Brien, 2011). These include on-going studies 

testing collagen I for muscle (Brady et al., 2008; Cheema et al., 2003; Smith et 

al., 2012), nerve (Georgiou et al., 2013; Phillips et al., 2005) and cornea (Levis 

et al., 2010) applications.  

 

Laminin was added to collagen I in the current study, to create an environment 

conducive to both EC proliferation and “differentiation” (Kubota et al., 1988) so 

that ECs formed end-to-end networks. The end-to-end network aggregation of 

HUVECs when laminin was present emphasised the importance of matrix 

composition as also show in the aortic ring outgrowth assay (Nicosia, 2009; 

Nicosia et al., 1994) and 2D angiogenesis assays (Kubota et al., 1988). Kubota 

et al (1988) first showed that laminin was essential for network formation when 

ECs were cultured on top of a collagen I scaffold without any supplements. 

However, Kubota et al (1988) relied on the organisation of cells in 2D, on the 

surface of the scaffold. In contrast, the findings here are of great importance 

with EC network organisation throughout the collagen constructs, in 3D. While 

other studies using collagen I have shown EC tubulogenesis in 3D, this has 

mainly been in the presence of PMA, S1P (Bayless and Davis, 2003; Davis et 

al., 2000) or growth factors (Davis et al., 2000). In contrast, I relied on EC 

organisation in the absence of any supplements by fine-tuning cell-cell and cell-

matrix interactions. Relying on the effect of these physiological parameters was 

a major advantage to the use of exogenous factors.  

 

The importance of laminin in tube morphogenesis has also previously been 

shown by blocking it in matrigel experiments (Davis and Camarillo, 1995; Grant 

et al., 1989). Laminin is a main component of matrigel, which is widely used in 
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EC studies (Arnaoutova and Kleinman, 2010; Arnaoutova et al., 2009; Kubota 

et al., 1988). However, matrigel has an incompletely defined, predetermined 

composition (Bayless et al., 2009), which limits its long-term applicability for EC 

biology testing and tissue engineering. In addition, matrigel has been shown to 

induce cell fusion and tubulogenesis in fibroblasts (Bayless et al., 2009; Bikfalvi 

et al., 1991; Donovan et al., 2001; Emonard et al., 1987), which suggests that 

its effect is not unique to ECs. In contrast all network aggregates in co-cultures 

here were CD31 positive, while CD31 negative cell nuclei were single cells. 

Since HBMSCs and HDFs are primarily CD31 negative, this suggests an EC 

specific aggregation. This is important to ensure that the collagen-laminin 

scaffold is a controlled 3D environment that promotes a specific and 

reproducible response by ECs. 

 

HUVEC end-to-end networks were visible for a week in culture. Two-week 

cultures were hindered by extensive contraction of the collagen by both 

HBMSCs and HDFs and therefore could not be analysed. This has also been 

noted in some fibrin cultures in literature with shrinkage by 7 days (Lesman et 

al., 2011). This is due to the weak mechanical strength of the scaffold (Brown et 

al., 2005; Cross et al., 2010), which allows cells such as HBMSCs and HDFs to 

freely contract the matrix (Brown et al., 1998; Eastwood et al., 1998; 

Karamichos et al., 2007). This is a limitation of using collagen hydrogels, which 

can be overcome by using plastically compressed collagen scaffolds (Brown et 

al., 2005) while crosslinking of collagen fibrils can further increase its 

mechanical strength (Cheema et al., 2012; Wong et al., 2013). In fact, recent 

work by Alekseeva and colleagues (2014) has begun testing the behaviour and 

response of microvascular ECs in compressed collagen constructs, in 
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monocultures and in co-cultures with fibroblasts. Further modifications of the 

collagen scaffolds will be tested in the future to promote longer culture times 

and improve mechanical strength. Nevertheless, the findings in the current 

study show promising results for engineering stable network aggregates. Most 

importantly this is an improvement to some matrigel studies where despite the 

quick response and tube formation by ECs (Arnaoutova et al., 2009) tubular 

structures disintegrate after 2-3 days in culture (Sorrell et al., 2009).  

 

4.4 Cell	
  polarity	
  and	
  tubulogenesis	
  

ECs in vivo are polarised cells, with an apical side facing the blood vessel 

lumen and a basal side attached to the basement membrane (Chung and 

Andrew, 2008). In addition, cell-cell junctions on the lateral surfaces allow cell-

cell communication. Differences on each cell surface establish cell polarity, 

which is controlled by proteins including Par3, Par6 and PKC isoforms (Iruela-

Arispe and Davis, 2009; Sacharidou et al., 2012) and allows for different 

functions and cell permeability (Chung and Andrew, 2008).  

 

The two main aggregation patterns described in this study, the cobblestone and 

end-to-end network aggregation, mimic developmental mechanisms for 

tubulogenesis. As cell polarity is an important part of both tubulogenesis and 

the endothelium anatomy and function, these aggregation patterns are also 

linked to cell polarity. Developmentally tubular organs form as a result of five 

main processes: wrapping, budding, cavitation, cord hollowing and cell 

hollowing (Lubarsky and Krasnow, 2003). Chung and Andrew (2008) describe 

wrapping and budding as two processes that lead to tubulogenesis from an 

existing polarised epithelium. In contrast, de novo acquisition of cell polarity 
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alongside lumen formation occurs in cavitation, cord hollowing and cell 

hollowing (Chung and Andrew, 2008).  

 

Indeed cobblestone aggregation of HUVECs described in this study, especially 

in single cultures where a cobblestone cell sheet forms on the ventral surface of 

the constructs, appears to mimic “wrapping”. Cell migration to the ventral 

surface of the constructs is especially important as HUVECs establish apical-

basal polarity. Wrapping, found in processes such as neurulation, involves 

changes in the organisation and shape of the cells, which have formed a 

polarised epithelium (Chung and Andrew, 2008). The cells from a columnar 

shape become more pyramidal and cell contraction results in bending of the cell 

sheet (Chung and Andrew, 2008). This continues until the edges meet and form 

a tubular structure that is parallel to the initial sheet (Lubarsky and Krasnow, 

2003). While in vivo this is not commonly found in capillary formation, it is a 

process used by other epithelial cell types (Iruela-Arispe and Davis, 2009; 

Lubarsky and Krasnow, 2003). Both the time-dependent changes in cell shape 

from multipolar, to flattened to cobblestone and the migration to the surface as 

described here, could resemble the initial stages of wrapping.  

 

On the contrary, end-to-end networks found in HBMSC-HUVEC co-cultures with 

laminin in normoxia and HDF-HUVEC co-cultures in physiological hypoxia could 

be mimicking cell or cord hollowing. In both cord hollowing and cell hollowing, 

vesicles or vacuoles are involved in creating a lumen (Lubarsky and Krasnow, 

2003). In cell hollowing these vacuoles are found intracellularly within single 

cells, while in cord hollowing vacuoles are found extracellularly between cells of 

a solid structure (Iruela-Arispe and Davis, 2009; Lubarsky and Krasnow, 2003). 
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The vacuoles eventually coalesce to form a complete lumen. These processes 

are more commonly described in capillary formation and have been studied 

both in vitro and in vivo (Davis et al., 2007; Iruela-Arispe and Davis, 2009; 

Lubarsky and Krasnow, 2003). 

 

Ultimately, these morphological changes and aggregation patterns in this study 

could aim to create a tubular structure- with a hollow lumen- and establish 

apical-basal cell polarity (Chung and Andrew, 2008). Further work is needed to 

establish the presence of hollow lumens and cell polarity in both the 

cobblestone and end-to-end network aggregation. Real-time lapse microscopy 

can be used to test the process of end-to-end network aggregation, similar to 

the work done by others (Davis et al., 2007; Koh et al., 2008; Sacharidou et al., 

2012). This in conjunction with further histological tests can determine lumen 

presence. Monitoring real time cell aggregation will also test vacuole formation. 

If vacuoles are found intracellularly, network formation would mimic cell 

hollowing, while if vacuoles are extracellular the process is a better mimic of 

cord hollowing (Lubarsky and Krasnow, 2003; Sacharidou et al., 2012).  

 

As mentioned, establishing apical-basal cell polarity is an important part of 

lumen formation. Studies in literature have shown that blocking proteins Par3 

and Par6b, which control cell polarity, prevent lumen formation in vitro (Davis et 

al., 2007; Koh et al., 2008; Sacharidou et al., 2012). However, EC polarity is not 

as defined as in epithelial cells and there are no specific membrane markers 

that would distinguish the two EC surfaces (such as annexin 2 or podocalyxin 

found on the apical surface in epithelial cells) (Iruela-Arispe and Davis, 2009; 

Sacharidou et al., 2012). Co-localisation on the basal EC surface of support 
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cells such as pericytes and basement membrane proteins are currently the best 

indicators for cell polarity (Sacharidou et al., 2012). Future testing of the 

interaction between HUVECs and HBMSCs, as well as basement membrane 

localisation can determine EC polarity.  

	
  

4.5 Integrins,	
  matrix	
  composition	
  and	
  VEGF	
  receptors	
  	
  

Integrins provide cell attachment to the surrounding matrix and orchestrate 

intracellular cell signalling, affecting cell behaviour (Brooks, 1996; Davis and 

Camarillo, 1995; Hynes, 2009; Primo et al., 2010; Ross, 2004). My results 

showed that α6 integrin, was important for network aggregation of HUVECs. 

This was shown when α6 integrin was blocked, resulting in EC morphology in 

cultures with collagen-laminin reverting back to the morphologies found in 

collagen I only cultures. My work has shown for the first time the importance of 

α6 integrin in a 3D collagen-laminin vasculogenesis assay. Others have shown 

similar results where the addition of α6 antibodies inhibit or reduce capillary 

networks (Lee et al., 2006; Primo et al., 2010). However, these were done in 

matrigel or laminin coated plates in 2D with VEGF supplemented media (Davis 

and Camarillo, 1995; Lee et al., 2006; Primo et al., 2010). By using collagen I in 

this study the effect of individual matrix parameters and integrins were tested in 

a controlled environment. This is an advantage to using matrigel, where the 

mixture of different matrix components and growth factors could compromise 

the effect of integrins or matrix components.  

 

There is a complex relationship between matrix, integrins and growth factors 

(Brooks, 1996; Hynes, 2009; Primo et al., 2010), including an increase in 

integrin expression following growth factor addition to cultures (Lee et al., 2006; 
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Primo et al., 2010). The complex relationship between matrix and growth factors 

also involves growth factor binding to certain ECM proteins. There is evidence 

that VEGF binds to heparin (Hynes, 2009; Wu et al., 2011), but there are no 

studies describing VEGF binding to laminin. Indeed the current study showed 

that despite significantly lower VEGF levels in collagen-laminin co-cultures 

compared to collagen only co-cultures, HBMSCs alone released the same 

amount of VEGF in both matrices. Thus, laminin does not affect HBMSC 

signalling and the addition of laminin to collagen hydrogels does not trap extra 

VEGF. This is the first study to show this in an in vitro controlled setting. The 

difference in VEGF levels in co-cultures, suggested higher VEGF uptake by 

ECs in the presence of laminin. VEGF receptors were quantified using flow 

cytometry, further deducing the link between laminin, VEGF receptor levels and 

protein uptake (Stamati et al., 2014).  

 

While the current work was done in 3D culture, published studies quantifying 

receptor levels mainly use cells grown on tissue culture plastic. By using the 

methods described by Imoukhuede and colleagues for cells cultured in 2D or 

cells extracted from tissues, (Imoukhuede and Popel, 2012, 2011; Imoukhuede 

et al., 2013) the number of receptors per cell was quantified. Receptor surface 

levels per EC were much higher than previously published work using similar 

quantitation methods (Imoukhuede and Popel, 2012, 2011). Imoukhuede and 

Popel (2012) showed significant differences in receptor levels quantified in ex 

vivo cells (from mouse tissues) and cultured cells in 2D. These differences 

mainly related to the balance between VEGFR1 and VEGFR2, i.e. whether 

VEGFR1 levels were higher than VEGFR2 (Imoukhuede and Popel, 

2012).These differences between ex vivo and in vitro results emphasise the 
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important relationship between matrix and integrins on receptor expression. A 

systematic approach to unravel more details of these interactions will be 

necessary in the future and using such an in vitro controlled environment is 

ideal.  

 

Higher VE-cadherin levels have been correlated to higher VEGFR2 expression 

(Calera et al., 2004; Lampugnani et al., 2006; Nakayama et al., 2013; Scott and 

Mellor, 2009). VEGFR2 surface expression is stabilised as a result of the 

interaction with cadherins, decreasing receptor internalisation (Calera et al., 

2004; Lampugnani et al., 2006; Nakayama et al., 2013; Scott and Mellor, 2009). 

In effect, this stabilisation works to “negatively” regulate VEGFR2 function, 

preventing internalisation and VEGF signalling (Chen et al., 2010). 

Immunofluorescence staining for VE-cadherin showed more intense surface 

staining in collagen-laminin co-cultures, where ECs formed end-to-end 

networks, compared to collagen only co-cultures, where cobblestone formed, 

on day 7 Figure 3.14). At the same time, on day 7, a higher number of VEGFR2 

receptors per HUVEC was also measured in collagen-laminin co-cultures 

(~40000 receptors) compared to collagen only (~30000 receptors). Therefore, 

VE-cadherin surface localisation on day 7 stabilises VEGFR2 and stops 

internalisation. At this stage ECs have already established cell-cell contact and 

formed networks, as shown by CD31 immunofluorescence (Figure 3.11), which 

suggests that VEGFR2 signalling is no longer required.  

 

It should be noted that differences in the role of VE-cadherin in EC aggregation 

were also highlighted by Bach et al (1998) who found that a VE cadherin 

antibody disrupted capillary tubes (by preventing new capillary structure 
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formation and disrupting pre-existing capillaries) but did not disrupt EC 

monolayers in vitro. This supports initial findings here that significant differences 

in VE-cadherin expression exist depending on EC aggregation. Staining 

provided qualitative evidence suggesting a link between VE cadherin and 

VEGFR2 surface levels in these co-cultures. Further tests quantifying these VE 

cadherin (eg. Western blots) differences can prove the relationship between VE 

cadherin and VEGFR2 in 3D collagen-laminin constructs.  

 

Collectively, these findings suggest that VEGF binds to VEGF receptors on 

ECs, resulting in “outside-inside” signalling as described by Ross (Ross, 2004). 

VEGF binding to (mainly) VEGFR2 results in receptor internalisation and 

subsequent α6 integrin expression (Davis and Camarillo, 1995; Primo et al., 

2010), which increases EC attachment to laminin. As a result, intracellular 

signalling orchestrated by α6 leads to EC reorganisation and changes in EC 

morphology and aggregation (Ross, 2004). Most importantly, the reorganisation 

of the cells into end-to-end networks has been shown here to be integrin and 

matrix dependant, i.e. will only occur when α6 and laminin are present. This 

complex signalling loop between integrins and growth factors has also been 

described in other cells including fibroblasts, skeletal myoblasts and 

oligodendrocytes (Ross, 2004). These initial findings have shown that this in 

vitro model is a relatively easy and reproducible way to test the exact 

mechanisms that orchestrate specific EC responses.  

 

Future work will test the addition of fluorescently labelled VEGF in culture 

medium, which can be tracked and quantified within cells, similar to work by 

(Nakayama and Berger, 2013). VEGF receptor levels combined with the rate of 
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VEGF uptake can definitively prove the link between matrix composition and 

growth factor uptake.  

	
  

4.6 HDMEC	
  cultures	
  

HUVECs were selected due to their widespread use in studies using ECs 

(Morin and Tranquillo, 2013). They are relatively easy to obtain (purchase or 

extract), although extracting them can result in a low cell yield (Unger et al., 

2002). With the correct media composition they can be maintained in 2D culture 

for a limited doubling time (Unger et al., 2002). The second most popular type 

of ECs are HDMECs (Morin and Tranquillo, 2013; Unger et al., 2007). Both 

HUVEC and HDMECs are primary cells with a degree of variability between 

samples (Bouïs et al., 2001) and most importantly, differences between EC 

sources (Aird, 2007b; Bouïs et al., 2001; Kumar et al., 1987; Morin and 

Tranquillo, 2013). Thus, results using one type of EC may not be representative 

of other sources of cells. Some researchers use EC lines, however not all cell 

lines have the same characteristics and respond in the same way as these 

primary cell sources (Unger et al., 2002).  

 

In this study there were significant morphological differences when HDMECs 

were cultured in the same conditions as HUVECs. HUVECs showed extensive 

migration (Figure 3.3) (in HUVEC only cultures) with time, to the top of the 

collagen scaffold and aggregated from single cells to form a cobblestone cell 

sheet. In contrast, when HDMECs were cultured alone in collagen hydrogels 

cells did not form a cobblestone cell sheet and showed mainly a multipolar 

morphology (Figure 3.19). Differences in cell morphology have also been 

described in literature in 2D, with large vessel ECs showing cobblestone 
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morphology, while microvascular ECs have a more elongated morphology 

(Kumar et al., 1987). HUVECs and HDMECs have also been found to 

proliferate and respond to growth factors differently in 2D culture (Lang et al., 

2003, 2001).  

 

HUVECs are extracted from the umbilical artery, a large vessel of fetal origin, 

while HDMECs are extracted from adult skin. A study by Lang et al (2003) 

addressed whether organ origin and “maturity” (fetal vs adult) was more 

relevant to EC differences than vessel size and function (macrovascular vs 

microvascular). Lang et al (2003) extracted microvascular ECs from human 

placenta (PLEC), an organ of fetal origin, and compared them to HUVECs and 

HDMECs. Their findings showed that PLECs had a more elongated 

morphology, more akin to HDMECs. In addition, cell proliferation and response 

to cytokines was more similar to HDMECs, rather than HUVECs (Lang et al., 

2003). This supports the theory that differences between the two cell types exist 

due to the differences in vessel size and function rather than organ maturity. 

Testing additional EC sources in 3D cultures can prove or disprove this in the 

future.  

 

In addition, HDMECs did not form any end-to-end network aggregates in 

HBMSC co-cultures in collagen-laminin hydrogels. Future work can also focus 

on co-cultures of HDMECs with pericytes or HDFs, rather than HBMSCs, which 

more closely mimic in vivo cell interactions (Armulik et al., 2005).  

 

These results therefore emphasise the morphological differences between ECs 

depending on the cell source (Bouïs et al., 2001; Kumar et al., 1987; Morin and 
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Tranquillo, 2013). While only the morphological differences were tested here 

other differences in growth factor release, receptors and cell markers have been 

identified elsewhere (Aird, 2007a, 2007b; Kumar et al., 1987; Lang et al., 2003). 

EC heterogeneity, including other EC sources such as outgrowth endothelial 

cells (Fuchs et al., 2010; Ghanaati et al., 2011) can be extensively studied 

using these 3D cultures as described, where cell-cell and cell-matrix 

interactions can be easily controlled. 

  

4.7 Segregated	
  co-­‐cultures	
  	
  

Several published studies have tested the presence of gradients of angiogenic 

factors in 3D in vitro to guide EC migration and mimic angiogenesis.  The 

majority of these studies use immobilised growth factor addition, most 

commonly VEGF (Gerhardt et al., 2003; Odedra et al., 2011; Shen et al., 2008). 

Despite the fact that VEGF is known to be an important regulator of 

angiogenesis and critical for EC migration, it is one of many factors involved in 

the process. While some studies have paired VEGF with other factors, such as 

angiopoietin-1 (Odedra et al., 2011; Shin et al., 2011), exogenous growth factor 

addition is not as physiological as a cascade of growth factors released by 

supplementary cells.  

 

Segregated co-cultures in the current study tested the effect of HBMSC-HUVEC 

cultures in the absence of direct cell contact. The aim here was to use a 

physiological approach, by relying on HBMSC released growth factors and 

using the unique features of compressed collagen constructs (Brown et al., 

2005; Cheema et al., 2010; Hadjipanayi et al., 2012, 2011). Previous work in 

this group adopted a similar approach where HDF seeded collagen spirals were 
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used in segregated cultures with HUVECs (Hadjipanayi et al., 2011, 2010). 

While both in vitro and in vivo work in these previous studies had shown 

promising results for HUVEC network aggregation, this was not found in the 

current study. There were however, significant differences in the experimental 

setup and the choice of cells between these studies.  

	
  

4.8 	
  Normoxia	
  vs	
  physiological	
  hypoxia	
  cultures	
  	
  

Cell culture in lower oxygen conditions than the commonly used atmospheric 

oxygen conditions (21% O2, 5% CO2 and 37C) is physiologically relevant, since 

most cells in the body are normally exposed to much lower oxygen levels than 

21% (Stamati et al., 2011).  

 

Physiological hypoxia levels of 5%O2 were chosen based on experimental 

observations in this group and others, which resulted in HBMSC growth factor 

up-regulation (Cheema et al., 2010; Das et al., 2010; Kinnaird, T, Stabile, E 

Burnett, M S Lee et al., 2004; Tsai et al., 2012). For example, Kinnaird et al 

(2004) found that MSC culture at 5% O2 results in a twofold increase in VEGF 

levels compared to 21% O2. Previous work from this group showed that cell 

density dependent oxygen consumption gradients formed in compressed 

spiralled collagen constructs. Real time oxygen monitoring readings averaged 

between 5%O2 in the core and 17%O2 in the periphery (Cheema et al., 2010, 

2008; Streeter and Cheema, 2011). These oxygen levels correlated with 

significant differences in angiogenic growth factor levels (at the gene level), with 

higher levels in the core, where oxygen levels were lower (Cheema et al., 2010, 

2008; Hadjipanayi et al., 2010). In addition, it was important to select an oxygen 

concentration within the physiological range because while physiological 
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hypoxia is an angiogenic stimulus, extreme hypoxia (eg. 0.2% O2) can lead to 

EC apoptosis (Li et al., 2003).  

In the current study there was no difference in VEGF protein levels released by 

HBMSCs when cultured alone. However, VEGF levels in HBMSC co-cultures in 

physiological hypoxia were higher than normoxia but this did not correlate to 

greater end-to-end network aggregation. In fact, as described in the results 

(Figure 3.25, Figure 3.27, Figure 3.29) VEGF levels, VEGF receptor levels and 

EC network aggregation suggest that protein uptake was greater in normoxia 

than physiological hypoxia.  

 

Overall, comparisons of protein findings with published literature are made with 

caution. Differences in experimental design, oxygen levels used to culture cells 

and the presence or absence of a 3D matrix significantly affect cell signalling 

and protein release. For example, Gawlitta and colleagues (Gawlitta et al., 

2012) used a “pellet” vasculogenesis assay and cultured endothelial colony 

forming cells and MSCs in osteogenic medium and found that hypoxia inhibited 

network aggregation of ECs in MSC co-cultures. While the effect on EC 

morphology was similar to the current study, protein levels showed contrasting 

stories. VEGF levels were lower in co-cultures in hypoxia (3-5% O2) than 

normoxia but were higher in MSC only cultures in hypoxia. Both the different 

source of ECs used and the lower oxygen levels could have contributed to the 

difference in protein levels. Another study by Ben-Yosef (2005) used very low 

levels of 0.3% O2 and found that lower oxygen levels inhibited HUVEC 

tubulogenesis on matrigel. These low oxygen levels are within the pathological 

hypoxia range and therefore the effect on EC viability could significantly 

influence network formation.  
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In addition, some researchers have found that exposing ECs to hypoxic 

conditions induces VEGF production by the cells (Namiki et al., 1995; Nilsson et 

al., 2004). VEGF protein was not detected in normoxia or physiological hypoxia 

when HUVECs were cultured alone in the cultures here. However, HUVECs 

cultured in physiological hypoxia showed significantly higher levels of VEGFR1 

compared to VEGFR2 in physiological hypoxia (Figure 3.28). Cells also had 

significantly lower VEGFR2 levels compared to normoxia. These findings were 

in agreement with studies by (Nilsson et al., 2004; Ulyatt et al., 2011), where 

ECs were cultured in hypoxia. However, it is worth noting that these studies 

used much lower oxygen levels (1% and 0.5% O2) compared to the 5%O2 used 

here.  

 

In HDF cultures there were significantly higher VEGF levels in hypoxia co-

cultures, where there was greater network aggregation. However, there was no 

difference between VEGF levels in HDF only cultures and co-cultures in 

physiological hypoxia. In addition, VEGF levels were 4-5 times lower than 

HBMSC cultures, suggesting a limited VEGF effect, similar to findings by others 

(Han et al., 2006; Newman et al., 2011).  

 

There were also no significant differences in TGFβ1 levels in the two oxygen 

conditions. TGFβ1 signalling has been shown to promote EC proliferation, 

migration and vessel maturation in vivo (Dallas et al., 2008; Warrington et al., 

2005), such as in the CAM assay (Li and Keller, 2000; Yang and Moses, 1990). 

However, in vitro TGFβ1 has been shown to both promote and inhibit tube 

formation. Its in vitro effect is dependent on the concentration used, time added 
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and the experimental conditions used (Dallas et al., 2008). Some studies 

suggest that concentrations of up to 10ng/ml promote EC migration and tube 

formation (Dallas et al., 2008; Warrington et al., 2005) while others have shown 

inhibition and regression of tubular structures (in the collagen sandwich assay) 

at lower concentrations (0.1ng/ml) (Li and Keller, 2000). The TGFβ1 amount 

detected in all co-cultures in the current study was significantly lower than 

10ng/ml (Figure 3.32) and therefore could have a pro-angiogenic effect. Most 

importantly, TGFβ1 was not exogenously added but was released by the cells 

within the cultures. Cell-cell interactions could significantly influence the uptake 

and effect of TGFβ1 as well as its interaction with other growth factors released 

by both cell types (Warrington et al., 2005). Therefore, further work is needed to 

determine the effect of TGFβ1 in end-to-end network aggregation within these 

co-culture conditions.  

 

In addition, there is a body of work testing the effect of CD105, which is part of 

the TGFβ receptor complex. CD105 can also be found independently and does 

not exert all its functions through TGFβ. CD105 is up- regulated in angiogenic 

ECs in hypoxia in vivo (Duff et al., 2003; Li and Keller, 2000; Warrington et al., 

2005) and has been linked to a decrease in EC apoptosis in extreme hypoxia 

(0.2% O2) in the presence of TGFβ. The effect and role of CD105 is complex 

and would be interesting to test its effect in these co-cultures and to compare 

any differences based on the oxygen conditions used.  

 

Overall, co-culture results suggested that different mechanisms exist depending 

on the supplementary cells present. The absence of specific growth factor up-
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regulation and uptake in HDF co-cultures further highlighted the importance of 

non soluble growth factors and cell-cell interactions (Velazquez et al., 2002).  

Fibroblasts are primarily responsible for the deposition of collagen and other 

ECM proteins in vivo (Newman et al., 2011; Shi-wen et al., 2001; Steinbrech et 

al., 1999). Soluble growth factors therefore may not be as important as ECM 

proteins (and collagens) when ECs are co-cultured with HDFs (Newman et al., 

2011; Sorrell et al., 2007). Collagen deposition by HDFs relies on ascorbic acid 

addition in culture medium (Berthod, 2013; Horino et al., 2002).  Ascorbic acid is 

a co-factor in the hydroxylation of proline into hydroxyproline, which results in 

the stabilisation of the collagen triple helix (Berthod, 2013). However, some 

researchers suggest that culturing fibroblasts in hypoxic conditions is sufficient 

for stable ECM deposition, both in vivo and in vitro without the need for ascorbic 

acid (Horino et al., 2002; Tajima et al., 2001; Takahashi, 2000). While ECM 

deposition was not tested in any of the cultures, this is an area that requires 

further testing. This is an area that could unravel the mechanisms that 

preferentially drive HUVEC network aggregation in physiological hypoxia but 

not in normoxia in HDF co-cultures. 
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5 Conclusion	
  	
  
 

The research presented in this PhD thesis details the effect of introducing 

biomimetic parameters into 3D cultures of ECs to study how they influence EC 

morphology and aggregation. The research presented shows data for the first 

time in 3D collagen hydrogels that VEGFR2 is up- regulated on ECs when the 

end-to-end EC aggregation pattern occurs, increasing VEGF uptake. This was 

shown to be integrin and matrix dependent and only occurs in the presence of 

HBMSCs. These findings show this as a mechanism that drives end-to-end 

aggregation in 3D cultures.  

 

Furthermore, my results clearly show HUVEC migration to the ventral aspect of 

the 3D scaffold and cell aggregation into a cobblestone sheet. This HUVEC 

response has not been shown previously. Cobblestone aggregation mimics the 

wrapping process in development whilst end-to-end networks mimic cell or cord 

hollowing. These aggregation patterns can be used for testing these 

developmental pathways in 3D in vitro. In addition, while the majority of 

research focuses on engineering and integrating small capillaries into scaffolds 

through end-to-end network aggregates, the cobblestone aggregation can be 

useful for mimicking the structure of larger vessels. The first step towards that 

will be incorporating smooth muscle cells into cobblestone aggregates.   

 

Finally, I have shown that HDFs can promote EC end-to-end network 

aggregation but in a VEGF independent manner and only in physiological 

hypoxia. Although matrix deposition by HDFs was not tested here, data in 

literature and here suggest that this is the main mechanism driving EC network 

aggregation.  
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In summary, I proved the hypotheses that support cells such as HBMSCs and 

HDFs and basement membrane proteins are necessary to promote end-to-end 

network aggregation of ECs. I have also proved the hypothesis that 

physiological hypoxia significantly promotes end-to-end network aggregation of 

ECs (in the presence of HDFs), but disproved the hypothesis that this was 

through the up-regulation of angiogenic growth factors (at least the angiogenic 

growth factors tested here).  
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